

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

SL. NO	CONDITION	COMPLIANCE STATUS
A	SPECIFIC COND	DITIONS:
i.	Consent to Establish/Opera te for the project shall be obtain from the State Pollution Control Board as required under the Air (prevention and control of pollution) Act, 1981 and the Water (prevention and control of pollution)Act, 1974.	Complied. We have obtained CTE after receiving ToR. CTE was granted by GPCB Vide No. GPCB/CCA- VSD- 313(12)/ID: 23158/363958 on 25.7.2016 (CTE no. 80394) Valid Till-17/7/2023. We had applied for amendment in existing CTO after receiving EC. CTO amendment has been granted by GPCB Vide Letter No. GPCB/CCA-VSD-313(16)/ID: 23158/513897, Dated 17.7.2019 (CTO amendment No. AH 102080), Valid Till-03/11/2019. Renewal for the same has been granted till Year -2025 copy is awaited. Copy of CTE and CTO is also attached as Annexure-I and Annexure-II respectively.
н.	The treated effluent of 3335 cum/day shallbe recycled/reuse d to meet the requirement of different industrial operations, and the remaining treated effluent of 20514 cum/day shall be discharge to estuary of Par river through the existing pipeline.	Complied. We have obtained consent to produce 40327.167 TPM . Since the production during April 2019 to September 2019 is less than the consented production Quantity i.e. 17202 TPM , therefore, fresh Water Consumption, Qty of Reuse / Recycle & Discharge are very less as per stipulated conditions. The treated effluent recycled in system is Avg.331 KL/Day during the reported period from April 2019 to September 2019 which is well below the stipulated norms.

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> psion of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tebsil & Dist-Va

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Remaining about **Avg. 9237.6 KL/Day** treated effluent has been discharged to estuary of Par river through the existing pipeline after achieving norms stipulated, which well within below limit as prescribed in stipulated condition.

Sr No	Month	Effluent Discharged to Estuary of Par River	Min KL/Day	Max KL/Day	Avg KL/Day
1	April-19	279679	9160	9486	9323
2	May-19	284864	9493	9497	9495
3	Jun-19	263811	8488	9100	8794
4	Jul-19	283200	9435	9445	9440
5	Aug-19	284191	9457	9489	9473
6	Sep-19	267058	8602	9200	8901

As mentioned above the production during April 2019 to September 2019 is less than the consented production quantity of **17202 TPM**, therefore, fresh Water Consumption, Qty of Reuse / Recycle & Discharge are very less as per stipulated conditions.

The Waste Water analysis at ETP outlet is monitored at regular interval for ensuring the compliance. The testing lab appointed is **M/s. Pollucon Laboratories Pvt Ltd**, Surat **NABL Approved TC – 5945**, issue date-**28/05/2019** and valid till **27/05/2021**.

The analysis reports were below the limits of quantization and within the permissible limit. A detail of analysis report of Monitoring report is attached in **Annexure- III.**

Monitoring details of final effluent discharged are as follows:

S.NO	PARAMETER	UNIT	LIMIT		Apr-1	9		May-19	9
5.NU	PARAMETER	UNIT		Min	Max	Result	Min	Max	Result
1	рН		5.5 to 9.0	6.7	7.9	7.45	7.83	8.67	8.25
2	Temperature	°C	40	20	39	31.9	30.4	34.4	32.4
3	Colour	Co-pt	0	45	110	77.5	95	115	105
4	Suspended Solids	mg/L	100	75	95	86	75	93	84
5	Oil & Grease	mg/L	10	2	7	3.6	3.5	5.3	4.4
6	Phenolic Compound	mg/L	5	0.1	2	0.45	0.1	0.6	0.35
7	Cyanides as CN	mg/L	0.2	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*
8	Flourides as F	mg/L	2	0	2	1.2	0.2	1.3	0.75
9	Sulphides as S	mg/L	2	0	1.9	0.95	1.45	1.95	1.7
10	Ammonical Nitrogen as NH3	mg/L	50	26	49	40	39	49	44
11	Arsenic as As	mg/L	0.2	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*
12	Total Chromium as Cr +3	mg/L	2	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*
13	Hexavalent Chromium as Cr+6	mg/L	1	BDL *	BDL*	BDL*	BDL*	BDL*	BDL*

of Chemical	<u>s Manufacturing Uni</u>	<u>t By M/s</u>	<u>s. Atul Ltd,</u>	Valsa	<u>d, Teh</u>	<u>sil &</u>	Dist-	<u>Valsad</u>	,	
14	Copper as Cu	mg/L	3	0.15	2.7	C	0.41	0.16	0.42	0.29
15	Lead as Pb	mg/L	2	BDL *	BDL*	В	DL*	BDL*	BDL*	BDL*
16	Mercury as Hg	mg/L	0.01	BDL *	BDL*	В	DL*	BDL*	BDL*	BDL*
17	Nickel as Ni	mg/L	5	0.03	0.13	C	.08	0.08	0.14	0.11
18	Zinc as Zn	mg/L	15	0.7	1.22	C	0.96	0.7	1.7	1.2
19	Cadmium as Cd	mg/L	2	BDL *	BDL*	В	DL*	BDL*	BDL*	BDL*
20	Phosphates as P	mg/L	5	1.11	1.85	1	48	1.41	1.89	1.65
21	BOD(5 Days@20°C)	mg/L	100	59	71		65	67	73	70
22	COD	mg/L	250	195	225	1	210	231	249	240
23	Sodium Adsorption Ratio		26	7.21	9.49	8	8.35	22.7	25.3	24
24	Manganese as Mn	mg/L	2	0.08	0.42	C	0.25	0.19	0.51	0.35
25	Tin as Sn	mg/L	0.1	BDL *	BDL*	В	DL*	BDL*	BDL*	BDL*
26	Bio Assay test	%	90% survival of fish after 96hr in 100% effluent		% surviv er 96hr efflue	in 100			survival 96hr in : effluent	100%
27	Pesticides/Insecticid es	mg/L	Absent	BD	L*	BDL *	BD L*	BDL*	BDL *	BDL*
0.110	DADAMETED				Ju	ın-19			Jul-19	
S.NO	PARAMETER	UNIT	LIMIT	N	lin N	lax	Resu t	ll Min	Max	Resul t
1	рН		5.5 to 9.0	7	.9 8	.41	8.2	7.64	8.2	7.95
2	Temperature	° C	40	2	22	38	30	23	41	31.6
3	Colour	Co-pt	0	Э	89 1	.03	84	95	155	125
4	Suspended Solids	mg/L	100	e	58	89	83	78	94	86
5	Oil & Grease	mg/L	10	1	.6 5	5.6	3.6	5.3	9.1	7.2
	Phenolic Compound	mg/L	5		.2 0	.36	0.28	0.44	0.66	0.55

2 Temperature °C 40 22 38 30 23 41 31.6 3 Colour Co-pt 0 39 103 84 95 155 125 4 Suspended Solids mg/L 100 68 89 83 78 94 86 5 Oil & Grease mg/L 100 1.6 5.6 3.6 5.3 9.1 7.2 6 Phenolic Compound mg/L 5 0.2 0.36 0.28 0.44 0.66 0.55 7 Cyanides as CN mg/L 0.2 8DL BDL 3.5 0.55		1	рН		5.5 to 9.0	7.9	8.41	8.2	7.64	8.2	7.95
4 Suspended Solids mg/L 100 68 89 83 78 94 86 5 Oil & Grease mg/L 10 1.6 5.6 3.6 5.3 9.1 7.2 6 Phenolic Compound mg/L 5 0.2 0.36 0.28 0.44 0.66 0.55 7 Cyanides as CN mg/L 0.2 8DL* BDL*		2	Temperature	°C	40	22	38	30	23	41	31.6
5 Oil & Grease mg/L 10 1.6 5.6 3.6 5.3 9.1 7.2 6 Phenolic Compound mg/L 5 0.2 0.36 0.28 0.44 0.66 0.55 7 Cyanides as CN mg/L 0.2 BDL BDL* BDL* <td></td> <td>3</td> <td>Colour</td> <td>Co-pt</td> <td>0</td> <td>39</td> <td>103</td> <td>84</td> <td>95</td> <td>155</td> <td>125</td>		3	Colour	Co-pt	0	39	103	84	95	155	125
6 Phenolic Compound mg/L 5 0.2 0.36 0.28 0.44 0.66 0.55 7 Cyanides as CN mg/L 0.2 $\frac{BDL}{*}$ BDL* <		4	Suspended Solids	mg/L	100	68	89	83	78	94	86
Image: Construction of the construc		5	Oil & Grease	mg/L	10	1.6	5.6	3.6	5.3	9.1	7.2
7 Cyanides as CN mg/L 0.2 * BDL* BDL* * BDL*		6	Phenolic Compound	mg/L	5	0.2	0.36	0.28	0.44	0.66	0.55
9 Sulphides as S mg/L 2 0.1 1.88 1.06 1.7 1.8 1.8 10 Ammonical Nitrogen as NH3 mg/L 50 35 49 42 32 46 39 11 Arsenic as As mg/L 0.2 BDL * BDL*		7	Cyanides as CN	mg/L	0.2		BDL*	BDL*		BDL*	BDL*
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	Flourides as F	mg/L	2	0.59	0.81	0.7	0.32	0.78	0.55
10 Nitrogen as NH3 mg/L 50 35 49 42 32 46 39 11 Arsenic as As mg/L 0.2 BDL * BDL* BDL *		9	Sulphides as S	mg/L	2	0.1	1.88	1.06	1.7	1.8	1.8
$\begin{array}{ c c c c c c c c }\hline 11 & Arsenic as As & mg/L & 0.2 & * & BDL^* & BDL^* & * & BDL^* & BDL^$		10		mg/L	50	35	49	42	32	46	39
12 Cr +3 mg/L 2 * BDL* BDL* BDL* BDL* 13 Hexavalent mg/L 1 BDL BDL* BDL* BDL* BDL* BDL*		11	Arsenic as As	mg/L	0.2		BDL*	BDL*		BDL*	BDL*
$m\sigma/l$ 1 1 L BDI* BDI* BDI*		12		mg/L	2		BDL*	BDL*		BDL*	BDL*
Chromium as Cr+6 * * *		13	Hexavalent Chromium as Cr+6	mg/L	1	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER
<u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u>
Period – APRIL 2019 TO SEPTEMBER 2019
n of Chamicala Manufacturing Unit By M/a Atul Ltd Valand Tabail & Dia

14	Copper as Cu	4							
	copper as cu	mg/L	3	0.17	0.31	0.24	0.04	0.28	0.16
15	Lead as Pb	mg/L	2	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
16	Mercury as Hg	mg/L	0.01	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
17	Nickel as Ni	mg/L	5	0.14	0.18	0.16	0.07	0.15	0.11
18	Zinc as Zn	mg/L	15	1.41	1.55	1.48	1.67	1.83	1.75
19	Cadmium as Cd	mg/L	2	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
20	Phosphates as P	mg/L	5	1.53	1.87	1.7	1.8	2.4	2.1
21	BOD(5 Days@20°C)	mg/L	100	43	71	57	59	69	64
22	COD	mg/L	250	221	239	230	205	215	210
23	Sodium Adsorption Ratio		26	20.1	23.9	22	17	23	20
24	Manganese as Mn	mg/L	2	0.19	0.41	0.3	0.37	0.53	0.45
25	Tin as Sn	mg/L	0.1	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
26	Bio Assay test	%	90% survival of fish after 96hr in 100% effluent		96hr in	100%		96hr in	100%
27	Pesticides/Insectici des	mg/L	Absent	BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
	16 17 18 19 20 21 22 23 24 25 26	16Mercury as Hg17Nickel as Ni18Zinc as Zn19Cadmium as Cd20Phosphates as P21BOD(5 Days@20°C)22COD23Sodium Adsorption Ratio24Manganese as Mn25Tin as Sn26Bio Assay test27Pesticides/Insectici	16Mercury as Hgmg/L17Nickel as Nimg/L18Zinc as Znmg/L19Cadmium as Cdmg/L20Phosphates as Pmg/L21BOD(5 Days@20°C)mg/L22CODmg/L23Sodium Adsorption Ratiomg/L24Manganese as Mnmg/L25Tin as Snmg/L26Bio Assay test%27Pesticides/Insecticimg/L	16Mercury as Hgmg/L0.0117Nickel as Nimg/L518Zinc as Znmg/L1519Cadmium as Cdmg/L220Phosphates as Pmg/L521BOD(5 Days@20°C)mg/L10022CODmg/L25023Sodium Adsorption Ratio2624Manganese as Mnmg/L225Tin as Snmg/L0.126Bio Assay test%90% survival of fish after 96hr in 100% effluent27Pesticides/Insecticimg/LAbsent	15 Lead as Pb mg/L 2 * 16 Mercury as Hg mg/L 0.01 BDL * 17 Nickel as Ni mg/L 5 0.14 18 Zinc as Zn mg/L 15 1.41 19 Cadmium as Cd mg/L 2 BDL * 20 Phosphates as P mg/L 5 1.53 21 BOD(5 Days@20°C) mg/L 100 43 22 COD mg/L 250 221 23 Sodium Adsorption Ratio mg/L 26 20.19 24 Manganese as Mn mg/L 2 0.19 25 Tin as Sn mg/L 0.1 BDL * 26 Bio Assay test % 90% survival of fish after 96hr in 100% effluent 100% after 27 Pesticides/Insectici mg/L Ahsent BDL	15 Lead as Pb mg/L 2 $*$ BDL* 16 Mercury as Hg mg/L 0.01 \mathbb{B}^{1}_{*} BDL* 17 Nickel as Ni mg/L 5 0.14 0.18 18 Zinc as Zn mg/L 15 1.41 1.55 19 Cadmium as Cd mg/L 2 \mathbb{B}^{1}_{*} BDL* 20 Phosphates as P mg/L 5 1.53 1.87 21 BOD(5 Days@20°C) mg/L 100 43 71 22 COD mg/L 250 221 239 23 Sodium Adsorption Ratio mg/L 2 0.19 0.41 25 Tin as Sn mg/L 0.1 \mathbb{B}^{1}_{*} BDL* 26 Bio Assay test % 90% survival of fish after 96hr in 100% effluent 100% survival after 96hr in effluent 27 Pesticides/Insectici mg/L Absent BDL BDL *	15 Lead as Pb mg/L 2 $*$ BDL* BDL* BDL* 16 Mercury as Hg mg/L 0.01 BDL BDL* BDL* 17 Nickel as Ni mg/L 5 0.14 0.18 0.16 18 Zinc as Zn mg/L 15 1.41 1.55 1.48 19 Cadmium as Cd mg/L 2 BDL BDL* BDL* 20 Phosphates as P mg/L 5 1.53 1.87 1.7 21 BOD(5 Days@20°C) mg/L 100 43 71 57 22 COD mg/L 250 221 239 230 23 Sodium Adsorption Ratio mg/L 2 0.19 0.41 0.3 25 Tin as Sn mg/L 0.1 BDL BDL* BDL* 26 Bio Assay test % 90% survival of fish after 96hr in 100% effluent 100% survival of fish after 100% survival BDL* BDL* BDL*	15 Lead as Pb mg/L 2 $*$ BDL* BDL* $*$ 16 Mercury as Hg mg/L 0.01 BDL BDL* BDL* BDL BDL* BDL BDL* BDL	15Lead as Pbmg/L2 $*$ BDL*BDL* $*$ BDL*16Mercury as Hgmg/L0.01 \mathbb{BDL} BDL*BDL*BDL*BDL*17Nickel as Nimg/L50.140.180.160.070.1518Zinc as Znmg/L151.411.551.481.671.8319Cadmium as Cdmg/L2 \mathbb{BDL} BDL*BDL*BDL*BDL*20Phosphates as Pmg/L2 \mathbb{BDL} BDL*BDL*BDL*BDL*21BOD(5 Days@20°C)mg/L100437157596922CODmg/L25022123923020521523Sodium Adsorption Ratiomg/L20.190.410.30.370.5324Manganese as Mnmg/L0.1 \mathbb{BDL} BDL*BDL*BDL*BDL*25Tin as Snmg/L0.1 \mathbb{BDL} BDL*BDL*BDL*BDL*26Bio Assay test% 90% survival of fish after 96hr in 100% effluent 100% survival after 96hr in ±00% effluent 100% survival after 96hr in ±00% effluent \mathbb{BDL} \mathbb{BDL} \mathbb{BDL} \mathbb{BDL} 27Pesticides/Insecticimg/LAhsent \mathbb{BDL} \mathbb{BDL} \mathbb{BDL} \mathbb{BDL} \mathbb{BDL} \mathbb{BDL}

Expansion	of Cl	nemicals	Manufacturing	Uni	it By	M/	's. At	ul Ltd	, Val	lsad,	Tehsil	&	Dist-V	alsad,	

					Aug-19)		Sep-19)
S.NO	PARAMETER	UNIT	LIMIT	Min	Max	Resul t	Min	Max	Resul t
1	рН		5.5 to 9.0	7.49	8.71	8.1	7.9	8.70	8.3
2	Temperature	°C	40	25.6	39.6	32.6	23.9	39.9	31.9
3	Colour	Co-pt	0	80	100	90	73	87	80
4	Suspended Solids	mg/L	100	85	99	92	72	84	78
5	Oil & Grease	mg/L	10	2.6	9	5.8	2.7	6.1	3.4
6	Phenolic Compound	mg/L	5	0.03	0.25	0.14	0.05 4	0.14 2	0.098
7	Cyanides as CN	mg/L	0.2	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
8	Flourides as F	mg/L	2	0.4	0.8	0.6	0.42	1.08	0.75
9	Sulphides as S	mg/L	2	1.4	1.8	1.6	1.7	1.9	1.8
10	Ammonical Nitrogen as NH3	mg/L	50	43	49	46	39	49	44
11	Arsenic as As	mg/L	0.2	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
12	Total Chromium as Cr +3	mg/L	2	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*

Expansion of C	hemicals	Manufacturing Un	it By M/	<u>s. Atul Ltd, Va</u>	sad, T	ehsil &	Dist-Va	lsad,		
	13	Hexavalent Chromium as Cr+6	mg/L	1	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
	14	Copper as Cu	mg/L	3	0.04	0.2	0.12	0.05	0.1	0.075
	15	Lead as Pb	mg/L	2	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
	16	Mercury as Hg	mg/L	0.01	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
	17	Nickel as Ni	mg/L	5	0.06 6	0.084	0.075	0.06 8	0.08 2	0.075
	18	Zinc as Zn	mg/L	15	1.9	2.3	2.1	2.9	3.9	3.4
	19	Cadmium as Cd	mg/L	2	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
	20	Phosphates as P	mg/L	5	1.11	2.39	1.75	1.7	2.5	2.1
	21	BOD(5 Days@20°C)	mg/L	100	70	80	75	79	85	82
	22	COD	mg/L	250	234	246	240	241	247	244
	23	Sodium Adsorption Ratio		26	20.3	23.7	22	22.8	25.2	24
	24	Manganese as Mn	mg/L	2	0.29	0.41	0.35	0.05	0.25	0.15
	25	Tin as Sn	mg/L	0.1	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*
	26	Bio Assay test	%	90% survival of fish after 96hr in 100% effluent		survival r 96hr in effluent	100%		survival 96hr in effluen	100%
	27	Pesticides/Insectic ides	mg/L	Absent	BDL *	BDL*	BDL*	BDL *	BDL *	BDL*

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> n of Chemicals Manufacturing Unit By M(c. Atul. 14d. Valcad. Tobail & Dist. Valcad

		Date	F	эΗ		COD m	g/I		BOD) mg/l	l	Phe	enol m	ng/l
		Date	Min	Max	Avg Min	Max	Avç		Vin I	Max	Avg	Min	Max	Avg
		Apr-19	6.30	8.10	7.2 198.7	0 220.7) 209.	7 24	1.80 2	7.30	26	0.09	0.11	0.1
		May-19	6.50	8.30	7.4 207.7	229.7) 218.	7 26	5.80 2	9.30	28	0.09	0.11	0.1
		Jun-19	6.60	8.40	7.5 207.4	0 229.4) 218.4	1 24	4.80 2	7.30	26	0.19	0.21	0.2
		Jul-19	6.40	8.20	7.3 210.6	232.6) 221.	5 50	0.80 5	3.30	52	0.09	0.11	0.1
		Aug-19	6.30	8.10	7.2 212	06 238.	06 22	5 52		5.30	54	0.29	0.31	0.3
		Sep-19	6.20	8.00	7.1 222.2	244.2	233.	2 50).80 5	3.30	52	0.49	0.51	0.5
		Oct-19	6.30	8.10	7.2 202.7	0 224.7) 213.	7 50		3.30	52	0.49	0.51	0.5
		Nov-19	6.40	8.20	7.3 213.7	235.7) 224.	7 50	0.80 5	3.30	52	0.59	0.61	0.6
nt 2016 tain the	disp	osal of ha	M/s Atul I azardous wa ste as follo	aste ger										
	۱ <mark> </mark>													
				Ha	zardous	Vaste Dis	posal &	Mana	agemer	nt				
hall ictly	/	lame of waste	Waste Authorizati on as per CCA (In		zardous		posal &							
II	/		Authorizati on as per			Wast	generato				iep-19	Oct	-19	Dispos
all	N		Authorizati on as per CCA (In			Wast	generate	ed Kgs	/Month		6 ep-19 0	Oct 0		Dispos Own TSDF
i shall trictly).	N Hy	waste	Authorizati on as per CCA (In Kgs.)	Apr-1	9 May-	Wast 9 Jun- 0	9 Ju	ed Kgs I-19	/Month Aug-1	19 S	•			Own TSDF Own
II	N Hy Iro	Al. ydroxide on Sludge Iron	Authorizati on as per CCA (In Kgs.) 15417	Apr-1 0	 May- 0 1123 	Wast 9 Jun- 0 1000	e generato 19 Ju 0 10	ed Kgs. I-19	/Month Aug-1	19 S	0	0	00	Own TSDF Own TSDF Own
	/ N Hy Iro	Al. ydroxide on Sludge Iron Residue Brine	Authorizati on as per CCA (In Kgs.) 15417 80000	Apr-1 0 3500	 May- 0 1123 1106 	Wast 9 Jun- 0 1000 692	generation 9 Ju 0 100 0 73	ed Kgs. I-19) 500	/Month Aug-1 0 8500	1 9 S	0	0 600	00 50	Own TSDF Own TSDF Own TSDF Own
	Hy Iro R ET	Al. ydroxide on Sludge Iron Residue	Authorizati on as per CCA (In Kgs.) 15417 80000 62500	Apr-1 0 3500 13940	 May- 0 1123 1106 2250 	Wast 9 Jun- 0 0 0 1000 0 692 0 0	generation 9 Ju 0 100 0 73 222	ed Kgs I-19 500 60	/Month Aug-1 0 8500 11540	19 S () 1) 2	0 6000 .0990	0 600 660	00 50 10	Own TSDF Own TSDF Own TSDF Own TSDF
all	R ET m	Al. ydroxide on Sludge Iron Residue Brine Sludge	Authorizati on as per CCA (In Kgs.) 15417 80000 62500 242500 (41667+49 30000+200 0)	Apr-1 0 3500 13940 21350	 May- 0 1123 1106 2250 	Wast 9 Jun- 0 0 0 1000 0 692 0 0	generation 9 Ju 0 10. 0 73 22: 50	ed Kgs. I-19 500 60 360	/Month Aug-1 0 8500 11540 22450	19 S () 1) 2	0 6000 .0990 11950	0 600 660	00 50 10 120	Own TSDF Own TSDF Own TSDF Own TSDF Own
nall ictly	/ N Hy Iro F	Al. ydroxide on Sludge Iron Residue Brine Sludge P/Gypsu n Sludge	Authorizati on as per CCA (In Kgs.) 15417 80000 62500 242500 (41667+49 30000+200 0) =4973667	Apr-1 0 3500 13940 21350 709100	9 May- 0 1123 1106 2250 0 71752	Wast 9 Jun- 0 0 0 1000 0 692 0 0 0 7118 0 0	generation 9 Ju 0 10. 0 73 22: 50 50 717	ed Kgs 	/Month Aug-1 0 8500 11540 22450 734290	9 S () 1) 2 () 7(0 6000 0990 1950 01920	0 600 660 177 723:	00 50 10 120	Own TSDF Own TSDF Own TSDF Own TSDF Own TSDF Own TSDF Own
all	/ N Hy Iro F ET m Ir Sa	AI. ydroxide on Sludge Iron Residue Brine Sludge P/Gypsu n Sludge nci. Ash alt from	Authorizati on as per CCA (In Kgs.) 15417 80000 62500 242500 (41667+49 30000+200 0) =4973667 4620	Apr-1 0 3500 13940 21350 709100 0	9 May- 0 1123 1106 2250 0 71752 0 0	Wast 9 Jun- 0 0 0 1000 0 692 0 0 0 7118 0 0	generation 9 Ju 0 100 0 100 0 73 222 22 50 7117 0 199	ed Kgs 1-19) 500 60 520)	/Month Aug-1 0 8500 11540 22450 734290 0	9 S () 1) 2 () 7(0 5000 0990 1950 01920	00 600 177 723: 00	00 50 10 120 80	Own TSDF Own TSDF Own TSDF Own TSDF Own TSDF Own TSDF Own
shall rictly	<pre>/ N Hy Iro F ET m Ir Sa F F </pre>	AI. ydroxide on Sludge Iron Residue Brine Sludge P/Gypsu n Sludge nci. Ash alt from MEE Brass	Authorizati on as per CCA (In Kgs.) 15417 80000 62500 242500 (41667+49 30000+200 0) =4973667 4620 1678710	Apr-1 0 3500 13940 21350 709100 0 67250	 May- 0 1123 1106 2250 71752 0 7058 	Wast 9 Jun- 0 0 0 1000 0 692 0 0 0 7118 0 6573 0 6573 0 0	generation 9 Ju 0 100 0 73 0 73 50 717 0 19 0 19	ed Kgs 1-19) 500 60 60 520) 300	/Month Aug-1 0 8500 11540 22450 734290 0 42200	19 S (1) 1 (2) 70 (3) 4	0 5000 1950 1950 01920 0 9840	0 600 177 723: 0 371	00 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10	Own TSDF Own TSDF Own TSDF Own TSDF

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

•	National Emission	Noted & Complie	d.					
	standards for organic chemicals Manufacturing Industry issued by the Ministry vide G.S.R. 608(E) dated 21* July, 2010 and Amended from time to time shall be followed.	of ambient air quali least one station is ground level concen The same had been total we had selecte The Ambient Air Qu testing lab appointe Approved TC – 594 The analysis report report is attached in The maximum value beyond the stipulate	ity monitoring sta installed in the itration are antici- shown to author d 10 Locations, a uality is being mo d is M/s. Royal I 8, issue date-0 : s were within the Annexure- IV. es during the com- ed standards. Par-	s for National Emission ations had been decid up wind and downwir pated. This also cover- ity like SPCB, CPCB & nd monitored succession onitored at regular inter Environment Auditin L/06/2019 and valid e permissible limits. A pliance period confirm ameter wise summary per National Emission	ed in con: d directic s the impa MoEF duri fully. Resu terval for g & Cons I till 31/C A detail of that at n is given b	sultation v on as well act, if any, ng their v ults are att ensuring Sultancy S 5/2021. analysis o time the pelow:	with GPCB so as where ma of the projec isit to our fact cached herewi the compliand Service , Sura report of Mor	
		Station	Parameter			Values for the period April 19- Sept 19		
							-	
				microgram/NM ³			-	
		66 KV GEB	RSPM (PM2.5)		Ap	oril 19- Se	pt 19	
		66 KV GEB		microgram/NM ³	Ar Min.	oril 19- Se Max.	pt 19 Avg.	
		66 KV GEB	RSPM (PM2.5)	microgram/NM ³	A r Min. 21.3	Max. 45	Avg. 32.2	
		66 KV GEB	RSPM (PM2.5) PM10	microgram/NM ³ 60 100	Ar Min. 21.3 37.6	Max. 45 58	Avg. 32.2 45.7	
		66 KV GEB	RSPM (PM2.5) PM10 SO2 NOx Ammonia	microgram/NM ³ 60 100 80 80 80 80	App Min. 21.3 37.6 7.5 7.9 ND	Jumphi 19- Se Max. 45 58 9.8 16.4 ND	Avg. 32.2 45.7 8.95 10.4 ND	
		66 KV GEB	RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI	microgram/NM ³ 60 100 80 80	Ag Min. 21.3 37.6 7.5 7.9 ND ND	Pril 19- Se Max. 45 58 9.8 16.4 ND ND	Avg. 32.2 45.7 8.95 10.4 ND ND	
		66 KV GEB Opposite Shed D	RSPM (PM2.5) PM10 SO2 NOx Ammonia	microgram/NM ³ 60 100 80 80 80 80	App Min. 21.3 37.6 7.5 7.9 ND	Jumphi 19- Se Max. 45 58 9.8 16.4 ND	Avg. 32.2 45.7 8.95 10.4 ND	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI	microgram/NM ³ 60 100 80 80 200	Ag Min. 21.3 37.6 7.5 7.9 ND ND	Pril 19- Se Max. 45 58 9.8 16.4 ND ND	Avg. 32.2 45.7 8.95 10.4 ND ND	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5)	microgram/NM ³ 60 100 80 80 200 60	Ag Min. 21.3 37.6 7.5 7.9 ND ND 27	Pril 19- Se Max. 45 58 9.8 16.4 ND 56	Avg. 32.2 45.7 8.95 10.4 ND ND 41.7	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10	microgram/NM ³ 60 100 80 80 200 60 100	Ag Min. 21.3 37.6 7.5 7.9 ND ND 27 34	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2	microgram/NM ³ 60 100 80 80 200 60 100 80 850 200 60 100 80 850 80 80 80 80 80	Ag Min. 21.3 37.6 7.5 7.9 ND 27 34 7.9	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx	microgram/NM ³ 60 100 80 80 200 60 100 80 850 200 60 100 80 80 80 80 80 80 80	Ag Min. 21.3 37.6 7.5 7.9 ND 227 34 7.9 8.3	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5 11.3	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4 9.6	
			RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx Ammonia	microgram/NM ³ 60 100 80 80 200 60 100 850 200 60 80 80 850 200 60 100 80 80 80 80 80 850	Ag Min. 21.3 37.6 7.5 7.9 ND 27 34 7.9 8.3 ND	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5 11.3	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4 9.6 ND	
		Opposite Shed D	RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI	microgram/NM ³ 60 100 800 800	Ag Min. 21.3 37.6 7.5 7.9 ND 27 34 7.9 8.3 ND ND	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5 11.3 ND ND	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4 9.6 ND ND	
		Opposite Shed D	RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI SO2 NOx Ammonia HCI RSPM (PM2.5) PM10	microgram/NM ³ 60 100 80 80 200 60 100 850 200 60 100 850 200 60 100 80 80 200 60 100 80	Ag Min. 21.3 37.6 7.5 7.9 ND 227 34 7.9 8.3 ND ND 227	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5 11.3 ND 42	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4 9.6 ND ND 32.2	
		Opposite Shed D	RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10 SO2 NOx Ammonia HCI RSPM (PM2.5) PM10	microgram/NM ³ 60 100 80 80 80 80 80 850 200 60 100 80 850 80 80 80 80 80 80 80 80 80 80 80 80 100	Ag Min. 21.3 37.6 7.5 7.9 ND 27 34 7.9 8.3 ND 227 34 7.9 8.3 ND 23 34 7.9 8.3 ND 24 37	Pril 19- Se Max. 45 58 9.8 16.4 ND 56 60 13.5 11.3 ND 42 62	Avg. 32.2 45.7 8.95 10.4 ND 41.7 46.8 10.4 9.6 ND ND 32.2 45.7 8.95 10.4 9.6 ND 34 51.7	

850

200

Ammonia HCl ND

ND

ND

ND

ND

ND

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> psion of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tebsil & Dis

r	- []					
	Near North ETP	RSPM (PM2.5)	60	27	40	34.2
		PM10	100	38	68	50.5
		S02	80	6.4	10.6	8.97
		NOx	80	5.8	9.8	8.6
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	TSDF	RSPM (PM2.5)	60	26	58	43
		PM10	100	7.8	59	44.97
		S02	80	7.4	10.8	9.2
		NOx	80	6.3	9.5	7.9
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	Main Guest House	RSPM (PM2.5)	60	12	38	23.2
		PM10	100	25	53	39.8
		S02	80	4.5	10.5	7.5
		NOx	80	5.1	17.5	10.6
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	Wyeth Colony	RSPM (PM2.5)	60	10	32	19.5
		PM10	100	26	50	38
		S02	80	4.1	9.5	6.7
		NOx	80	4.6	14.2	9.4
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	Gram panchayat	RSPM (PM2.5)	60	12	45	25
	hall	PM10	100	29	47	38.8
		S02	80	5.8	9.2	7.6
		NOx	80	5.7	14.2	10.0
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	Main office, North	RSPM (PM2.5)	60	18	35	27.3
	site	PM10	100	35	58	46.7
		S02	80	7.2	9.5	8.5
		NOx	80	7.3	14.2	11.3
		Ammonia	850	ND	ND	ND
		HCI	200	ND	ND	ND
	Haria water tank	RSPM (PM2.5)	60	16.3	39	26.8
		PM10	100	22.2	41.1	34.7
		11110	100	22.2	71.1	57.7

				S02	80	6.7	9.5	8.4
			-	NOx	80	5.8	15.8	9.5
			F	Ammonia	850	ND	ND	ND
				HCI	200	ND	ND	ND
				псі	200	ND		ND
٧.	To control	Comp	lied.					
	fugitive emissions, suitable pollution control devices shall be installed to meet the prescribed norms and/ or the NAAQS. The gaseous emissions shall be dispersed through stack of adequate height as per CPCB/SPCB guidelines.	area detec speci stipul poter M/s <i>A</i> and r Solve lighte safet pollut Centr evolv The m beyon are at	is being regula tors are provid al hood, suction tial leak points tul Ltd. is also ecords are bein ning arresters, measures. De ion control boa al exhaust syst ing the hazard aximum value d the stipulate tached as Ann ue & Process S alab appointed	arly monitored led in work are on pipe for ga & CPCB guide s, sampling poi o monitoring Vong maintained in tank farms , fencing, Fire edicated Scrub ard guideline) I tem has been ous gases are s during the co d standards. F exure-V. Stack is being d is M/s. Roya	d by NABL appr a for close mor ases emission, elines. Elephant ints, man holes, OC as well as o in Form No. 37 in separate tan hydrant system bers with stack have been prov provided at stra routed through ompliance perio arameter wise	roved third part itoring. M/s. Atu Alkaline scrubbe trunk with flex charging points ther chemicals i ks with proper e , Fire extinguish s of appropriate ided to control t itegic locations a multiple stages d confirm that a summary is give	y. Further als al Ltd has insta er and has st kible hoods ar and connecter n work area a arthing, flame pro- height (as per he emission fr and the critical scrubbing sys t no time the en below, deta for ensuring t	of equipment, etc. the central om various vents. operations
		Appro	ved IC - 5948	s , issue date- t	11/06/2019 ai		55/2021.	
			Flue Gas Stac	ks & Its Emiss	ion Control Mea	-	APCD	Fuel
		1.	Flue Gas Stac	ks & Its Emiss	ion Control Mea Stack Para	Permissible Limits		Fuel
		1.	Flue Gas Stac	ils Capacity/	ion Control Mea Stack m Para	Permissible Limits 100 mg/Nm3	APCD Electro static	Fuel Coal/Lignite
		1. SN	Flue Gas Stac	ils Capacity/	ion Control Mea Stack m Para 56 PM 502	Permissible Limits 100 mg/Nm3 600 mg/Nm3	APCD	
		1. SN	Flue Gas Stac	ils Capacity/	ion Control Mea Stack m Para 56 PM 56 SO2 NOx	Permissible Limits 100 mg/Nm3 600 mg/Nm3	APCD Electro static	
		1 SN	Flue Gas Stac	ils Capacity/ Htt	ion Control Mea Stack m Para 56 PM 502 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3	APCD Electro static	Coal/ Lignite
		1. SN	Flue Gas Stac	ils Capacity/ Htt	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator	
		1 SN	Flue Gas Stac	ils Capacity/ Htt	ion Control Mea Stack m Para 56 PM 502 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3	APCD Electro static precipitator Electro static	Coal/ Lignite
		1 SN 1 2	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/5 2 34/5	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3	APCD Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite
		1 SN	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/5 2 34/5	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator	Coal/ Lignite
		1 SN 1 2	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/5 2 34/5	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 50 SO2 NOx PM 30 SO2 NOx	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3	Flue Gas Stac	ils Capacity/ Htt 1 34/5 2 34/5 3 50/5	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2	Flue Gas Stac	ils Capacity/ Htt 1 34/5 2 34/5 3 50/5	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator	Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/9 2 34/9 3 50/8 /1 45/7 	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/9 2 34/9 3 50/8 /1 45/7 12	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 50 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/9 2 34/9 3 50/8 1 45/7 12 50/1	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 50 SO2 NOx PM 30 SO2 NOX PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator	Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4	Flue Gas Stac	ks & Its Emiss ils Capacity/ Htt 1 34/9 2 34/9 3 50/8 1 45/7 12 50/1	ion Control Mea Stack m Para 56 PM 56 PM 502 NOx PM 502 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx PM 30 SO2 NOx	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4 5	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/5 2 34/5 3 50/6 1 45/7 12 50/1 13 50/1 14 5/7 12 50/1	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2 NOX PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 50 mg/Nm3 50 mg/Nm3 300 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/5 2 34/5 3 50/6 1 45/7 12 50/1 13 50/1 14 5/7 12 50/1	ion Control Mea Stack m Para 56 PM 56 PM 56 SO2 NOx PM 50 SO2 NOx PM 30 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3 600 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4 5	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/5 2 34/5 3 50/6 1 45/7 12 50/1 13 50/1 14 5/7 12 50/1	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 SO2 NOx PM 30 SO2 NOX PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 50 mg/Nm3 50 mg/Nm3 300 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4 5	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/9 2 34/9	ion Control Mea Stack m Para 56 PM 56 PM 56 SO2 NOx PM 50 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM 5 SO2 NOx PM 5 SO2 NOx	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3 300 mg/Nm3 150 mg/Nm3 150 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1 SN 1 2 3 4 5	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/9 2 34/9	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 NOx PM 30 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM 5 SO2 NOx PM 5 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3 50 mg/Nm3 150 mg/Nm3 150 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite Coal/ Lignite
		1. SN 1 2 3 4 5 6	Flue Gas Stac	ks & Its Emiss ils Capacity/ 1 34/5 2 34/5 2 34/5 3 50/6 1 45/7 12 50/1 13 32. ant	ion Control Mea Stack m Para 56 PM 56 SO2 NOx PM 56 NOx PM 30 SO2 NOx PM 70 SO2 NOx PM 70 SO2 NOx PM 5 SO2 NOx PM 5 SO2 NOx PM	Permissible Limits 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 100 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 600 mg/Nm3 50 mg/Nm3 300 mg/Nm3 150 mg/Nm3 150 mg/Nm3	APCD Electro static precipitator Electro static precipitator Electro static precipitator Electro static precipitator Electro static	Coal/ Lignite CNG

	8	(Stand By)	H: 17	SO2	100 ppm	-	CNG	
				NOx	50 ppm			
		Thermic fluid		PM	150 mg/Nm3			
	9	heater	H: 12	SO ₂	100 ppm	-	CNG	
				NOx	50 ppm			

1							
	of DCO/DAP Plant						
				PM	150 mg/Nm3		
10	DG set 1010	H: 10	0	SO2	100 ppm	-	Diesel
	KVA(Standby)			NOx	50 ppm		
	DG set 1500			PM	150 mg/Nm3		
1	L KVA	H: 1	1	SO ₂	100 ppm	-	Diesel
	(Stand By)			NOx	50 pm		
2	. Process Gas Stack	s & Its Em	iission	Control M			
Sr. No.	Stack Details	Height	Ра	rameter	Permissible Limits	AP	CD
				Atul Eas	t Side		
1	New Phosgene plant-Furnace	15		PM	150 mg/Nm3	Alkali & Wat	er Scrubber
2	New Phosgene	15		CO			an Camulak
2	plant -Reactor	15	ph	nosgene	0.1 ppm	Alkali & Wat	er Scrubber
C	austic Chlorine Plant						
3	Dechlorination Plant (Hypo unit)	35		CI 2	9.0 mg/Nm3	Alkali So	rubber
				HCI	20.0 mg/Nm3		
4	Common Stack of	25		CI 2	9.0 mg/Nm3	Alkali So	crubber
	HCl Sigri unit 1& 2			HCI	20.0 mg/Nm3		
			Sul	lfuric Acid	(East Side)		
5	Sulfuric Acid plant	30		SO2	2.0 kg/T	Water Scrubber W	ith DCDA System
			Ac	cid Mist	50.0 mg/Nm3		
6	Chloro Sulfonic Acid	11		CI 2	9.0 mg/Nm3	Caustic And W	ater Scrubber
	plant reactor			HCI	20.0		
	1	I		FCB p	mg/Nm3	<u> </u>	
7	Foul Gas Scrubber	26.5		SO2	40.0 mg/Nm3	Caustic s	crubber
,		20.5		NOx	25.0 mg/Nm3		
	1	I		Inciner		1	
				PM	150.0 mg/Nm3		
8	Incinerator	40		SO2	40.0 mg/Nm3	Alkali& wate	er scrubber
				NOx	25.0 mg/Nm3		
	1	I		NI Pla		1	
9 Foul Gas				SO2	40.0 mg/Nm3	Caustic scrubber	
	Scrubber	26.5		NOx	25.0 mg/Nm3		
					lant	1	

	10	Spray Dryer	21	PM	150.0 mg/Nm3	water scrubber
				NOx	25.0 mg/Nm3	
				2-4-D & related	I Products	
		Common Scrubber;		Cl2	9.0 mg/Nm3	
	11	2,4D Plant	5	HCI	20.0 mg/Nm3	Caustic scrubber
				Phenol		
	12	Dryer-1	26.5	PM with Pesticide compound	20.0 mg/Nm3	Bag Filter, Water Scrubber
	13	Dryer-2	26.5	PM with Pesticide compound	20.0 mg/Nm3	Cyclone, Bag Filter, Caustic scrubber
	14	Dryer-3	26.5	PM with Pesticide compound	20.0 mg/Nm3	Cyclone, Bag Filter, Caustic scrubber
	15	Dryer-4	26.5	PM with Pesticide compound	20.0 mg/Nm3	Cyclone, Bag Filter, Caustic scrubber
	-			MPSL PI	ant	
	16	Phosgene Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
	17	Central Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
				NICO PI	ant	
	18	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber
		Ester Plant				
	19	Scrubber at Ester plant for	12	Formaldehyde	10 Mg/Nm3	water scrubber
		Glyphosate				
				Othe	r	
	20	MCDA	10	CL2	9 mg/NM3	
	20	МСРА	19	HCL	20 mg/NM3	Alkali& Water Scrubber
				SO2	40 mg/NM3	
	21	Fipronil	19	SO2	40 mg/NM3	Alkali& Water Scrubber
	21	riprofili	15	HCL	20 Mg/Nm3	Aikaila Water Scrubber
	22	Imidacloprid	20	NH3	175 Mg/Nm3	Water Followed By Acid Scrubber
	23	Pyrathroids	19	SO2	40 Mg/Nm3	Alkali & Water Scrubber
		.,		HCL	20 Mg/Nm3	
	24	Stack at Amine Plant	5	NH3	175 Mg/Nm3	Caustic Scrubber
	25	Central Scrubber MCPA Plant	19	HCI	20 Mg/Nm3	Caustic Scrubber
	26	MPP plant scrubber	21	HCI	20 Mg/Nm3	Water & Alkali Scrubber
i i			1 · · · ·	Phosgene	0.1 ppm	

:	27 Flavors & Fragrances Plant	21	HCI	20 mg/NM3	Water Scrubber Followed By Caustic Scrubber
	20 Cula hun Dia du Dia at	10	H2S		Allerii Q. Mister Camela an
	28 Sulphur Black Plant	19	NH3	175 mg/NM3	Alkali & Water Scrubber
	29 Sulphur Dyes plant	19	H2S		Alkali& Water Scrubber
	Supru Dyes plant	15	NH3	175 mg/NM3	Aikaila water Scrubber
		1	Atul Wes		
	30 Shed A05/03/44	19	Cl2	9 mg/NM3	Caustic Scrubber
	50 Sheu A05/05/44	19	HCI	20 mg/NM3	Caustic Scrubber
	Shed B2/12/24	19	Cl2	9 mg/NM3	Caustic Scrubber
	Reaction Vessel	19	HCI	20 mg/NM3	Caustic Scrubber
			SO2	40 mg/NM3	
3	32 Shed B18/02/24 Fan	19	CI2	9.0 mg/Nm3	Caustic Scrubber
			HCI	20.0 mg/Nm3	
	Shed C5/20/15		Cl2	9 mg/NM3	
	Chlorinator	19	HCI	20 mg/NM3	Alkali& Water Scrubber
	34 Shed D Niro Spray dryerNo.45	19	PM	150 mg/NM3	Water Scrubber
	Shed D Niro Spray dryer No. 50	19	PM	150 mg/NM3	Water Scrubber
	36 Shed E 7/12/49	19	PM	150	Water Scrubber
	Spray Dryer		Cl2	mg/NM3 9 mg/NM3	
3	37 Shed F 6/1/15 Reaction Vessel	19	HCI	20	Alkali& Water Scrubber
			Cl2	mg/NM3 9 mg/NM3	
3	38 Shed G 10/8/1 (receiver)	19	HCI	20	Alkali& Water Scrubber
			Cl2	mg/NM3 9 mg/NM3	
3	39 Shed H 11/6/17 Chlorinator	19	HCI	20	Alkali& Water Scrubber
	Shed K K-13/3/4	19	SO2	mg/NM3 2 kg/T	Alkali& Water Scrubber
	^{IU} Final of Sulfuric acid plant	_	Acid Mist	50 mg/NM3	
			HBr		
	41 Shed J15/09/25	19	SO2	40 mg/NM3	Alkali& Water Scrubber
			SO2	40 mg/NM3	
	42 Shed J12/01/42	19	CI 2	9.0 mg/Nm3	Alkali & Water Scrubber
			НСІ	20.0 mg/Nm3	
	43 Shed J12/03/36	19	SO2	40 mg/NM3	Caustic Scrubber

			HCI	20.0	
	Shed N Scrubber Fan N20/08/24		Cl2	mg/Nm3 9 mg/NM3	
44	Shed N Scrubber Fall N20/08/24	19	HCI	20 mg/NM3	Caustic Scrubber
45	Shed N Scrubber Fan N20/02/41	19	SO2	40 mg/NM3	Alkali& Water Scrubber
		Atul	North Site		
	N-FDH Plant Catalytic		РМ	150.0 mg/Nm3	
46	Incinerator	31.5 SO2		40.0 mg/Nm3	Bag Filter
			NOx	25.0 mg/Nm3	
			Formaldehyde	10.0 mg/Nm3	
47	PHIN Plant	15.5	Phosgene	0.1 ppm	Water Scrubber Followed By Two Stage Caustic Scrubber With Ammonia/Steam Injection At stack
48	DDS (Pharma Plant)	20	NH3	175 Mg/Nm3	Water Followed By Acid Scrubber
49	SPIC II Plant (DCDPS)	- 30	SO3		Alkali & Water Scrubber
50	SPIC I Plant	30	NH3	175 Mg/Nm3	Water Scrubber Followed By Two Stage Caustic Scrubber With Ammonia/Steam Injection At Stack
51	SPIC IV Plant	2	NH3	175 Mg/Nm3	Alkali & Water Scrubber
		2	SO3		
52	PHIN II Plant	21	HCI	20 mg/Nm3	Water Scrubber Followed By Two Stage Caustic Scrubber With Ammonia/Steam injection At Stack
			phosgene	0.1 ppm	

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Flue Gas & Process Gas Stack Monitoring Details are attached as follows:-

Flue gas Stack Details:-

Sr. No.	Stack Details	Parameter	Permissible	APCD	Apr-19			May-19				
-	Stack Details	Farameter	Limits	AFCD	Avg.	Min	Мах	Avg.		Min	Max	
		PM	100 mg/Nm3	Electr	75	70.9	79.1					
1	FBC boiler El	SO2	600 mg/Nm3	o static	98	93.7	102.3	FBC Boiler	El was no ring the m	•	ition	
		NOx	600 mg/Nm3	precip itator	120	115.5	124.5	uu	ing the n	nontii.		
		PM	100 mg/Nm3	Electr		ilor 2 was	not in					
2	FBC boiler E2	SO2	600 mg/Nm3	o static		iler 2 was tion durin			FBC Boiler E2 was no during the m			
		NOx	600 mg/Nm3	precip itator		month.	during the m			iontri.		
		PM	100 mg/Nm3	Electr	80	77	83	85		83.1	86.9	
3	FBC boiler E3	SO2	600 mg/Nm3	o static	128	123.4	132.6	135		130.6	139.4	
		NOx	600 mg/Nm3	precip itator	145	140.1	149.9	152		146.9	157.1	
		PM	100 mg/Nm3	Electr	65	63.1	66.9	70		67.7	72.3	
4	FBC boiler W1	SO2	600 mg/Nm3	o static	95	92.9	97.1	98		95.3	100.7	
		NOx	600 mg/Nm3	precip itator	135	131.7	138.3	145		140.4	149.6	
		PM	50 mg/Nm3	Electr	41	48	44.5	48		46.2	49.8	
5	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	SO2	600 mg/Nm3	o static	105	102	108	112		109.2	114.8	
		NOx	300 mg/Nm3	precip itator	95	92.6	97.4	99		97.3	100.7	
		PM	150 mg/Nm3			N.D.			N.D.	<u>I I</u>		
6	Hot Oil Unit (Resorcinol Plant)	SO2	100 ppm	-		N.D.			N.D.			
	(NOx	50 ppm		45	41.8	48.2	46		42.6	49.4	
		PM	150 mg/Nm3			N.D.			N.D.			
7	Hot Oil Plant shed-B	SO2	100 ppm	-		N.D.			N.D.			
		NOx	50 ppm		45	ND	ND	48		ND	ND	
	Oil burner Shed B	PM	150 mg/Nm3									
8	(Stand By)	SO2	100 ppm	-	Not rui	nning duri month	ng the	Not runn	ing during	g the mor	ith	
		NOx	50 ppm									
	Thermic fluid	PM	150 mg/Nm3			N.D.			N.D.			
9	heater of	SO2	100 ppm	-		N.D.			N.D.			
	DCO/DAP Plant	NOx	50 ppm		40	36.9	43.1	45	41	6	48.4	
		PM	150 mg/Nm3		31	47.2	39.8	15	4	5	30.2	
10	DG set 1010 KVA (Standby)	SO2	100 ppm	-	1.9	6.9	4.4	3.5	6.	.3	4.9	
		NOx	50 ppm		20	28	24.1	26	4	0	33.1	
	DG set 1500 KVA	PM	150 mg/Nm3		18	36	27.6	23	3	7	29.6	
11	(Stand By)	SO2	100 ppm	-	2	6.3	4.1	2.9	4.	.9	3.9	
		NOx	50 ppm		13	31	21.7	19.6	3	0	24.8	

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Sr. No	Stack Details	Paramete	Permissibl e Limits	APCD		Jun-19		Jul-19			
		r	e Limits		Avg.	Min	Max	Avg.	Min	Max	
		PM	100 mg/Nm3					87	83.2	90.8	
1	FBC boiler El	SO2	600 mg/Nm3	Electro static precipitator	Not ru	inning durir month	ng these	120	115.8	124.2	
		NOx	600 mg/Nm3					135	130.3	139.7	
		PM	100 mg/Nm3		84	80.9	87.1	82	79.1	84.9	
2	FBC boiler E2	SO2	600 mg/Nm3	Electro static precipitator	132	128.3	135.7	127	123.7	130.3	
		NOx	600 mg/Nm3		150	145	155	147	142.2	151.8	
		PM	100 mg/Nm3		81	78.3	83.7	82	79.4	84.6	
3	FBC boiler E3	SO2	600 mg/Nm3	Electro static precipitator	133	129.8	136.2	126	123.6	128.4	
		NOx	600 mg/Nm3		148	143.2	152.8	138	135.3	140.7	
		PM	100 mg/Nm3		68	66.1	69.9	68	66.5	69.5	
4	FBC boiler W1	SO2	600 mg/Nm3	Electro static precipitator	96	94.3	97.7	94	92.3	95.7	
		NOx	600 mg/Nm3	ριετιριτατοι	142	137.3	146.7	132	128.6	135.4	
		PM	50 mg/Nm3		47	44.8	49.2	47	44.3	49.7	
5	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	SO2	600 mg/Nm3	Electro static precipitator	109	105.7	112.3	109	106.1	111.9	
		NOx	300 mg/Nm3		95	92.9	97.1	95	93.2	96.8	
	Hot Oil Unit	PM	150 mg/Nm3			N.D.					
6	(Resorcinol Plant)	SO2	100 ppm			N.D.		N.D.			
		NOx	50 ppm		42	38.2	45.8	38	35.8	40.2	
		PM	150 mg/Nm3	ng/Nm3 N.D.		N.D.					
7	Hot Oil Plant shed-B	SO2	100 ppm				N.D.				
		NOx	50 ppm		44	41.1	46.9	39	37.1	40.9	
	Oil burner Shed B	PM	150 mg/Nm3								
8	(Stand By)	SO2	100 ppm	-	NOT r	unning duri month	ing the	NOT r	unning duri month	ng the	
		NOx	50 ppm								
	Thermic fluid	PM	150 mg/Nm3 N.D.		N.D.						
9	heater of	SO2	100 ppm	-		N.D.			N.D.		
	DCO/DAP Plant	NOx	50 ppm		43	39.8	46.2	42	40	44	
		PM	150 mg/Nm3		13	27	19.8	38	47	42.8	
10	DG set 1010 KVA (Standby)	SO2	100 ppm	-	3.7	6	4.6	3.6	6.3	4.9	
	(NOx	50 ppm		19	40	29.5	28.5	42	34.8	
11	DG set 1500 KVA	PM	150 mg/Nm3	-	18.8	41	29.8	27.9	32.5	30.2	

	(Stand By)	SO2	100 ppm	2	6	4.0	2.7	6.6	4.6
		NOx	50 ppm	23	32	27.9	26.9	43	33.5

Sr. No.	Stack Details	Parameter	Permissible	APCD		Aug-19		Sep-19		
	Stack Details	i arameter	Limits	AIGD	Avg.	Min	Мах	Avg.	Min	Max
		PM	100 mg/Nm3		65	61.4	68.6	60	57.2	62.8
1	FBC boiler El	SO2	600 mg/Nm3	Electro static precipitator	103	99.5	106.5	114	109.6	118.4
		NOx	600 mg/Nm3		123	118.9	127.1	142	137.4	146.6
		PM	100 mg/Nm3		83	80.4	85.6	80	77.3	82.7
2	FBC boiler E2	SO2	600 mg/Nm3	Electro static precipitator	108	104.7	111.3	107	103.5	110.5
		NOx	600 mg/Nm3		138	134.6	141.4	138	134.3	141.7
		PM	100 mg/Nm3		73	71.1	74.9	68	66.5	69.5
3	FBC boiler E3	SO2	600 mg/Nm3	Electro static precipitator	142	137.4	146.6	135	131.2	138.8
		NOx	600 mg/Nm3		147	142.3	151.7	132	128.4	135.6
		PM	100 mg/Nm3		53	50.4	55.6	64	61.2	66.8
4	FBC boiler W1	SO2	600 mg/Nm3	Electro static precipitator	105	101.4	108.6	110	106.2	113.8
		NOx	600 mg/Nm3		120	116.1	123.9	127	124.1	129.9
		PM	50 mg/Nm3		34	32.7	35.3	29	27.6	30.4
5	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	SO2	600 mg/Nm3	Electro static precipitator	120	115.9	124.1	138	133.6	142.4
		NOx	300 mg/Nm3	precipitator	84	81.7	86.3	98	95.9	100.1
		PM	150 mg/Nm3			N.D.		N.D.		
6	Hot Oil Unit (Resorcinol Plant)	SO2	100 ppm	-		N.D.		N.D.		
		NOx	50 ppm		22	20.3	23.7	28	26.5	29.5
		PM	150 mg/Nm3			N.D.			N.D.	
7	Hot Oil Plant shed-B	SO2	100 ppm	-		N.D.			N.D.	
		NOx	50 ppm		27	25.4	28.6	30	28.3	31.7
	Oil burner Shed B	PM	150 mg/Nm3			•	•			
8	(Stand By)	SO2	100 ppm	-	Not ru	nning duri month	ng the	Not ru	nning dur month	ing the
		NOx	50 ppm			month			montin	
	Thermic fluid	PM	150 mg/Nm3			N.D.			N.D.	
9	heater of	SO2	100 ppm	-		N.D.			N.D.	
	DCO/DAP Plant	NOx	50 ppm		42	39.9	44.1	38	35.8	40.2
		PM	150 mg/Nm3		24	31.2	27.6	27	34.6	30.8
10	DG set 1010 KVA (Standby)	SO2	100 ppm	-	4	5.5	4.8	5.6	7.2	6.4
	(Standby)	NOx	50 ppm		23	36.5	29.7	28.6	37	32.6
	DG set 1500 KVA	PM	150 mg/Nm3		25	29.5	27.2	31.33	38.5	34.9
11	(Stand By)	SO2	100 ppm	-	3.33	4.35	3.84	3.9	5	4.4
		NOx	50 ppm		19	30	24.8	32	44	37.8

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019 Period – APRIL 2019 TO SEPTEMBER 2019 Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Process Gas Stack Details:-

Sr.	Stack Details	Stack	Parameter	Permissible	APCD		April			Мау		
No	Stack Details	Height mtr	Falameter	Limits	AFCD		2019			2019		
Atul	East Site					Avg.	Min	Max	Avg.	Min	Max	
1	New Phosgene plant- Furnace	15	PM	150 mg/Nm3	Alkali & water scrubber	85	81.9	88	95	92	98	
2	New Phosgene plant -	15	CO		Alkali & water		N.D.			N.D.		
2	Reactor	15	phosgene	0.1 ppm	scrubber		N.D.			N.D.		
Cau	stic Chlorine Plant			•								
	Dechlorination Plant		CI 2	9.0 mg/Nm3		3.2	2.7	3.7	Shut	down d	uring	
3	(Hypo unit)	35	HCI	20.0 mg/Nm3	Alkali scrubber	4.8	3.9	5.7	Shut	visit	unng	
	Common stack of HCl Sigri		CI 2	9.0 mg/Nm3		6.5	5.3	7.7	Shut	down d	uring	
4	unit 1& 2	25	HCI	20.0 mg/Nm3	Alkali scrubber	6.8	5.4	8.2		visit		
Sulf	uric Acid (East Side)											
5	Sulfuric Acid plant	30	SO2	2.0 kg/T	water scrubber with DCDA	er 0.9 0.6 6.3 5.4			1.1	0.5	1.7	
5			Acid Mist	50.0 mg/Nm3	system				7.8	7.4	8.2	
c	Chloro Sulfonic Acid plant	11	CI 2	9.0 mg/Nm3	Caustic and	Not running dur			8.1	7.2	9	
6	reactor	11	HCI	20.0 mg/Nm3	water scrubber		visit		15	15	16	
FCB	plant											
7	Foul Gas Scrubber	26.5	SO2	40.0 mg/Nm3	Caustic scrubber			Not ii	n Use			
		20.0	NOx	25.0 mg/Nm3								
Inci	nerator											
			PM	150.0 mg/Nm3	Alkali&	80	77.9	82	85	82	88	
8	Incinerator	40	SO2	40.0 mg/Nm3	water scrubber	18	16.9	19	18	15	21	
			NOx	25.0 mg/Nm3		14	12.1	14	15	12	17	
NI P	lant			-								
9	Foul Gas Scrubber	26.5	SO2	40.0 mg/Nm3	Caustic scrubber		Not	running	during	visit		
5		20.5	NOx	25.0 mg/Nm3			Not	unin b	uumb	VISIC		
NBE) Plant											
10	Spray Dryer	21	PM	150.0 mg/Nm3	water scrubber			Not ir	n lise			
10	Spray Dryer	21	NOx	25.0 mg/Nm3		- N			ot in Use			
2-4-	D & related Products									-		
			CI2	9.0 mg/Nm3		7.3	6.8	7.8	7.6	7.4	7.8	
11	Common Scrubber; 2,4D Plant	5	HCI	20.0 mg/Nm3	Caustic scrubber	8.1	7.5	8.7	8.4	6.9	9.9	
			Phenol			N.D.			N.D.			

	Expansion of Chem	icais Manu	<u>racturing Uni</u>	<u>t By M/S. Ati</u>	<u>li Lta, vaisaa,</u>	<u>i ensi</u>		<u>st-vai</u>	<u>saa,</u>			
12	Dryer-1	26.5	PM with Pesticide compound	20.0 mg/Nm3	bag filter, water scrubber	7.2	5.9	8.5	7.5	6.6	8.4	
13	Dryer-2	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	7.9	6.3	9.5	8.3	6.5	10	
14	Dryer-3	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	9.5	8.9	10	9.8	9.6	9.6	
15	Dryer-4	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	8.1	7	9.2	8.5	7.9	9.1	
MPS	SL Plant											
16	Phosgene Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber		N.D.			N.D.		
17	Central Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber		N.D.			N.D.		
NIC	O Plant											
18	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber							
E	Ester Plant											
19	Scrubber at Ester plant for Glyphosate	12	Formaldehyde	10 Mg/Nm3	water scrubber		Not	running	ning during visit			
Othe	er											
			CL2	9 mg/NM3								
20	МСРА	19	HCL	20 mg/NM3	Alkali& water		Not	running	ng during visit			
			SO2	40 mg/NM3	scrubber			-	g during visit			
			SO2	40 mg/NM3	Alkali& water							
21	Fipronil	19	HCL	20 Mg/Nm3	scrubber		Not	running	during	visit		
				175 Mg/Nm3	water followed							
22	Imidacloprid	20	NH3	- 0, -	by acid scrubber		Not	running	during	visit		
22	Dunathusida	10	SO2	40 Mg/Nm3	Alkali& water		Nat					
23	Pyrathroids	19	HCL	20 Mg/Nm3	scrubber		NOT	running	during	VISIt		
24	Stack at Amine Plant	5	NH3	175 Mg/Nm3	Caustic scrubber	7.9	7.4	8.4	8.3	7.2	9.4	
25	Central Scrubber MCPA Plant	19	HCI	20 Mg/Nm3	Caustic scrubber		Not	running	during	visit		
			HCI	20 Mg/Nm3								
26	MPP plant scrubber	21	Phosgene	0.1 ppm	Water & Alkali Scrubber		Not	running	during	visit		
			Phosgene	0.1 ppm								
27	Flavors & Fragrances Plant	21	HCI	20 mg/NM3	Water scrubber followed by caustic scrubber							
		45	H2S		Alkali& water		N.D.			N.D.		
28	Sulfer Black Plant	19	NH3	175 mg/NM3	scrubber	18	15.9	21	19	16	21	
			H2S		Alkali& water		N.D.		1	N.D.		
29	Sulfer Dyes plant	19	NH3	175 mg/NM3	scrubber	17	15.2	18	17	15	20	
Atul	West Site	1	1	1	I		1	1	1	1	L	
			CI2	9 mg/NM3		4.2	3.4	5	4.3	3.7	4.9	
30	Shed A05/03/44	19	HCI	20 mg/NM3	Caustic scrubber	7.1	6	8.2	7.3	5.7	8.9	
	1			20 118/141413		/.1	U	0.2	1.5	5.7	0.9	

		Expansion of Chem	icals Manuf	facturing Unit	t By M/s. Atı	ul Ltd, Valsad, '	Tehsil	& Dis	t-Vals	sad,			
		Shed B2/12/24 Reaction		CI2	9 mg/NM3		6.8	5.2	8.4	7.1	6.8	7.4	
	31	Vessel	19	HCI	20 mg/NM3	Caustic scrubber	5.8	4.7	6.9	6.2	4.9	7.5	
Ī				SO2	40 mg/NM3		5.2	4.3	6.1	5.6	4.4	6.8	
	32	Shed B18/02/24 Fan	19	CI2	9.0 mg/Nm3	Caustic scrubber	4.6	3.3	5.9	4.3	3.5	5.1	
				НСІ	20.0 mg/Nm3		5.1	4	6.2	5.3	4.4	6.2	
	33	Shed C5/20/15 Chlorinator	19	Cl2	9 mg/NM3	Alkali& water	6.4	4.6	8.2	6.5	5.2	7.8	
	33	Shed C5/20/15 Chlorinator	19	HCI	20 mg/NM3	scrubber	7	5.1	8.9	7.1	5.5	8.7	
	34	Shed D Niro Spray dryer No.45	19	PM	150 mg/NM3	water scrubber	75	71.9	78	80	77	83	
	35	Shed D Niro Spray dryer No. 50	19	PM	150 mg/NM3	water scrubber	58	55.6	60	63	60	66	
	36	Shed E 7/12/49 Spray Dryer	19	РМ	150 mg/NM3	water scrubber	13	11	15	Not ru	unning o visit	during	
		Shed F 6/1/15 Reaction		Cl2	9 mg/NM3	Alkali& water	6.3	5.2	7.4	6.8	5.4	8.2	
	37	Vessel	19	HCI	20 mg/NM3	scrubber	6.7	5.3	8.1	6.9	5.8	8	
				Cl2	9 mg/NM3	Alkali& water						L	
	38	Shed G 10/8/1 (receiver)	19	HCI	20 mg/NM3	scrubber		Not	running	during	visit		
Γ	20	Shed H 11/6/17	10	CI2	9 mg/NM3	Alkali& water	6.5	5.6	7.4	6.6	5.5	7.7	
	39	Chlorinator	19	HCI	20 mg/NM3	scrubber	6.8	6	7.6	7.1	5.9	8.3	
Γ	40	Shed K K-13/3/4 Final of	10	SO2	2 kg/T	Alkali& water	1.7	0.9	2.5	1.8	1.7	1.9	
	40	Sulfuric acid plant	19	Acid Mist	50 mg/NM3	scrubber	14	11.3	16	14	12	17	
	41	Shed J15/09/25	19	HBr		Alkali& water		N.D.			N.D.		
	41	Siled 313/03/23	19	SO2	40 mg/NM3	scrubber	8.9	7.3	11	9.1	7.7	11	
				SO2	40 mg/NM3		7.5	6.8	8.2	8.2	7.4	9	
	42	Shed J12/01/42	19	CI 2	9.0 mg/Nm3	Alkali& water scrubber	7.2	5.9	8.5	7.6	7.1	8.1	
				HCI	20.0 mg/Nm3		6.3	5.6	7	6.5	6.1	6.9	
	40	Shed 112 (02 (2C	10	SO2	40 mg/NM3	Counting on which on	9.1	7.5	11	9.3	8.4	10	
	43	Shed J12/03/36	19	HCI	20.0 mg/Nm3	Caustic scrubber	6.5	4.7	8.3	6.6	6	7.2	
	44	Shed N Scrubber Fan	19	CI2	9 mg/NM3	Caustic scrubber	6.3	4.6	8	6.5	5.7	7.3	
		N20/08/24	15	HCI	20 mg/NM3		9.8	8.6	11	11	8.9	12	
	45	Shed N Scrubber Fan N20/02/41	19	SO2	40 mg/NM3	Alkali& water scrubber	8.3	6.9	9.7	8.5	7.7	9.3	
ſ	Atul	North Site											
				PM	150.0 mg/Nm3		60	57.6	62	65	62	68	
	46	N-FDH Plant Catalytic	31.5	SO2	40.0 mg/Nm3	bag filter	14	11.8	15	15	13	17	
	40	Incinerator	51.5	NOx	25.0 mg/Nm3		12	10.9	13	13	12	14	
				Formaldehyde	10.0 mg/Nm3			N.D.			N.D.		

47	PHIN Plant	15.5	Phosgene	0.1 ppm	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack		N.D.			N.D.	
48	DDS (Pharma Plant)	20	NH3	175 Mg/Nm3	water followed by acid scrubber	16	14.3	17	16	15	18
40		20	SO3		Alkali & water		N.D.				
49	SPIC II Plant (DCDPS)	30	503		scrubber		N.D.			N.D.	
50	SPIC I Plant	30	NH3	175 Mg/Nm3	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack	16	13.4	18	17	14	19
F 1		2	NH3	175 Mg/Nm3	Alkali &	17	14.3	19	17	15	19
51	SPIC IV Plant	2	SO3		water scrubber	8.5	6.9	10	8.9	7.6	10
52	PHIN II Plant	21	HCI	20 mg/Nm3	water scrubber followed by two stage caustic		13	11	16		
			phosgene	0.1 ppm	scrubber with Ammonia/steam					N.D.	

Sr. No	Stack Details	Stack	Parameter	Permissible	APCD	Jun				Jul	
NO	Stack Details	Height mtr	Parameter	Limits	APCD		2019			2019	
Atul	East Site					Avg.	Min	Max	Avg.	Min	Max
1	New Phosgene plant- Furnace	15	PM	150 mg/Nm3	Alkali & water scrubber	99	96	102	95	92.6	97.4
2	New Phosgene plant -	15	СО		Alkali & water		N.D.			N.D.	
2	Reactor	15	phosgene	0.1 ppm	scrubber		N.D.			N.D.	
Cau	stic Chlorine Plant										
	Dechlorination Plant (Hypo		CI 2	9.0 mg/Nm3		8.1	7.6	8.6	8.4	8.1	8.7
3	unit)	35	HCI	20.0 mg/Nm3	Alkali scrubber	15	13	17.1	15	13	16.2
	Common stack of HCl Sigri		CI 2	9.0 mg/Nm3		8.1	7.7	8.5	7.5	7.1	7.9
4	unit 1& 2	25	HCI	20.0 mg/Nm3	Alkali scrubber	12	11	13.9	11	10.3	12.3
Sulf	uric Acid (East Side)										
_			SO2	2.0 kg/T	water scrubber	1.2	0.9	1.5	0.9	0.7	1.1
5	Sulfuric Acid plant	30	Acid Mist	50.0 mg/Nm3	with DCDA system	8.5	8	9	9.6	8.4	10.8
	Chloro Sulfonic Acid plant		CI 2	9.0 mg/Nm3	Caustic and	8.5	8.2	8.8	7.6	7.2	8
6	reactor	11	HCI	20.0 mg/Nm3	water scrubber	14	13	15.8	15	13.6	16.8
FCB	plant										
7	Foul Gas Scrubber	26.5	SO2	40.0 mg/Nm3	Caustic scrubber	er Not in Use					
,	i oui das scrubbel	20.5	NOx	25.0 mg/Nm3		iver Not in Use					
Inci	nerator										

	Expansion of Chemic	<u>cals Manuta</u>	<u>icturing Unit</u>	<u>By M/S. Atul</u>	<u>Ltd, Valsad, I</u>	ensii a	<u>s Dist</u>	<u>:-vaisa</u>	ad,		
			PM	150.0 mg/Nm3	Alkali&	92	88	95.8	97	93.5	101
8	Incinerator	40	SO2	40.0 mg/Nm3	water scrubber	20	19	21.6	17	15.2	19.2
			NOx	25.0 mg/Nm3		16	15	17.7	18	15.1	20.1
NI P	lant			·							
9	Foul Gas Scrubber	26.5	SO2	40.0 mg/Nm3	Caustic scrubber		No	t running	during	visit	
5		20.5	NOx	25.0 mg/Nm3			NO	c r carrinne	Gunne	visit	
NBD) Plant			116/1113							
			PM	150.0							
10	Spray Dryer	21		mg/Nm3 25.0	water scrubber			Not i	n Use		
			NOx	mg/Nm3							
2-4-	D & related Products	1	1	1	Γ		r	1		r	
			Cl2	9.0 mg/Nm3		8.2	7.6	8.8	8.1	7.6	8.6
11	Common Scrubber; 2,4D Plant	5	HCI	20.0 mg/Nm3	Caustic scrubber	9.8	8.9	10.7	10	8.8	11.2
			Phenol				N.D.			N.D.	
12	Dryer-1	26.5	PM with Pesticide compound	20.0 mg/Nm3	bag filter, water scrubber	8.3	7.5	9.1	8.3	7.4	9.2
13	Dryer-2	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	10	8.5	11.7	9.8	9.1	10.5
14	Dryer-3	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	11	9.2	11.8	11	9.3	12.7
15	Dryer-4	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	9.5	10	8.8	10	8.5	12.1
MPS	L Plant		•	•							
16	Phosgene Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber		N.D.			N.D.	
17	Central Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber		N.D.			N.D.	
NIC	O Plant		•	•							
18	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber						
Este	er Plant										
19	Scrubber at Ester plant for Glyphosate	12	Formaldehyde	10 Mg/Nm3	water scrubber		Not	t running	g during	visit	
Oth	er				•						
			CL2	9 mg/NM3							
20	МСРА	19	HCL	20 mg/NM3	Alkali& water scrubber		Not	t running	g during	visit	
			SO2	40 mg/NM3	561 000001						
24	Fine - 1	10	SO2	40 mg/NM3	Alkali& water						
21	Fipronil	19	HCL	20 Mg/Nm3	scrubber		NO1	t running	s auring	visit	
22	Imidacloprid	20	NH3	175 Mg/Nm3	water followed by acid scrubber	Not running during visit					
23	Pyrathroids	19	SO2	40 Mg/Nm3	Alkali& water		Not	trupping	u durino	vici+	
23	Fyrauliolus	13	302	40 IVIg/ IVI113	AIRANO WALEI		Not running during visit				

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

scrubber 20 Mg/Nm3 HCL 24 Stack at Amine Plant 5 NH3 175 Mg/Nm3 Caustic scrubber 8.1 6.8 9.4 9.2 7.4 11 20 Mg/Nm3 Central Scrubber MCPA 25 19 HCI Caustic scrubber Not running during visit Plant HCI 20 Mg/Nm3 Water & Alkali MPP plant scrubber 26 21 Not running during visit Scrubber Phosgene 0.1 ppm Water scrubber Not running during 27 Flavors & Fragrances Plant 21 HCI 20 mg/NM3 followed by 16 14 18.1 visit caustic scrubber H2S N.D. N.D. ---Alkali& water 28 Sulfer Black Plant 19 scrubber NH3 175 mg/NM3 20 18 21.7 20 17.5 22.9 H2S N.D. N.D. Alkali& water Sulfer Dyes plant 19 29 scrubber NH3 175 mg/NM3 18 16 20 17 14.5 18.5 **Atul West Site** 6.5 CI2 9 mg/NM3 4.5 3.3 5.7 5.2 3.9 Shed A05/03/44 30 19 Caustic scrubber 7.5 7.3 5.2 HCI 20 mg/NM3 6.1 8.9 9.4 CI2 7.8 7.1 9 mg/NM3 6.9 8.7 8.4 5.8 Shed B2/12/24 Reaction 31 19 Caustic scrubber Vessel 6.5 HCI 20 mg/NM3 4.8 8.2 5.9 4.9 6.9 40 mg/NM3 SO2 6.2 5.4 7 7.1 5.6 8.6 CI2 9.0 mg/Nm3 4.6 4 5.2 3.9 3.4 4.4 32 Shed B18/02/24 Fan 19 Caustic scrubber 20.0 HCI 6.1 4.9 7.3 4.9 7.9 6.4 mg/Nm3 CI2 9 mg/NM3 7.6 4.4 7.8 6.6 5.6 6.1 Alkali& water 33 Shed C5/20/15 Chlorinator 19 scrubber 6.5 9.1 8 HCI 20 mg/NM3 7.8 6.6 9.4 Shed D Niro Spray dryer 34 19 150 mg/NM3 water scrubber 82 89.7 75 72.2 77.8 PM 86 No.45 Shed D Niro Spray dryer No. 35 19 PM 150 mg/NM3 water scrubber 66 64 68.5 69 65.7 72.3 50 150 mg/NM3 Shed E 7/12/49 Spray Dryer 19 ΡM water scrubber 36 Not running during visit Cl2 9 mg/NM3 7.1 5.4 8.8 8 7.7 8.3 Shed F 6/1/15 Reaction Alkali& water 37 19 Vessel scrubber 6.6 HCI 20 mg/NM3 7.5 8.4 7.8 10.4 9.1 CI2 9 mg/NM3 Alkali& water 38 Shed G 10/8/1 (receiver) 19 Not running during visit scrubber HCI 20 mg/NM3 Cl2 9 mg/NM3 7.1 6.3 7.9 5.8 7.8 6.8 Alkali& water 39 Shed H 11/6/17 Chlorinator 19 scrubber HCI 20 mg/NM3 7.3 5.9 8.7 8.1 6.9 9.3 SO2 2 kg/T 1.5 1.2 1.8 1.1 0.7 1.5 Shed K K-13/3/4 Final of Alkali& water 40 19 Sulfuric acid plant scrubber 20.8 Acid Mist 50 mg/NM3 16 13 18.4 18 20.8 N.D. N.D. HBr Alkali& water Shed J15/09/25 19 41 scrubber SO2 40 mg/NM3 9.8 8.9 10.7 8.7 7.7 9.7 SO2 40 mg/NM3 8.5 7.2 9.8 12 10.3 14.3 Alkali& water CI 2 9.0 mg/Nm3 8.2 7.6 8.8 5.5 5.1 5.9 19 42 Shed J12/01/42 scrubber 20.0 HCI 6.9 7.7 6 6.1 7.2 8.4 mg/Nm3 43 Shed J12/03/36 19 SO2 40 mg/NM3 Caustic scrubber 9.2 8.6 9.8 9.8 9.1 10.5

	Expansion of Chemi	<u>cals Manufa</u>	acturing Unit	<u>By M/s. Atul</u>	Ltd, Valsad, Te	ehsil 8	<u>k Dist</u>	-Valsa	nd,		
			HCI	20.0 mg/Nm3		6.8	5.3	8.3	7.2	5.9	8.5
	Shed N Scrubber Fan	10	Cl2	9 mg/NM3	Constitution below	6.7	4.8	8.6	7.8	6.7	8.9
44	N20/08/24	19	HCI	20 mg/NM3	Caustic scrubber	10	9.3	10.9	8.3	6.8	9.8
45	Shed N Scrubber Fan N20/02/41	19	SO2	40 mg/NM3	Alkali& water scrubber	8.8	7.8	9.8	8.2	7.5	8.9
Atul	North Site										
			PM	150.0 mg/Nm3		70	67	73.3			
46	N-FDH Plant Catalytic	31.5	SO2	40.0 mg/Nm3	bag filter	14	13	16.1	Not r	unning o	during
-0	Incinerator	51.5	NOx	25.0 mg/Nm3	Sug meet	13	12	14.5		visit	
			Formaldehyde	10.0 mg/Nm3			N.D.				
47	PHIN Plant	15.5	Phosgene	0.1 ppm	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack		N.D.			N.D.	
48	DDS (Pharma Plant)	20	NH3	175 Mg/Nm3	water followed by acid scrubber	16	15	16.8	17	14.7	19.
49	SPIC II Plant (DCDPS)	30	SO3		Alkali & water		N.D.			N.D.	
49	SPIC II Plant (DCDPS)	50	303		scrubber		N.D.			N.D.	
50	SPIC I Plant	30	NH3	175 Mg/Nm3	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack	17	15	19.1	18	16	20.
51	SPIC IV Plant	2	NH3	175 Mg/Nm3	Alkali &	19	17	20.3	19	17.8	20.
71	Shervilant	2	SO3		water scrubber	9.2	8.2	10.2	9.2	8.3	10.
52	PHIN II Plant	21	HCI	20 mg/Nm3	water scrubber followed by two stage caustic	13	11	15	13	11.2	15.
			phosgene	0.1 ppm	scrubber with Ammonia/steam		N.D.			N.D.	

Sr.	Stack Details	ack Details Stack Parameter Permissible APCD		APCD	Aug			Sept				
No.	Oldek Details	Height mtr	rarameter	Limits		2019			201		019	
Atul E	ast Site					Avg.	Min	Max	Avg.	Min	Max	
1	New Phosgene plant- Furnace	15	PM	150 mg/Nm3	Alkali & water scrubber	87	83.7	90	74	71.7	76.3	
2	New Phosgene plant -	15	СО		Alkali & water		N.D.			N.D.		
2	Reactor	15	phosgene	0.1 ppm	scrubber		N.D.		N			
	Caustic Chlorine Plant											
	Dechlorination Plant (Hypo		CI 2	9.0 mg/Nm3		6.3	5.7	6.9	7.1	6.9	7.3	
3	unit)	35	НСІ	20.0 mg/Nm3	Alkali scrubber	8.1	7.2	9	9.4	8.8	10	

	Expansion of Chemi	<u>icals Manu</u>	facturing Unit	<u>t By M/s. Atı</u>	<u>il Ltd, Valsad, '</u>	Tehsil	& Dis	t-Val	<u>sad,</u>		
	Common stack of HCl Sigri		CI 2	9.0 mg/Nm3		5.6	5.1	6.1	5.2	4.4	6
4	unit 1& 2	25	HCI	20.0 mg/Nm3	Alkali scrubber	9.6	8.7	11	10	8.9	11.5
Sulfu	ric Acid (East Side)										
			SO2	2.0 kg/T	water scrubber	0.5	0.4	0.6	0.7	0.3	1.1
5	Sulfuric Acid plant	30	Acid Mist	50.0 mg/Nm3	with DCDA system	7.3	6.7	7.9	12	10.7	14.1
	Chloro Sulfonic Acid plant		CI 2	9.0 mg/Nm3	Caustic and	6.7	6.1	7.3	5.4	4.6	6.2
6	reactor	11	НСІ	20.0 mg/Nm3	water scrubber	13	10.9	14	11	9.4	11.8
FCB p	plant										
-		26.5	SO2	40.0 mg/Nm3	Constitution to be a			N			
7	Foul Gas Scrubber	26.5	NOx	25.0 mg/Nm3	Caustic scrubber			NOT	n Use		
Incin	erator										
			PM	150.0 mg/Nm3	Alkali&	83	80.1	86	65	61.8	68.2
8	Incinerator	40	SO2	40.0 mg/Nm3	water scrubber	12	11.1	14	15	13.6	17.2
			NOx	25.0 mg/Nm3		9.4	8.6	10	7.3	6.9	7.7
NI Pla	ant										
9	Foul Gas Scrubber	26.5	SO2	40.0 mg/Nm3	· Caustic scrubber		Not	running	during	vicit	
9		20.5	NOx	25.0 mg/Nm3			NOT	running	guunng	VISIC	
NBD	Plant										
10	Spray Dryer	21	PM	150.0 mg/Nm3	water scrubber			Noti	n Use		
10	Spray bryer	21	NOx	25.0 mg/Nm3				NOUT	11 036		
2-4-D	& related Products										
			Cl2	9.0 mg/Nm3		7.2	6.4	8	7.4	6.6	8.2
11	Common Scrubber; 2,4D Plant	5	НСІ	20.0 mg/Nm3	Caustic scrubber	8.6	6.8	10	6.4	5	7.8
			Phenol				N.D.			N.D.	
12	Dryer-1	26.5	PM with Pesticide compound	20.0 mg/Nm3	bag filter, water scrubber	5.6	4.9	6.3	7.8	5.7	9.9
13	Dryer-2	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	6.2	4.6	7.8	9.4	8.2	10.6
14	Dryer-3	26.5	PM with Pesticide compound	20.0 mg/Nm3	cyclone, bag filter, caustic scrubber	15	13	18	8.2	6.4	10
14					cyclone, bag	8.3	6.2		10	8.3	12.1
14	Dryer-4	26.5	PM with Pesticide compound	20.0 mg/Nm3	filter, caustic scrubber	0.5	6.2	10	10	0.5	
15	Dryer-4	26.5	Pesticide			0.5	6.2	10	10	0.5	
15		26.5	Pesticide				0.2 N.D.	10		N.D.	
15 MPSL	- Plant Phosgene Scrubber at		Pesticide compound	mg/Nm3	scrubber			10	10		

	Expansion of Chem	icais Manui	acturing Unit	t By M/S. Att	<u>li Lta, vaisaa,</u>	ensii	& DIS	st-vai	saa,		
18	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber						
Ester	Plant	L	•	ł							
19	Scrubber at Ester plant for Glyphosate	12	Formaldehyde	10 Mg/Nm3	water scrubber		Not	running	g during	visit	
Other											
			CL2	9 mg/NM3							
20	MCPA	19	HCL	20 mg/NM3	Alkali& water scrubber		Not	running	g during	visit	
			SO2	40 mg/NM3							
21	Fipronil	19	SO2	40 mg/NM3	Alkali& water		Not	running	g during	visit	
			HCL	20 Mg/Nm3	scrubber				,		
22	Imidacloprid	20	NH3	175 Mg/Nm3	water followed		Not	running	g during	visit	
	·····				by acid scrubber				,		
23	Pyrathroids	19	SO2	40 Mg/Nm3	Alkali& water		Not	running	g during	visit	
		-	HCL	20 Mg/Nm3	scrubber						1
24	Stack at Amine Plant	5	NH3	175 Mg/Nm3	Caustic scrubber	16	13.6	19	24	21.7	26.7
25	Central Scrubber MCPA Plant	19	HCI	20 Mg/Nm3	Caustic scrubber		Not	running	g during	visit	
			HCI	20 Mg/Nm3	Water & Alkali						
26	MPP plant scrubber	21	Phosgene	0.1 ppm	Scrubber		Not	running	g during	visit	
27	Flavors & Fragrances Plant	21	HCI	20 mg/NM3	Water scrubber followed by caustic scrubber		Not	running	g during	visit	
			H2S		Alkali& water		N.D.			N.D.	
28	Sulfer Black Plant	19	NH3	175 mg/NM3	scrubber	35	33.7	37	45	42.7	47.9
20		10	H2S		Alkali& water		N.D.			N.D.	1
29	Sulfer Dyes plant	19	NH3	175 mg/NM3	scrubber	26	22.8	29	33	30.2	35
	Atul West Site										
30	Shad A05 (02/44	10	Cl2	9 mg/NM3	Caustic scrubber	6.3	4.3	8.3	7.2	5.5	8.9
30	Shed A05/03/44	19	HCI	20 mg/NM3	Caustic scrubber	8.3	6.8	9.8	8.9	6.8	11
21	Shed B2/12/24 Reaction	19	Cl2	9 mg/NM3	Caustic scrubber	5.4	3.9	6.9	6.3	5.1	7.5
31	Vessel	19	HCI	20 mg/NM3	Caustic scrubber	8.4	7.1	9.7	9.4	7.9	10.9
			SO2	40 mg/NM3		16	14.1	18	18	15.9	20.7
32	Shed B18/02/24 Fan	19	CI2	9.0 mg/Nm3	Caustic scrubber	4.6	3.9	5.3	6.2	4.8	7.6
			HCI	20.0 mg/Nm3		8.1	6.8	9.4	14	12.1	16.5
22	Shad CE (20/15 Chlarington	10	CI2	9 mg/NM3	Alkali& water	6.1	5.2	7	7.6	6.3	8.9
33	Shed C5/20/15 Chlorinator	19	HCI	20 mg/NM3	scrubber	7.6	6.8	8.4	9.7	7.9	11.5
34	Shed D Niro Spray dryer No.45	19	PM	150 mg/NM3	water scrubber	60	57.9	62	75	71.8	78.2
35	Shed D Niro Spray dryer No. 50	19	PM	150 mg/NM3	water scrubber	68	64.5	72	68	65.4	70.6
36	Shed E 7/12/49 Spray Dryer	19	PM	150 mg/NM3	water scrubber		Not	running	g during	visit	

	Expansion of Chem	<u>icals Manuf</u>	acturing Unit	<u>: By M/s. Atu</u>	<u>il Ltd, Valsad, 1</u>	<u> Tehsil</u>	& Dis	<u>t-Vals</u>	sad,		-
	Vessel		HCI	20 mg/NM3	scrubber	8.6	7.7	9.5	8.2	6.8	9.6
38	Shod C 10/8/1 (10	Cl2	9 mg/NM3	Alkali& water		Net		dunin	vicit	
38	Shed G 10/8/1 (receiver)	19	HCI	20 mg/NM3	scrubber		NOT	running	gauring	VISIT	
39	Shed H 11/6/17	10	Cl2	9 mg/NM3	Alkali& water	5.3	4.8	5.8	7.3	6	8.6
39	Chlorinator	19	HCI	20 mg/NM3	scrubber	8.4	6.8	10	12	10.4	14.4
40	Shed K K-13/3/4 Final of	19	SO2	2 kg/T	Alkali& water	0.8	0.6	1	0.6	0.5	0.7
40	Sulfuric acid plant	19	Acid Mist	50 mg/NM3	scrubber	12	10.8	14	16	13.9	17.5
41	Shed J15/09/25	19	HBr		Alkali& water		N.D.			N.D.	
41	Siled 113/03/23	19	SO2	40 mg/NM3	scrubber	14	11.8	16	15	12.9	17.5
			SO2	40 mg/NM3		11	9.2	11	15	12.2	17.4
42	Shed J12/01/42	19	CI 2	9.0 mg/Nm3	Alkali& water scrubber	6.3	5.6	7	7.2	6.6	7.8
			HCI	20.0 mg/Nm3	Sciubbei	5.7	5.4	6	6.7	6.3	7.1
42	Shed 112/02/20	10	SO2	40 mg/NM3	Countin comulation	14	11.9	16	16	14.1	18.7
43	Shed J12/03/36	19	HCI	20.0 mg/Nm3	Caustic scrubber	9.4	7.8	11	11	9.4	11.8
	Shed N Scrubber Fan	10	Cl2	9 mg/NM3	0	6.2	5.5	6.9	7.8	7.3	8.3
44	N20/08/24	19	HCI	20 mg/NM3	Caustic scrubber	10	8.5	12	11	10	12.8
45	Shed N Scrubber Fan N20/02/41	19	SO2	40 mg/NM3	Alkali& water scrubber	15	13.4	17	14	12.3	16.1
Atul N	lorth Site										
			PM	150.0 mg/Nm3							
46	N-FDH Plant Catalytic	31.5	SO2	40.0 mg/Nm3	bag filter		Not	running	, during	visit	
10	Incinerator	0110	NOx	25.0 mg/Nm3	208				,		
			Formaldehyde	10.0 mg/Nm3							
47	PHIN Plant	15.5	Phosgene	0.1 ppm	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack		N.D.			N.D.	
48	DDS (Pharma Plant)	20	NH3	175 Mg/Nm3	water followed by acid scrubber	23	20.8	26	45	42.4	48
40		20	603		Alkali & water						
49	SPIC II Plant (DCDPS)	30	SO3		scrubber		N.D.			N.D.	
50	SPIC I Plant	30	NH3	175 Mg/Nm3	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack	12	10.9	14	36	32.9	38.3
								10	26	22.2	
		2	NH3	175 Mg/Nm3	Alkali &	18	16.2	19	26	23.2	28.2
51	SPIC IV Plant	2	NH3 SO3	175 Mg/Nm3 	Alkali & water scrubber	18 8.6	16.2 7.5	9.7	8.2	6.9	28.2 9.5

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad, followed by two stage caustic N.D. N.D. scrubber with phosgene 0.1 ppm Ammonia/steam vi Solvent management shall be carried out as follows. Complied. a) Reactor shall be connected to chilled brine Condensers with chilling systems are provided at point of Solvent recovery to minimized vapor loss as condenser shown below:system. a) Condensers at Solvent b)Solvent Recovery Recovery b) Reactor and Complied. solvent handling M/s. Atul Limited has provided seals at all Reactors and pump's in order to prevent leakage as shown pump shall have mechanical seals below:to prevent leakages. a) Seal at Stirrer b) Pump Seal

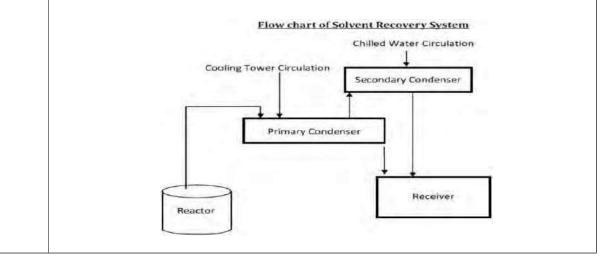
<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> on of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tehsil & Dist-Vals

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

c) The condensers shall be provided with sufficient HTA and residence time so as to achieve more than 95% recovery.

Complied.

Spent solvents are recovered as far as possible as per details given below and all venting equipments are provided with condenser system & scrubber provided with Sufficient Heat Transfer Area (HTA) which helps to achieved more than 95% recovery. The detailed report are as below:-


S.N.	Solvent									
	used	Qty. Used	Qty. Recover	Qty. Loss	% Recovery					
1	Toluene	2577	2562	14.50	99.4					
2	Xylene	46135	43825	2310	95.3					
3	Butyl Acetate	41238	40454	784	98.1					
4	EDC	57850	55536	2314	96.2					

VOC MITIGATION MEASURES:

To prevent losses of these solvents in atmosphere, following infrastructure shall be used:

- Leak Free Pumps for transfer of solvents.
- MSW Gaskets in solvent pipelines to prevent leakage from flanges.
- Minimum number of flanges, joints and valves in pipelines.
- To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- All the rotating equipments like pumps will be installed with Mechanical Seals to arrest any sort of emissions.
- · Condenser and scrubber post Reactor with cooling arrangement.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- In case the small spillage or leakage observed, first pour the china clay (vermiculate) on material and collect the contaminated china clay (vermiculate) and send to ETP.
- If the spillage is of inflammable liquid, switch off all the power supply in the area to prevent Electric Spark.
- Two condensers are installed with cooling water and chilled water to recover the solvent.
- Primary Condenser -01: Cooling Tower water or Chilled water at 5 ^oC is used to condense the solvents depend on the vapor pressure at its operating conditions and the non condensed vapors will be condensed in a Secondary Condenser

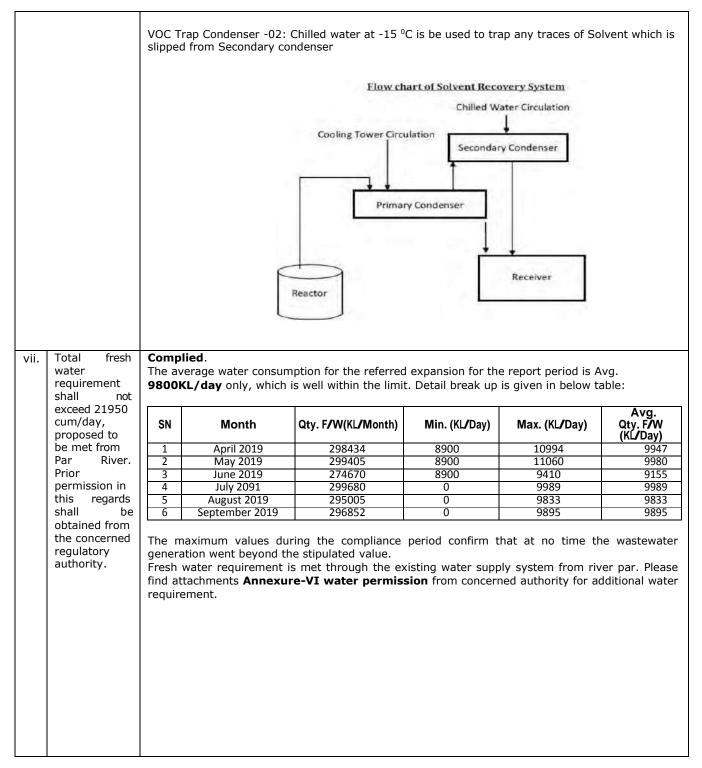
VOC Trap Condenser -02: Chilled water at -15 $^{\rm 0}{\rm C}$ is be used to trap any traces of Solvent which is slipped from Secondary condenser

d) Solvents shall be stored in a	Complied.									
separate space specified with all safety measures.	M/s. Atul Limited has made separate provision for solvent storage & is installed as per PESO regulation wherever applicable with all details of Storage area, operating temperature and pressure, types of possible hazards and control measures.									
medeareer	Deta	ils For Solven	t Storage	e Is As Follo	ws:-					
	SN	Name of SN Hazardous	Quantity		Place of its Storage	State & Operating Pressure &	Type of hazard	Control measures provided		
		substance	Max. Qty can be stored	Qty Stored	Storage	Temp	nazaru	provideu		
	1	Methanol (Group 5 - 2)	470 MT	350 MT	Methanol Storage Tank Farm	Liquid at RT atmos. pressure	Fire	Flame arrester, earthing dyke wall to over ground Tank fire water		
	2	Phenol	180+ 60MT	120+40 MT	PH-II Anisole tank farm	Temp- Ambient	Toxic spill	Dyke wall with valve, which do not allow liquid spill to go to normal drain. PVC suit, washing facility, SOP, etc.		
	3	Benzene	180 MT	100 MT	Resorcinol	Liquid at RT atmos. pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.		
	4	Xylene	60	30	MPSL- NICO Plant	Atmospheric Normal Temp.	Fire	Dyke wall, Fire hydrant line, FLP, Spark arrester, Prohibited for vehicle movement &unauthorized person.		
	5	Phenol 98% solution	200 MT	170 MT	Near Bisphenol plant	Liquid at RT atmos. Pressure	Toxic spill	Dyke wall water spraying & washing facilities PEG 400 as antidote.		
	6	Methanol	650 M3	50 M3	Methanol Tank farm northsite.	Liquid at RT, atmos. Pressure	Fire & Toxic spill	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.		
	7	Toluene	40 m3	30 m3	Phin& PO plant	Liquid at RT, atmos. Pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, Ll, Fire hydrant, sand etc.		
	8	Toluene	120 KL	100 KL	Shed C	Atmo. Press and temp.	Fire &Chemical spillage	Underground tank, prohibited are, FLP, foam trolley etc.		
	9	Ethanol /Methanol	51 KL	40 KL	Shed N & A	Atmo. Press and temp.	Gas leakage, Spill	Respirators, Dry Sand, Dyke wall, spare tank		
	10	МСВ	105 MT	100 KI	Shed C	Atmo. Press and temp.	Fire &Chemical spillage	Underground tank, prohibited are, FLP, foam trolley etc.		

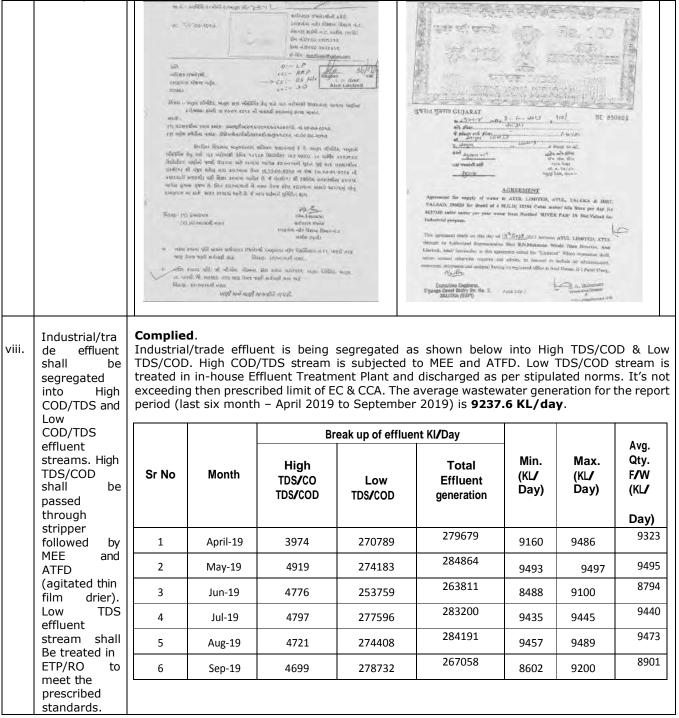
		<u>11/0</u>	<u>0.:F. No. J-11</u> 2/2019 P <u>eric</u> s Manufactur	od – APRIL	2019 TO SEP	TEMBER 201		
		Formale	<u>s Manufactur</u>	<u>ing Unit By</u>	M/s. Atul Lt	d Valcad To	1	
		11 Formald				u, vaisau, re		-Valsad,
		37 to		600 MT	Storage Tank Opp. UF plant, FDH Plant & Nr. UF Plant	Liquid at RT, atm. press.	Toxic spill	Water spraying facilities L.I. Empty space for emergency transfer
	-	Tank Farm	20330 C - 200					
	be provided all the I	Complied. Earthing pit below:-	is provided in	all electrica	al equipment	wherever solv	vent handlir	ng is done as
equipr where	ment ever nt handling			E. au	Spic-4	0.042.CL]	

f) Entire plant shall	Com	plied.							
be flame proof. The solvent storage tanks shall be provided with	Entire plant is flame proof installations, Storage tanks are provided with breather valve for a prevention of losses. M/s. Atul Limited has made separate provision for solvent storage & installed as per PESO regulation wherever applicable with all details of Storage area, operatir temperature and pressure, types of possible hazards and control measures.								
breather valve to prevent	Deta	ils For Solvent S	Storage Is	As Follow	s:-				
losses.			(Quantity					
	S N	Name of Hazardous substance	Max. at can be stored	Qty Stored	Place of its Storage	State & Operating Pressure & Temp	Type of hazard	Control measures provided	
	1	Methanol (Group 5 - 2)	470 MT	350 MT	Methanol Storage Tank Farm	Liquid at RT atmos. pressure	Fire	Flame arrester, earthing dyke wall to over ground Tank fire water	
	2	Phenol	180+ 60MT	120+40 MT	PH-II Anisole tank farm	Temp- Ambient	Toxic spill	Dyke wall with valve, which do not allow liquid spill to go to normal drain. PVC suit, washing facility, SOP, etc.	
	3	Benzene	180 MT	100 MT	Resorcinol	Liquid at RT atmos. pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.	
	4	Xylene	60	30	MPSL- NICO Plant	Atmospheric Normal Temp.	Fire	Dyke wall, Fire hydrant line, FLP, Spark arrester, Prohibited for vehicle movement &unauthorized person.	
	5	Phenol 98% solution	200 MT	170 MT	Near Bisphenol plant	Liquid at RT atmos. Pressure	Toxic spill	Dyke wall water spraying & washing facilities PEG 400as antidote.	
	6	Methanol	650 M3	50 M3	Methanol Tank farm north site.	Liquid at RT, atmos. Pressure	Fire & Toxic spill	Isolated storage, FLP, Flam arrester, Breather valve, Ll, Fire hydrant, sand etc.	

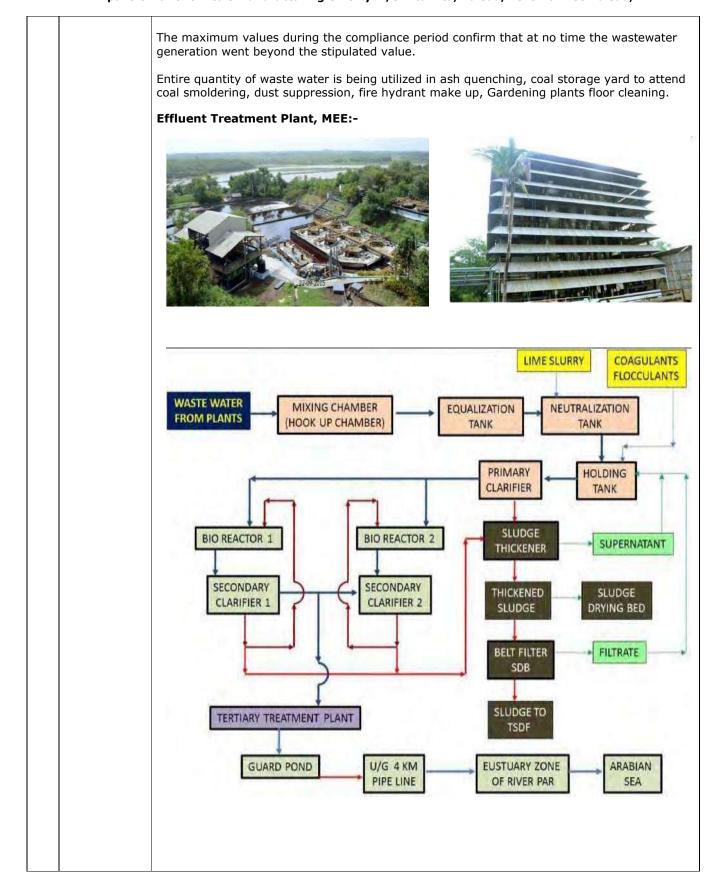
<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tobsil & Dis


Expansion	on (of Ch	nemicals Manu	facturing	Unit By M	I/s. Atul Ltd	, Valsad, Teł	nsil & Dist-Valsad,
				_				

	 	cinicals Fland			SI Atai Eta			albuu/
	7	Toluene	40 m3	30 m3	Phin & PO plant	Liquid at RT, atmos. Pressure	Fire	Isolated storage, FLP,Flam arrester, Breather valve, LI, Fire hydrant, sand etc.
	8	Toluene	120 KL	100 KL	Shed C	Atmo. Press and temp.	Fire &Chemical spillage	Underground tank, prohibited are, FLP, foam trolley etc.
	9	Ethanol /Methanol	51 KL	40 KL	Shed N & A	Atmo. Press and temp.	Gas leakage, Spill	Respirators, Dry Sand, Dyke wall, spare tank
	10	МСВ	105 MT	100 KI	Shed C	Atmo. Press and temp.	Fire &Chemical spillage	Underground tank, prohibited are, FLP, foam trolley etc.
	11	Formaldehyde 37 to 43 %	1200 MT	600 MT	Storage Tank Opp. UF plant, FDH Plant & Nr. UF Plant	Liquid at RT	Toxic spill	Water spraying facilities L.I. Empty space for emergency transfer


<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

	Solvent storage tank
g) All the solvent storage tanks	Complied.
shall be connected with vent condensers with chilled brine	All the solvent storage tanks are being connected with condensers & chilled water circulation, Spent solvents are recovered as far as possible and all venting equipments are provided with condenser system & scrubber.
circulation.	VOC MITIGATION MEASURES:
	To prevent losses of these solvents in atmosphere, following infrastructure shall be used:
	Leak Free Pumps for transfer of solvents.
	 MSW Gaskets in solvent pipelines to prevent leakage from flanges. Minimum number of flanges, joints and valves in pipelines.
	 To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
	 All the rotating equipments like pumps will be installed with Mechanical Seals to arrest any sort of emissions.
	 Condenser and scrubber post Reactor with cooling arrangement.
	 Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
	 In case the small spillage or leakage observed, first pour the china clay (vermiculate) on material and collect the contaminated china clay (vermiculate) and send to ETP.
	 If the spillage is of inflammable liquid, switch off all the power supply in the area to prevent Electric Spark.
	 Two condensers are installed with cooling water and chilled water to recover the solvent. Primary Condenser -01: Cooling Tower water or Chilled water at 5 °C is used to condense the solvents depend on the vapor pressure at its operating conditions and the non condensed vapors will be condensed in a Secondary Condenser.


<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> sion of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tebsil & Dist-Va

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> n of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tehsil & Dist-Vals

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

CONDITIONS.

The Waste Water analysis at ETP outlet is monitored at regular interval for ensuring the compliance. The testing lab appointed is M/s. Pollucon Laboratories Pvt Ltd, Surat NABL Approved **TC – 5945**, issue date-**28/05/2019** and valid till **27/05/2021**.

The analysis reports were below the limits of quantization and within the permissible limit. A detail of analysis report of Monitoring report is attached in **Annexure- III.**

Monitoring details of final effluent discharged are as follows:-

S.N			LINALT		Apr-19)		May-	19
0	PARAMETER	UNIT	LIMIT	Min	Max	Avg	Min	Max	Avg
1	рН		5.5 to 9.0	6.7	7.9	7.45	7.83	8.67	8.25
2	Temperature	°C	40	20	39	31.9	30.4	34.4	32.4
3	Colour	Co-pt	0	45	110	77.5	95	115	105
4	Suspended Solids	mg/L	100	75	95	86	75	93	84
5	Oil & Grease	mg/L	10	2	7	3.6	3.5	5.3	4.4
6	Phenolic Compound	mg/L	5	0.1	2	0.45	0.1	0.6	0.35
7	Cyanides as CN	mg/L	0.2	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
8	Flourides as F	mg/L	2	0	2	1.2	0.2	1.3	0.75
9	Sulphides as S	mg/L	2	0	1.9	0.95	1.45	1.95	1.7
10	Ammonical Nitrogen as NH3	mg/L	50	26	49	40	39	49	44
11	Arsenic as As	mg/L	0.2	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
12	Total Chromium as Cr +3	mg/L	2	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
13	Hexavalent Chromium as Cr+6	mg/L	1	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
14	Copper as Cu	mg/L	3	0.15	2.7	0.41	0.16	0.42	0.29
15	Lead as Pb	mg/L	2	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
16	Mercury as Hg	mg/L	0.01	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
17	Nickel as Ni	mg/L	5	0.03	0.13	0.08	0.08	0.14	0.12
18	Zinc as Zn	mg/L	15	0.7	1.22	0.96	0.7	1.7	1.2
19	Cadmium as Cd	mg/L	2	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
20	Phosphates as P	mg/L	5	1.11	1.85	1.48	1.41	1.89	1.65
21	BOD(5 Days@20°C)	mg/L	100	59	71	65	67	73	70
22	COD	mg/L	250	195	225	210	231	249	240
23	Sodium Adsorption Ratio		26	7.21	9.49	8.35	22.7	25.3	24
24	Manganese as Mn	mg/L	2	0.08	0.42	0.25	0.19	0.51	0.35
25	Tin as Sn	mg/L	0.1	BDL*	BDL*	BDL*	BDL*	BDL*	BDL
26	Bio Assay test	%	90% survival of fish after 96hr in		survival r 96hr in effluen	100%		survival r in 100%	

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

	<u>emicals Manufactu</u>		100% effluent	<u></u>	<u> </u>	<u>taisau</u>			vaisau	/
27	Pesticides/Insectici des	mg/L	Absent	BC	DL* B	BDL* E	3DL* E	BDL*	BDL*	BDL*
								1		
S.N O	PARAMETER	UNI T	LIMIT		Min	Jun-19 Max	9 Result	Min	Jul-1 Max	9 Result
1	pH	-	5.5 to 9.0		7.9	8.41	8.2	7.64	8.2	7.95
2	Temperature	°C	40		22	38	30	23	41	31.6
3	Colour	Co- pt	0		39	103	84	95	155	125
4	Suspended Solids	mg/ L	100		68	89	83	78	94	86
5	Oil & Grease	mg/ L	10		1.6	5.6	3.6	5.3	9.1	7.2
6	Phenolic Compound	mg/ L	5		0.2	0.36	0.28	0.44	0.66	0.55
7	Cyanides as CN	mg/ L	0.2		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
8	Flourides as F	mg/ L	2		0.59	0.81	0.7	0.32	0.78	0.55
9	Sulphides as S	mg/ L	2		0.1	1.88	1.06	1.7	1.8	1.8
10	Ammonical Nitrogen as NH3	mg/ L	50		35	49	42	32	46	39
11	Arsenic as As	mg/ L	0.2		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
12	Total Chromium as Cr +3	mg/ L	2		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
13	Hexavalent Chromium as Cr+6	mg/ L	1		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
14	Copper as Cu	mg/ L	3		0.17	0.31	0.24	0.04	0.28	0.16
15	Lead as Pb	mg/ L	2		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
16	Mercury as Hg	mg/ L	0.01		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
17	Nickel as Ni	mg/ L	5		0.14	0.18	0.16	0.07	0.15	0.11
18	Zinc as Zn	mg/ L	15		1.41	1.55	1.48	1.67	1.83	1.75
19	Cadmium as Cd	mg/ L	2		BDL *	BDL*	BDL*	BDL *	BDL*	BDL*
20	Phosphates as P	mg/ L	5		1.53	1.87	1.7	1.8	2.4	2.1
21	BOD(5 Days@20°C)	mg/ L	100		43	71	57	59	69	64
22	COD	mg/ L	250		221	239	230	205	215	210
23	Sodium Adsorption Ratio		26		20.1	23.9	22	17	23	20
24	Manganese as Mn	mg/ L	2		0.19	0.41	0.3	0.37	0.53	0.45

ansion of Ch	emicals Manufactu	ring U	nit By M/s	<u>s. Atu</u>	<u>I Ltd, \</u>	/alsad,	Teh	<u>sil & C</u>	<u>Dist-Vals</u>	ad,
25	Tin as Sn	mg/ L	0.1		BDL *	BDL*	BD	L*	BDL * BD	_* BDL*
26	Bio Assay test	%	90% surviv fish after 9 in 100% effluen	96hr %		surviva 96hr in effluen	100%		after 96	vival of fish hr in 100% luent
27	Pesticides/Insectici des	mg/ L	Absent	t	BDL *	BDL*	BD	L* E	BDL * BD	_* BDL*
	403	L								
S.N	PARAMETER	UNI	LIMIT		Aug	-19			Sep	19
0		Т		Min	Max	Re	sult	Min	Max	Result
1	рН		5.5 to 9.0	7.49	8.71		.1	7.9	8.70	8.3
2	Temperature	°C	40	25.6	39.6	32	2.6	23.9	39.9	31.9
3	Colour	Co- pt	0	80	100	9	0	73	87	80
4	Suspended Solids	mg/ L	100	85	99	9	2	72	84	78
5	Oil & Grease	mg/ L	10	2.6	9	5	.8	2.7	6.1	3.4
6	Phenolic Compound	mg/ L	5	0.03	0.25	0.	14	0.054	0.142	0.098
7	Cyanides as CN	mg/ L	0.2	BDL *	BDL'	* BC)L*	BDL*	BDL*	BDL*
8	Flourides as F	mg/ L	2	0.4	0.8	0	.6	0.42	1.08	0.75
9	Sulphides as S	mg/ L	2	1.4	1.8	1	.6	1.7	1.9	1.8
10	Ammonical Nitrogen as NH3	mg/ L	50	43	49	4	6	39	49	44
11	Arsenic as As	mg/ L	0.2	BDL *	BDL'	* BC)L*	BDL*	BDL*	BDL*
12	Total Chromium as Cr +3	mg/ L	2	BDL *	BDL'	* BC	L*	BDL*	BDL*	BDL*
13	Hexavalent Chromium as Cr+6	mg/ L	1	BDL *	BDL,	* BC)L*	BDL*	BDL*	BDL*
14	Copper as Cu	mg/ L	3	0.04	0.2	0.	12	0.05	0.1	0.075
15	Lead as Pb	mg/ L	2	BDL *	BDL'	* BC)L*	BDL*	BDL*	BDL*
16	Mercury as Hg	mg/ L	0.01	BDL *	BDL,	* BD)L*	BDL*	BDL*	BDL*
17	Nickel as Ni	mg/ L	5	0.06 6	0.084	4 0.0)75	0.068	0.082	0.075
18	Zinc as Zn	mg/ L	15	1.9	2.3	2	.1	2.9	3.9	3.4
19	Cadmium as Cd	mg/ L	2	BDL *	BDL'	* BC)L*	BDL*	BDL*	BDL*
20	Phosphates as P	mg/ L	5	1.11	2.39	1.	75	1.7	2.5	2.1
21	BOD(5 Days@20°C)	mg/ L	100	70	80	7	5	79	85	82
22	COD	mg/ L	250	234	246	24	40	241	247	244

	Expansio	on of Ch	emical	Period			2019 TO 9	SEPTEM		<u>19</u>		& Dis	t-Vals	ad,	
		23		n Adsorpt Ratio			26	20.3	23.7	22	22		25.2		24
		24	Mang	anese as l	Mn	mg/ L	2	0.29	0.41	0.35	0.0)5	0.25		0.15
		25	Т	ïn as Sn		mg/	0.1	BDL *	BDL*	BDL*	* BD	L*	BDL*		BDL*
		26		Assay tes des/Insect		%	90% survival of fish after 96hr in 100% effluent		l % surviva er 96hr ir effluer	n 100% nt		96hr	urvival in 1009	6 efflu	lent
		27	Pestici	des		mg/ L	Absent	* *	BDL*	BDL*	* BD	L*	BDL*		BDL*
		Inter	nal Mo	onitorin	g Da pH	ita:-		COD m	a/I	В	OD mg	a/l	Phe	enol	mg/l
		D	ate	Min	Ma	X A		Max	Avg	Min	Max				Avg
		Ap	or-19	6.30	8.1		•		-	24.80		26		0.11	
			ay-19	6.50	8.3			229.70		26.80		28		0.11	
		-	n-19 I-19	6.60 6.40	8.4 8.2			229.40 232.60		24.80 50.80		26 52		0.21	0.2
			g-19	6.30	8.1			238.06		52.80		54		0.31	0.3
			p-19	6.20	8.0					50.80		52		0.51	0.5
			xt-19 v-19	6.30 6.40	8.1 8.2			224.70 235.70		50.80 50.80		52 52		0.51	0.5 0.6
ix.	Process	Compl	ied.				-		• 						
	effluent/any wastewater shall not be	Process	s effluer				re being d re not mix					er th	rough t	:he e>	cisting
	allowed to mix with storm water. The storm	stream of COD to reco	s (COD <2000 very sy	>50000 ppm is fi stem rat	ppm) inally her th) is bei sent t nan ind	regated ir ng taken f o ETP for t cineration.	or recov reatmer The hig	ery to gent. All the holds and holds and holds and holds and holds are set of the holds are set of the holds and holds are set of the h	et econ e high C ffluent	omic be COD stre is evap	enefit. eams orate	. Rest l are be d in ME	ean e ing di E.	ffluent verted
	water from the premises shall be collected and discharged	used as matter	s make as we h	up water nave pun	for co nped	ooling this ra	s and New tower afte in water to e numbers	r giving i o clarific	necessar oculator (y pre-ti units to	reatme remov	nt to e sus	remove pendeo	e susp 1 mat	ended ter.
	through a separate conveyance system.	and ha	rvest ra	in water	in m	onsooi	n season.								
		zero ri pumpir toward	ver drav ng facilit s the er	wls of wa ty to har nd of mo	ater o vest r nsoor	during ain wa n to st	to cater ou the rainy ater. We a ore addition of top wa	days. E lso cons onal free	Besides t truct ten flowing	his, the nporary rain wa	ere are sand t ater in	thre bag d river	e checl am on	k dan top o	ns and f dam

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u>

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad, x. Hazardous Complied.

х.	Hazardous chemicals	Compl	lied.						
	shall be stored in tanks, tank	All Haz Measui		us materials othe	er than solv	ent are st	ored as pe	r below me	entioned details with Control
	farms, drums, carboys etc.		SN	Name of RM	MOC	Tank Type	Nos of Tank	Capacity	Control Measures Provided
	Flame arresters shall provided on tank farm, and solvent transfer	-	1	65% Oleum	MS, IS- 2825	Above ground	2	65 MT	Dyke wall with valve, do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer, Dry sand beds for spill Control, tank level meter.
	through pumps.		2	Chlorine	CS	Above ground	4	200	Two standby tank, DCS controlling, Hypo scrubbing, SCBA, Emergency chlorine kit & hood blower etc.
			3	Epichloro- hydrin	MS	Above ground	6	55 M3	Flame arrester earthing, dyke wall with valve which do not allow liquid spill to go to normal drain.
			4	Sulphur Trioxide (Group 2)	MS	Above ground	2	13 MT	Dyke wall with valve, with valve do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer
			5	Ammonia Anhydrous	MS	Above ground	1	10	High Alarm switch Water sprinkler, Fog Nozzles, Dyke wall
			6	65% Oleum	MS	Above ground	2	72	Respirators, Dry Sand, Dyke wall, Spare tank, High alarm switch
			7	Caustic	MS	Above ground	4	530 MT	Dyke wall, LI & LT, DCS controlling etc.
			8	Hydrogen	MS	Above ground	1	100 nm3	Prohibited for men & vehicle movement, Isolated storage, FLP, Flam arrester, PG & PT, Fire hydrant, 7 Fire extinguisher etc.
			9	Chloro Sulphonic Acid	SS 316	Above ground	4	30	Respirators, Dry Sand, Dyke wall, spare tank
			10	Sulfuric acid	MS	Above ground	4	800	Emergency tank, Dyke wall, LT, DCS controlling, Level alarm etc.
			11	liq. SO3,	MS	Above ground	3	40 MT	Emergency tank, LT & LI, DCS controlling, Level alarm etc.
			12	HCL	PP FRP	Above ground	3	200 KL	Dyke wall, LI & LT, DCS controlling etc.
		1. Sec sys	conda tem i	s provided.	to all stora	ge areas o	f Hazardou		s with leakage collection
		-		are made availa ant system is pro					

xi.	Process	on of Chemica Complied.	als Manuf	acturing	Unit By	<u>M/s. Atu</u>	l <mark>l Ltd, Va</mark> l	lsad, Teh	isil & Dis	st-Valsad	d,
	organic residue and spent carbon, if any, shall be	We have obta Amendment					irdous and	l other wa	aste by o	btaining	
	sent to cement industries. ETP sludge, process inorganic	CTO amendn 23158/513 03/11/2019 valid up to 30 . The followin	897 , Dat 9 . Renewa).09. 2025	ed 17.7 I for the sa	. 2019 (ame has b	CTO am een recei	endment ved with F	No. A Provisiona	H 1020)80), Va	alid Till-
	& evaporation			HAZAR		STE DISP	OSAL & M	ANAGEME	NT		
	salt shall be disposed off to the TSDF.	Name of waste	Waste Authoriz ation as per CCA			Waste ge	enerated Kgs	/M onth			
			(In Kgs.)	Apr-19	May- 19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Disposal
		Al. Hydroxide	15417	0	0	0	0	0	0	0	Own TSDF
		Iron Sludge	80000	3500	11230	10000	10500	8500	6000	6000	Own TSDF
		Iron Residue	62500	13940	11060	6920	7360	11540	10990	6660	Own TSDF
		Brine Sludge	242500	21350	22500	0	22360	22450	21950	17710	Own TSDF
		ETP/Gypsu m Sludge	(41667+ 4930000 +2000) =497366 7	709100	717520	711860	717520	734290	701920	723120	Own TSDF
		Inci. Ash	4620	0	0	0	0	0	0	0	Own TSDF
		Salt from MEE	1678710	67250	70580	65780	19300	42200	49840	37180	Own TSDF
		Brass Residue	667	0	0	0	0	0	0	0	Own TSDF
		Hyflo	15750	15750	15740	7200	9000	13400	15600	7100	Own Incinerat or.
		Waste / Salt Lime Dust	5000	2000	0	4500	4600	4800	4700	3200	Own TSDF
		Tot	al	832890	848630	806260	790640	837180	81100	800970	
		Epoxy Resin	130000	45800	69890	123090	72090	107310	41230	75310	Co-Pro
		Spent Carbon	40000	8140	31420	35240	23950	31250	36500	14180	Co-Pro
xii.	The Company	Complied.		-	•			•	·		
	shall strictly comply with the rules and guidelines under Manufacture, Storage and Import of Hazardous Chemicals (MSIHC) Rules, 1989 as amended	We are com Hazardous ar ETP Sludge, Facility/TSDF obtaining Am GPCB Vide Le amendment vide provision Company has has also obta Cement).	nd Other V Used Oil We hav hendment etter No. G No. AH 10 nal consen s obtained	Vastes (Ma & Empl e obtaine in Existing GPCB/CCA 2080), Va t order no TSDF mei	anageme ty Drums d necess g CTO aft A-VSD-3 alid Till- 0 . 10511 mbership	nts and to s- Handl ary auth er receiv 13(16)/ 3/11/20 D valid up s from his	ransbound ing, and iorization ing EC. C ID: 2315 D19 . Rene to 30.09 s own TSE	dary Move Storage for Haza TO amene 8/51389 wals for to 2.2025. DF & Incin	ement) R & Dispo rdous ar dment ha 97 , Dateo the same eration F	ules, 201 osal to a nd other as been g d 17.7.20 has beer Facility. Co	6 towards authorized waste by granted by 019 (CTO n received

ation of Hazardous	CONDITIONS	COMPLIANCE
Chemicals shall be as per the Motor Vehicle Act, 1989.	 4. Responsibilities of the occupier for management of hazardous and other wastes. (1) For the management of hazardous and other wastes, an occupier shall follow the 	
	 following steps, namely:- (a) prevention; (b) minimization; (c) reuse, (d) recycling; (e) recovery, utilization including co- processing; (f) safe disposal. (2) The occupier shall be responsible for safe and environmentally sound management of hazardous and other wastes. (3) The hazardous and other wastes generated in the establishment of an occupier shall be sent or sold to an authorized actual user or shall be disposed of in an authorized disposal facility. (4) The hazardous and other wastes shall be transported from an occupier's establishment to an authorized actual user or to an authorized disposal facility in accordance with the provisions of these 	 1) Complied. We are using advanced technological and processes to minimization waste generation for prevention reuse, recycling and safe disposa the authorized actual user TSDF /CHWIF facility. 2)Complied. We are ensuring for safe and environmentally sound managem of hazardous and other wastes. 3)Complied. We have our own captive TSDF and Incinerator facility. 4) Noted &Complied.
	rules. (5) The occupier who intends to get its hazardous and other wastes treated and disposed of by the operator of a treatment, storage and disposal facility shall give to the operator of that facility, such specific information as may be needed for safe storage and disposal.	5)Complied. We are having separate hazard waste storage facility with all saf measures to avoid accident. Also are adopting safe disposal a storage practices.
	 (6) The occupier shall take all the steps while managing hazardous and other wastes to- (a) contain contaminants and prevent accidents and limit their consequences on human beings and the environment; and (b) Provide persons working in the site with appropriate training, equipment and the information necessary to ensure their safety. 	6) Complied.
	6. Grant of authorization for managing hazardous and other wastes.	Complied. We are strictly agreeing, complyin will continue to comply with all stipulations made by GPCB as per & A Letter No. GPCB/CCA-VS 313(16)/ID: 23158/513897, Dated 17.7.2019 (CTO amendm No. AH 102080), Valid 03/11/2019. Renewal for the sa has been received provisional C

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019 Period – APRIL 2019 TO SEPTEMBER 2019 Expansion of Chemicals Manufacturing Unit By M/s, Atul Ltd, Valsad, Tebsil & Dist-Valsad

Expansion of Chemicals Manufacturing Unit By M/s. Atul	
7. Power to suspend or cancel an authorization.	
8. Storage of hazardous and other wastes	Complied
9. Utilization of hazardous and other wastes	Complied. Recovered Spent Solvent are being reused. Used Oil & Discarded drums
10. Standard Operating Procedure or	are being sent to authorize recycler. Noted.
guidelines for actual users 11. Import and export (transboundary movement) of hazardous and other wastes.	Not Applicable
12. Strategy for Import and export of	Not Applicable
hazardous and other wastes. 13. Procedure for import of hazardous and	Not Applicable
other wastes. 14. Procedure for Export of hazardous and	Not Applicable
other wastes from India 15. Illegal traffic.	Not Applicable
16. Treatment, storage and disposal facility for hazardous and other wastes.	Complied. We have our own captive TSDF and Incinerator. We also send waste to Authorized facility as per the valid authorization.
17. Packaging and Labeling – Form 8	Complied. All hazardous Waste transportation is being done through appropriate packing and labeling as per Form-8.
18. Transportation of hazardous and other wastes	Complied. Waste is being transported through TREM Card as per Haz. Rules.
19. Manifest system (Movement Document) for hazardous and other waste to be used within the country only	
20. Records and returns	Complied. We are maintaining & submitting all records like Form-III, Form-IV & Environment Statement Form-V periodically to GPCB.
21. Responsibility of authorities The authority specified in column (2) of Schedule VII shall perform the duties as specified in column (3) of the said Schedule subject to the provisions of these rules.	
22. Accident reporting. Where an accident occurs at the facility of the occupier handling hazardous or other wastes and operator of the disposal facility or during transportation, the occupier or the operator or the transporter shall immediately intimate the State Pollution Control Board through telephone, e-mail about the accident and subsequently send a report in Form 1.	No accidents were reported during April 2019 to September 2019 period during handling and transportation of hazardous or other wastes.
23. Liability of occupier, importer or exporter and operator of a disposal facility.	
(1) The occupier, importer or exporter and operator of the disposal facility shall be liable for all damages caused to the environment or third party due to improper handling and management of the hazardous and other waste.	Noted.
(2) The occupier and the operator of the disposal facility shall be liable to pay financial penalties as levied for any violation of the provisions under these rules by the State Pollution Control Board with the prior approval of the Central Pollution	Noted.

Control Board.	
24. Appeal	
 (1) Any person aggrieved by an order of suspension or cancellation or refusal of authorization or its renewal passed by the State Pollution Control Board may, within a period of thirty days from the date on which the order is communicated to him, prefer an appeal in Form 12 to the Appellate Authority, namely, the Environment Secretary of the State. (2) The Appellate Authority may entertain the appeal after expiry of the said period of thirty days, if it is satisfied that the appellant was prevented by sufficient cause from filing the appeal in time. (3) Every appeal filed under this rule shall be disposed of within a period of sixty days from the date of its filing. 	Noted & Complied

•	Fly ash should be stored separately as per CPCB guidelines so	silo of	ave not cons f 300 MT ca ation of app	apacity of	of each, to	tal 1200 N	unit. We ha 1T capacity, fly ash daily	which is w	ell enough	for our ave
	that it should not adversely		FI	y ash				Total Qua	antity (kg)	
	affect the air quality, becoming air					Year 1	7-18	Y	ear 18-19	
	borne by wind or water		Ge	neration		74533	859	6	58353710	
	regime during rainy season		Quantity utilized v			9122	:00		Nil	
	by flowing along with the storm								k Manufactu 53092190	rer:
workers to fly	exposure of workers to fly ash & dust			Sold		75446	059		Industry: 5 Total: 58353710	261520
	should be avoided.		% U	tilizatio	n	100	%		100%	
			sh / botton n below ta Fly Ash		April 19	May 19	eriod (Apri June 19	July 19	Aug 19	Sept 19
					2677	4420	5432	5472	5170	
			eneration Disposal	MT MT	3677 3677	4420	5432	5472	5170	4765

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> of Chemicale Manufacturing Unit By M/c. Atul. Ltd. Valcad. Tobsil & Di

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad, xiv The company shall undertake waste minimization measures as below:-

quantities of	
	Metering of water is done. Meter is provided at the inlet of the collection tank and reuse system of waste water and records are being maintained.
5	Photograph of water meter shown below:

Month wise water consumption, waste water generation and reuse data are shown below table:

SN	Month	Water consumption	Waste water generation	Recycle
		(KL/Month)	(KL/Month)	(KL/Month)
1	April 2019	298434	279679	7120
2	May 2019	299405	284864	7418
3	June 2019	274670	263811	10133
4	July 2091	299680	283200	11197
5	August 2019	295005	284191	11787
6	September 2019	296852	267058	11873

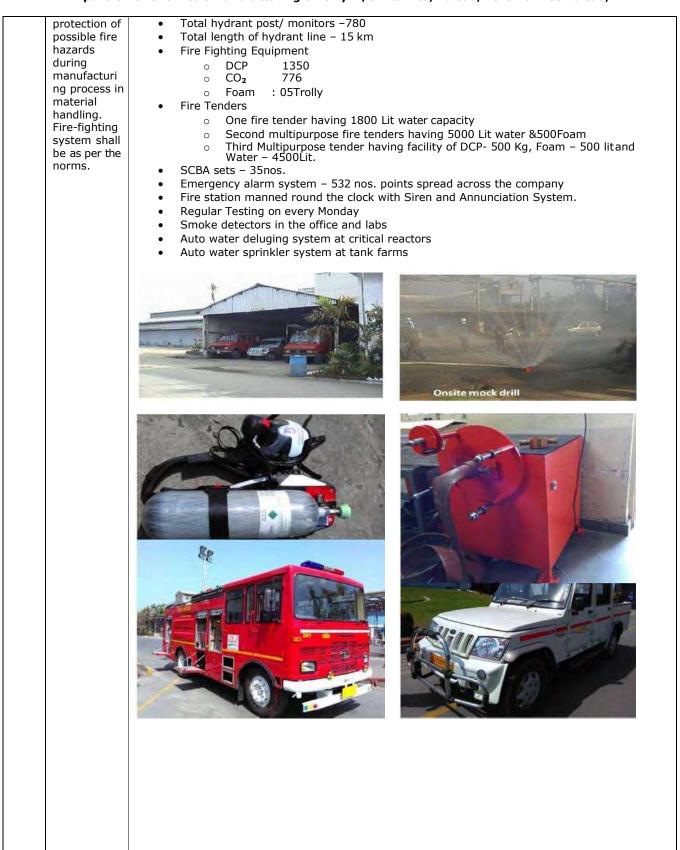
We are reusing 100% treated water in ash quenching , coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, Gardening plants & floor cleaning.

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> of Chemicals Manufacturing Unit By M/s. Atul Ltd. Valsad. Tebsil & Dist-

products from the process as	
c) Use o automated fillin to minimize spillage.	
d) Use of Close Feed system in to batch reactors.	, , , , , , , , , , , , , , , , , , , ,
e) Venting equipment through vapour recovery system	At all venting equipment condenser recovery system & scrubbers are provided.
f) Use of high pressure hoses for equipment clearing to reduce wastewater generation.	

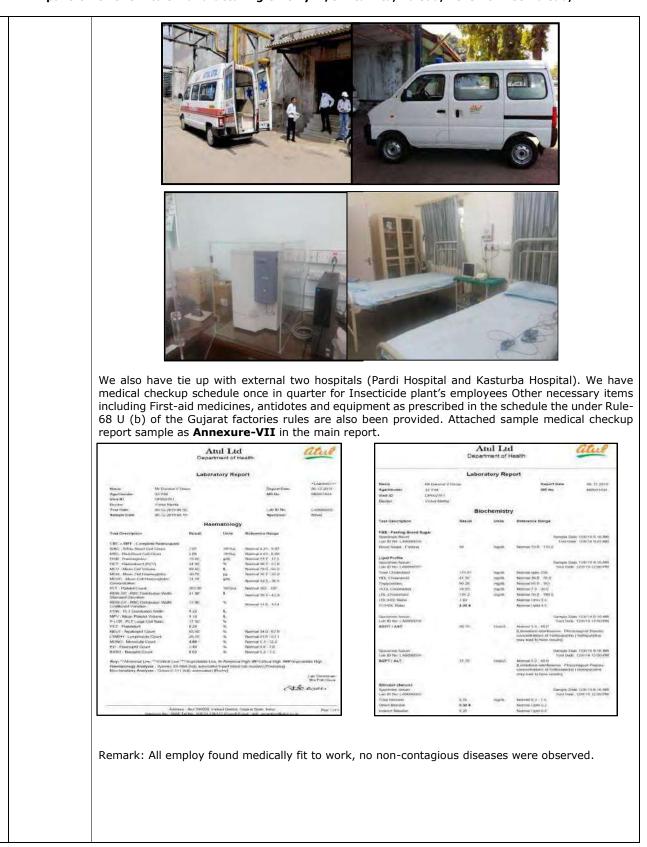
COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019 Period – APRIL 2019 TO SEPTEMBER 2019 Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

	-	
xv.	The green belt of at	Complied.
	least 5-10	Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive &
	m width shall be	transport dust emission. Total Plot area: 1126078.27 sq.mt
	developed in	Green belt area: 409030.00 sq.mt (approx. 36% of total plot area) Layout
	nearly 33% of the	
	total project	plan with green belt is as shown below:
	area, mainly along the	
	plant	
	periphery, in downward	
	wind	
	direction, and along	
	road sides	
	etc. Selection of	
	plant species	
	shall be as per the	
	CPCB	
	guidelines in consultation	
	with the	
	State Forest Department	
		от переод содина От переод с
		() uch wave () uch wave compared source () where compared and () () () () () () () () () () () () ()
		NO DESCRIPTION OF AND LEADING OF AND
		We plant more than 50000 plants every year on road sides and other open areas in nearby villages
		We plant more than 50000 plants every year on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat.
		1


<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

			Sr. No.	Year	No. of plants planted				
			1	2010-11	59,200				
			2 2011-12 68,700						
			3	2012-13	63,300				
			4	2013-14	75,600				
			5	2014-15	81,500				
			6	2015-16	72,900				
			Тс	otal	4,21,200				
xvi.	All the commitmen ts made regarding issues raised during the public hearing/ consultation meeting shall be satisfactoril Y implemente d.	has been satis next point xvii. Commitment to being done 100	factorily im Of complia owards coa 0% in closed oyment of lo	plementing C nce report. I transportati d / covered n ocal Atul Ltd.	ng were replied satisfactorily. Towards commi CER/CSR as per the action plan / schedule; on in Covered truck is complied. Now coal tr nechanical trucks. Is consistent in hiring local as per the eligibilit m local.	details given in ransportation is			
xvii.	As committed, funds	Complied . Company has e	embarked B	udgetary pro	vision of fund 375.0 lacs for period April 2019	9 to			

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> of Chemicals Manufacturing Unit By M/s, Atul Ltd, Valsad, Tebsil & Did


allocation for the Corporate Environmen t Responsibili ty (CER) -	activitie Rules, 2	es as per conditions n	nentioned in the nents from time t	te company has expendit companies CSR (Corporate to time in a letter and spiri 2019):	e Social Respo	
shall be 2% of the total project cost. Item- wise details along	S.N	Description	Location	Final Implementing Agency	Budget from April `19 to September `19	Expenditure
with time bound action plan shall be prepared	1	Enhancement of education practices in Kalyani Shala	Atul, Valsad (Gujarat)	AFT Atul Kelavani Mandal	37.50	26.92
and submitted to the Ministry's Regional Office.	2	Imparting training to women to become skilled elementary school teachers (Adhyapika) to improve rural education	Valsad (Gujarat)	AFT ARDF	30.00	28.97
	3	Promoting socio cultural and extracurricular activities for school children	Atul, Valsad (Gujarat)	AFT ARDF	15.00	11.30
	4	Providing science and maths training to rural teachers	Ahmedabad (Gujarat)	AFT Vikram A Sarabhai Community Science centre	3.00	3.00
	5	Women empowerment initiatives	Atul, Valsad (Gujarat)	AFT ARDF	6.00	5.37
	6	Beekeeping training to farmers to earn livelihood	Dhrampur Kaparad, Valsad (Gujarat)	AFT Under the Mango Tree	5.50	1.40
	7	Providing health services through health camps	Villages of Valsad (Gujarat)	AFT ARDF	3.00	3.06
	8	Support to build city scan centre in a hospital	Atul, Valsad (Gujarat)	AFT Kasturba Hospital	10.00	10.00
	9	Contribution for advance treatment of Cancer patients	Karamsad (Gujarat)	AFT Charuatar Arogya Manda I	5.00	5.00
	10	Assistance to Needy People	Villages of Valsad (Gujarat)	ARDF	3.00	2.53
	11	Up liftment of salt pan worker	Kharaghoda, Surendranagar (Gujarat)	AFT ARDF Gantar	5.00	3.60

	12 13 14 15	Promotion of Sports Enhancement of rural infrastructure Tribal Home stay project Initiative to celebrate 125 th birt anniversary of Sri KasturbhaiLalbhai (Founder)	(Gujarat) Kevadiya (Gujarat)		ARDF AFT ARDF AFT AFT	12.0 10.0 100.0 120.0	00	11.4 6.1 58.0 30.3	0	
	16	Administrative expense Total				10.0 375.				
xviii. For the DG sets, emission limits and the stack height shall be in	prescri Acoust valves	ied. sured that at no ti bed limits. In such ic enclosures are pr of Boilers. details:-	cases / Occurre	nces v	ve will intimate	to board & au	Ithority	time	to time.	
conformity with the extant regulations and the	SN Sta		Capacity/Stack Ht mtr	Para	Permissible Limits	APCD			Fuel	
CPCB guidelines. Acoustic enclosure		Set 1010 A(Standby)	H: 10	PM 150 mg/Nm3 SO2 100 ppm NOx 50 ppm		Adequate Stack Acoustic Enclosure		lt &	Diesel	
shall be provided to DG set for controlling		Set 1500 KVA cand By)	H: 11	PM SO ₂ NOx	150 mg/Nm3 100 ppm 50 ppm	Adequate & Acoustic End	Stack closure	Ht	Diesel	
xix. The unit shall make the	Poco	graph of Stack & S		to D.	G Sets:-					

XX Occupation al health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Occupation of the fact Medical Ch (M.D. Phys The followi Pre-Employ SN 1 2 3	e on regular basis as p hal health surveillance ories act and ruke-68 eckup of all employees ician) & Dr.Sandip Bha ng medical checkup ha yment Check-Up (In-h Employee Staff Operators Workers	of the workers is ca T of Gujarat Facto is are done by in-ho andare (M.B.B.S, A as been completed ouse): FY April-18 Qty 530	arried out on a regula ries Rules and record ouse Dr.Vishal Mehta .FIH) in following man ; to March-19 Check-Up Pre- Employment	r basis as per section-41 C ls are maintained. Regular (M.B.B.S), Dr.Suman Patel ner;
		edical Check-Up: FY A			_
	SN	Employee	Qty	Check-Up	
	1	Staff		Annual	
	2	Operators Workers	3391	Checkup	
	B. Annual (1. Physical 2. Vision 3. Blood 4. Urine 5. PFT 6. ECG Our occupa supervision Medical Fac • Fir • Ce • Tw • Me • Thi • ECC • Cal • ECC • Cal • ECC • Cal • De • Fin • Pul • O2, • Ant • Tie	History cation Mark Checkup: checkup checkup dional health centre & of factory medical off cilities: st Aid boxes in all plar ntral Ambulance Room o Ambulance Vans. Of cilical Center ree full time AFIH certi quipped with 3Beds I equipped Pathologica G Equipment rdiac monitor fibrillator ger pulse Oxymeter monary Function Test Administration tidotes with routine Im	ficer with trained the nts n in the middle of t ut of which one is e fied doctors. I lab with advanced Apparatus	hree EHS persons. the factory equipped with ICU faci d diagnostic equipmer ife saving Drugs	lities.

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

Continuous **Complied**. online

xxi.

(24x7) monitoring system for stack emissions shall be installed for measureme nt of flue gas discharge and the pollutants concentrati on, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel/dra in carrying effluent within the premises.

Online monitoring system for SPM, SOx and NOx is already been made and connected to CPCB server. **Photograph of main gate digital display board for ambient air quality.**

Photograph of online monitoring system (CEMS) connected to the CPCB server:

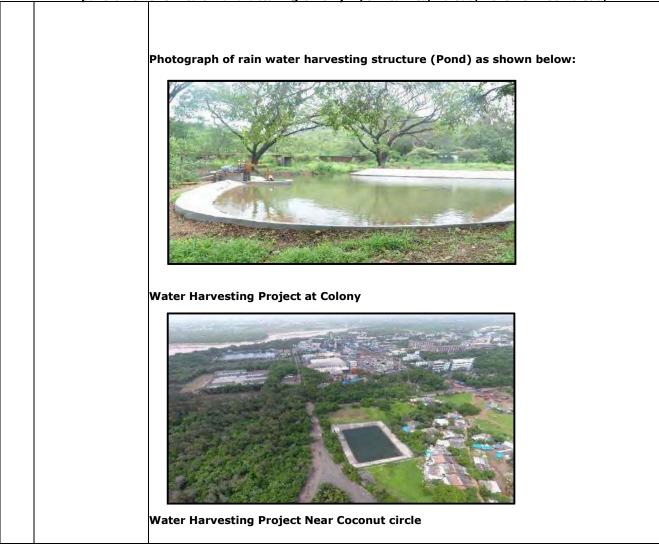
	00274-0	1. B. 10. 20 10.		EnviryConnect
a sector a superior	BarlesoM andro-9			
	UL LTD-VALBAD	TA		
Stinde - TANK	VALEAD, VALEAD, OU	LITA TRON DT.I	ALTA	
	Station Report			
	oo ee aa e	unition : : : :		and names and in a process of the second sec
	1. 00			
	AL LAND			
Wat you have a seal	Mullim	M	Jr.	
and and	MWIMMY		J.	
Mark _ on A And And			of some new provident	
and the second second	1	1	and stands stand Print Super- standing Physics (1979) Hulle St	una una una una una una una una una una
and and			un and the second states and the second states of t	Aller and an and a second sec
and and	and room	g-= mart	CologyProtection	Anna
and and	interviewe Restormer Restory()	alan tarang Distangan Tara	α στολογιστο Ποιου στηρο αποτοποίη (harto "Tot salanta) μεταλ στολο αποτοποίη ματο μεταλ στολο αποτοποίη ματο αποτοποίη ματο (ματο στηρ	and
and the second second	intervention Statistics (Table - 10) are sta	Sector Sector	at words over the ended of the	and a second sec
and the second second	An and a state Statestimes (Sales - 10) gen tak states	Generation Strategyon Mag. Jr Mag. St. Mag. Mag.	الله معلم المعلم الم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم المعلم	And a second sec

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

B. GENERAL CONDITIONS:

adhere to the		3,0	Sewage shall be disposed off through	Sexase in heing disposed off through
stipulations made	Compliance of De		septic tank/ scale gil av@orn.	Septic trols followed by sonk pit and averilines are designed in go to ETP
	Compliance of CCA AWB 67517 Instant on 4/15 fr. Condition	2014 mild 105 05/11/2019 4 Compliance 4 18	Condition under Air Act: Fuel constitution likares for teillers /	Consolied
,	J Consent No. AW31 67317 dated	4.18	Heaters	
Pollution Control	4/11/2014 3 Ve0idity up to 03/11/19	CC RA renewal application done and	consumption install and operate air pollumon source	
Board, Central		Provisional concern a memoryal. Con- new 2074 to valid (d) 2019,2023. Bino- detailed actor is yet to be amund by	system to achieve norms. Flue gas Emission Norms	Complied. PL refer latest GPCB result
Pollution Control		GIVD, compliance of misroed TCA as	Process Emission Nature	as amperates 1. Compiled Pl. relev latest SPCB result
Board, State	Production expatities of different products [Total 32137.96 / 33137.96	Matches with consent. B. see prediction details for 18-19 as 4.51	Ambient air monitoring Norms	to annerure 5, Complied. Pi refer third party result as
Government and	MTPM, 69 products	Annekure 1 4-6	Overate industrial plans / air pollution	annegure 6. Coundled
any other	Condition under Water Act: S.I. Quantine of industrial officient shall not exceed 17283KI/day; excluding ABL.		countril equipment very efficiently and contributed so that the pressons emission always conforms to the	
statutory	3.2 High COD effluent shall be tremented (28 KLPD) in own memerator within	Complied, IV see water beknow for visor 1% 10 no Americana 2. We have been sepregasting high COD anyones (CDD >5000K) ppul) and senar to being taken for provery to get	The concent shall lapse if at any time the	Noted
authority.	prenuses.	economic headst. Rest long effluent of	parameters of the gaseous emission are not within the talerance limit specified.	
addioneyr		CDD \$2000 ppm is finally sent to ETP for frequent. All the high CDD streams are being discuss to recover system rather than	The applicant shall provide pertudes, helder, philierm etc at chirmseyin for monitoring the air aniissions and the annus shall be appen for inspection to/and	Complied
		Incharaction Streams voluteining Ammonia, Recharaol Conner, Solvents,	for use of Sterrity study. The chapments	
		Physicilies, are any taken for the property of the scales and reused. Hence, there is no High COD Waste-	such as S-1, S-2, +to, and Wese shall be	
		water stream remaining and Usersfore	pointed (displayed to facilitate identification	
	High TDS ufficient shall be evaporate in MES. 5.7 Quantity of domestic serving: shall not	ni instrumation to nundiad. Complied, High TDS efficient is magnituded in MER.	Noise Levels in ambience (75 fbiA) from 6 am to 10 pm day time; and 70db(A)	Complied
	exceed 937 KL/day.	Complied. PL see water balance fm year 18-19 as Annexuse 2.	from 10 pm to 6 nm might time	
	7.1 Trade Effluent Treated effluent Norms to be achieved	Complied, PL refer latest GPCB result	Authorization for the Management Hamiling a Transformulary Movement of Hamilton West-Form 2 (See rule 5-14)	
	All offorts to be made to remeval of cultar	as approve 3. Completed	for arous of Authorization for essanier or	
	and unpleasant oder. 3.5 The final treated efficient configuring the above standard shall be collected in guard	Complied 3.1	Operator headling Bazardous Waste Rules-2009 Authorization on AWH 67717 (need	
	pond and (first dividiary of through Scand ofpe first dividiary onne of Fus Horst via	37.2	Autorizadoa ba Awii 67777 ancea 4/11/2014 Baz Waste disconal as storalated	Complied, PL refer that waste data for
		1.2 The sufficient is general to species facility for collection, storage, within the factory precision and treatment immigration and alimate disputed theorem waves are mentioned in the above waves are mentioned in the above as per Hatardonic Wast [Management, Heardonic Wast]	e h d	
		Transboundary Movement] Rules-2008. 5.3 The authorization is subject to th	e Compliad	
		conditions stated below and such other conditions as may be specified in the	c	
		rules from time to time under the Environment (Protection) Act-1986		
		3.5 Vilidity up to 3/11/19	66 &A conversal applications done and Provisional conserve is received. Our perf CCA is valid (ill 30.0-2017). Sance detailed active its yet to be manged by	
			OPCB, compliance of referred. CCA is given	
		5.5 Terms and conditions for authorizator 5.5.1 The applicant shall comply with the providence of the Environment Determine	given c. Complied	
		5.5.1 The applicant shall comply with th provisions of the Environment (Protection Art 1986 and the rules made they updet	e Complied e	
		5.5.1 The applicant shall comply with the provisions of the Environment (Woorking Art 1986 and the rules made they under 5.5.52 The authorization shall be produced in inspective at lim request of affect by the GCB	e Complied e Complied e r Ormplied	
		 5.5.1 The applicant shall comply with provisions of the Environment (Protection Art 1996 and the rules made they under the automatantic shall be produced in important at limit request of afford by the statement of the statement of	e Complied e Complied r Compleed s Source	
		 15.1 The applicant shall comply with the provinces of the Environment Reversion and the Environment Reversion and the Environment Reversion and the product is the under the model. 5.5.2 The autointransin shall be preduced in the product in the environment of the presence equipment or working conditions as a maximum of the environment of the envir	gorn c Complied c Gemplied c Gemp	
		 5.5.1 The applicant shall comply with the provisions of the Environment (Protection Art 1996 and the rules made they under the automatantian shall be produced in important at line request of afford by the statement of the automatante definition is a manimum in the automatante definition of the statement of the automatante definition of the statement of the automatante. 		

	Expansion of (Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,
ii.	No further	Complied.
	expansion or	
	Modifications in	We ensure that there is no further expansion or modifications related to EC in the plant. For
	the plant shall be	any deviations or alteration in the plant we will opt prior permission from MoEF.
	carried out	
	without prior	
	approval of the	
	Ministry of	
	Environment,	
	Forest and	
	Climate Change.	
	In case of	
	deviations or	
	alterations in the	
	project proposal	
	from those	
	submitted to this	
	Ministry for	
	clearance, a fresh	
	reference shall be	
	made to the	
	Ministry to assess	
	the adequacy of	
	conditions	
	imposed and to	
	add additional	
	environmental	
	protection	
	measures	
	required, if any.	
iii.	The locations of	Complied . The Location of ambient air quality monitoring stations had been decided in
	ambient air	consultation with GPCB so that at least one station is installed in the up wind and downwind
	quality monitoring	direction as well as where maximum ground level concentration are anticipated. This also
	stations shall be	covers the impact, if any, of the project plant. The same had been shown to authority like
	decided in	SPCB, CPCB & MoEF during their visit to our factory.
	consultation with	The maximum values during the compliance period confirm that at no time the anti-size level
	the State	The maximum values during the compliance period confirm that at no time the emission level
	Pollution Control	went beyond the stipulated standards. Parameter wise summary is given below:
	Board (SPCB) and	
	it shall be ensured	
	that at least one	
	station each is	
	installed in the	
	upwind and	
	downwind direction	
	as well as where	
	maximum ground	
	level concentrations	
1	are anticipated.	


		SUMMARY OF AMBIENT AIR QUALITY RESULTS:							
		Station	Parameter	Limit microgram/NM	Values fo	or the period	May 19- Oct 19		
				3	Min.	Max.	Avg.		
		66 KV	RSPM (PM2.5)	60	21.3	45	32.2		
			PM10	100	37.6	58	45.7		
			SO2	80	7.5	9.8	8.95		
			NOx	80	7.9	16.4	10.4		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
v.	The National	Opposite Shed D	RSPM (PM2.5)	60	27	56	41.7		
	Ambient Air Quality Emission		PM10	100	34	60	46.8		
	Standards issued		SO2	80	7.9	13.5	10.4		
	by the Ministry		NOx	80	8.3	11.3	9.6		
	vide G.S.R. No.		Ammonia	850	ND	ND	ND		
	826(E) dated		HCI	200	ND	ND	ND		
	16""November, 2009 shallbe followed.	Near West site ETP	RSPM (PM2.5)	60	24	42	34		
	rollowed.		PM10	100	37	62	51.7		
			SO2	80	8.3	11.2	9.9		
			NOx	80	7.2	10.2	9.1		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
		Near North ETP	RSPM (PM2.5)	60	27	40	34.2		
			PM10	100	38	68	50.5		
			SO2	80	6.4	10.6	8.97		
			NOx	80	5.8	9.8	8.6		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
		TSDF	RSPM (PM2.5)	60	26	58	43		
			PM10	100	7.8	59	44.97		
			SO2	80	7.4	10.8	9.2		
			NOx	80	6.3	9.5	7.9		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
		Main Guest	RSPM (PM2.5)	60	12	38	23.2		
		House	PM10	100	25	53	39.8		
			SO2	80	4.5	10.5	7.5		
			NOx	80	5.1	17.5	10.6		
			Ammonia	850	ND	ND	ND		

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> sion of Chamicals Manufacturing Unit By M (c. Atul. 14d. Valcad. Tobail & Dir

			Т	HCI	200	Г	ND		ND	ND	
		Mucth		RSPM	60		10		32	19.5	
		Wyeth Colony		(PM2.5)	60		10				
				PM10	100		26		50	38	
				SO2	80		4.1		9.5	6.7	
				NOx	80		4.6		14.2	9.4	
				Ammonia	850		ND		ND	ND	
				HCI	200		ND		ND	ND	
		Gram panchay	va t	RSPM (PM2.5)	60		12		45	25	
		hall		PM10	100		29		47	38.8	
			Ī	SO2	80		5.8		9.2	7.6	
			F	NOx	80		5.7		14.2	10.0	
				Ammonia	850		0		0	ND	
			Ē	HCI	200		0		0	ND	
		Main office,		RSPM (PM2.5)	60		18		35	27.3	
		North si	te	PM10	100		35		58	46.7	
			F	SO2	80		7.2		9.5	8.5	
			F	NOx	80		7.3		14.2	11.3	
			-	Ammonia	850		ND		ND	ND	
			Ē	HCI	200		ND		ND	ND	
		Haria water		RSPM (PM2.5)	60		16.3		39	26.8	
		tank	Ī	PM10	100		22.2		41.1	34.7	
				SO2	80		6.7		9.5	8.4	
				NOx	80		5.8		15.8	9.5	
				Ammonia	850		ND		ND	ND	
	he overall noise	Complie		HCI	200		ND		ND	ND	
ar ar ke th pr co in ho	evels in and round the plant rea shall be ept well within ne standards by roviding noise ontrol measures ncluding acoustic oods, silencers, nclosures etc.	is being appointe - 5948 , The anal detail of The max	regul d is M issue lysis r analy cimum	arly monitore I/s. Royal Env date- 01/06 reports were sis report of I values durin	noise level cond ad at regular i vironment Aud /2019 and vat below the limit Monitoring rep and the compliant standards. Pat	interval fo iting & Co ilid till 31 ts of qua ort is atta nce perio	or ensu onsultar /05/2 0 Intizatio ached ir od confii	ring the ncy Serv 021. n and w n Annex rm that	ice, Sura vithin the ure- VI at no tin	ance. The f at NABL Ap e permissib II. ne the emi	testing lab proved TC ble limit. A
or nc Th nc	n all sources of oise generation. he ambient oise levels shall	Noise le	evel n Sr.	-	ata (Day Tim	e) Permis	sible	Values	for the n	eriod April	
	onform to the tandards		No.	Loc	cation	Limits,	dBA		19- Sep		l
•	rescribed under	F				7	-	Min.	Max.	Avg.	1
	nvironment	F	1	Near Main	nguest house	7	5	52.6	65.3	58.8	1
	Protection) Act, 986 Rules,1989	F	2	Nea	r TSDF	7	5	58.2	65.9	62.7	1
			3	At Wye	th Colony	7:	5	40.2	62.1	55.6	

	viz. 75 dBA (day		4	Gram Panchayat Hall	75	60.1	70.2	64.4	
	time) and 70 dBA (night time).		5	Near Main Office North site	75	60.2	69.2	64.7	_
			6	ETP North site	75	59.3	70.6	65.4	
			7	Opposite shed D	75	57.6	68.9	63.0	
			8	ETP West site	75	64.3	69.3	67.5	
			9	Water tank Haria road	75	45.3	67.2	58.9	
			10	Near 66KVA substation	75	62.4	68.1	64.9	
		Noise	level n Sr.	nonitoring data (Night Tir	me) Permissible	Valu	es for the	•]
			No.	Location	Limits, dBA		April 19 Sept 19		
					70	Min.	Max.	Avg.	1
			1	Near Main guest house	70	49.2	55.5	51.5	
			2	Near TSDF	70	52.8	61.3	58.3	
			3	At Wyeth Colony	70	35.4	53.2	46.9	
			4	Gram Panchayat Hall	70	52.7	58.6	55.7	
			5	Near Main Office North site	70	54.5	64.2	58.5	
			6	ETP North site	70	52.8	60.6	56.6	
			7	Opposite shed D	70	52.1	60.2	55.6	
			8	ETP West site	70	55.4	60.3	57.7	_
			9	Water tank Haria road	70	38.4	57.1	52.4	
			10	Near 66KVA substation	70	54.8	58.3	56.9	
vi.	The Company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and to utilize the same for process requirements.	Roof and We I harv susp harv Besi cons addi roof Tota Capa	used as have all rest rain bended i rested w des this struct te tional fr top wat I No. of acity of	a water from Coal sheds and make up water for cooling to ready two numbers of check n water in monsoon season matter as we have pumped matter. We are creating fa vater with zero river drawls of , there are three check dam emporary sand bag dam on ee flowing rain water in rive ter is used to recharge bore Pond: 2 Nos. Pond: (1 Nos. x 10000 KL) & as harvest 9.63 lac KL rain w	tower. k dams in natur n after giving l these rain wat cility/ capacity of water during s and pumping f top of dam to r Par. In additic wells. k (1 Nos. x 2000	ral storm necessar to cater the rainy facility to wards th on to abo	n water o y pre-tri ariflocula our cor odays. o harvest ne end o	drains to o eatment tor units nsumption rain wate f monsoo	collect and to remove to remove with rain er. We also n to store

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

vii.	Training shall be	Complie	ed.					
• • • •	imparted to all							
	employees on	Annual t	raining plan are being carried out eve	ry calendar year froi	m January to Decen	nber for		
	safety and health	safety p	urpose.					
	aspects of							
	chemicals	Compan	y is providing Training which cover a	all relevant workplac	ce policies, procedu	res and		
	handling. Pre-	practice	s to ensure that staff have the approp	riate skills and know	ledge to perform the	eir work		
	employment and	safety a	nd according to the legislative requi	rements and the de	partments and wor	k place		
	routine periodical	procedu	res.			-		
	medical							
	examinations for	All Empl	oyees and others have a duty to com	ply with instructions	given for workplace	e health		
	all employees	and safe	ty.					
	shall be							
	undertaken on	Employe	e training which generally include:					
	regular basis.							
	Training to all		First aid training					
	employees on		Fire fighting training – Use of Fire Hydr	rant /Extinguisher				
	handling of		Handling of Compressed Gas Cylinder					
	chemicals shall be		Work Permit System, Use of Spill Kit					
	imparted.		Handling of Solvents					
	imparteu.		Operation of ETP &MEE					
			Handling of Hazardous waste					
		•	Handling of Biomedical waste					
			Scrap yard management					
		•	• 111 – A training as per factory Act					
		•	5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
			reporting, lock down, evacuation and medical emergency procedures, mock drill.					
		•						
			manufacturing process & safety and health aspect of chemical handling.					
		•	Conducted OSHAS & EMS Programme.					
		•	Hygiene, Stress management & skill de	evelopment.				
		-						
		Iraining	records, sample certificates of training	report are attached	in Annexure- IX.			
		SN	Name of Training	No of	Date			
				Participants				
		1.	First aid training	30,	31.5.2019,			
				32	27.8.2018			
		2.	Fire fighting training – Use of Fire	34,	12.01.2019,			
			Hydrant / Extinguisher	38,	12.03.2019,			
				15,	15.03.2019,			
				20, 25	11.07.2019, 23.09.2019			
		3.	Handling of Compressed Gas Cylinder	18	30.8.2019			
		5.	nanuling of compressed das cylinder	10	20.0.2013			

viii	The company shall also comply with all the	report s	Handling o Use of PPE Near Miss Safety in W Respirator programm MSDS ied. ance to all e submitted to	of ETP & MEE f Hazardous waste/ & Accident Reportir Velding & Cutting y protective equipm e nvironmental prot	ent ection me led as bel	ow:-	· · ·	9, 9,
	environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and risk mitigation measures relating to the project shall be implemented.	S.N 1. 2.	Potential Impact Air emission	Action to be followed Adequate stack height APCM-Multi Cyclone& Scrubber is provided as APCM AAQ within the project premises and nearby habitations to be monitored. All vehicles to be PUC certificate. Noise generating from operation of boiler, cooling towers &plant & M/c area to be monitored.	m SPM, RSP	e level	Frequency of monitoring Monthly through external agency NABL Approved. Monthly through external agency NABL Approved.	Status of Compliance Stack and APCM Details are provided in EC Compliance Point No.4 of Conditions. Quality of gaseous emission and AAQ isas per Annexure-IV. Carried out at the periphery of whole plant premises as Annexure- VIII.

	СОМР	LIANCE OF	ENVIRONMENTA	L CLEARANCE MINISTRY	<u>''S LETTER</u>					
	NO			-IA-II (I), DATED: 11/02	2/2019					
Fynansion	<u>Period – APRIL 2019 TO SEPTEMBER 2019</u> Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,									
	3.	Waste	Compliance to	pH, TSS,TDS,COD,BOD,	Monthly	Discharge				
		water discharge	the wastewater discharge standards complete effluent treatment Plant- Primary+ Secondary & MEE, ZLD is achieved.	oil & Grease	through external agency NABL Approved.	effluent is analyzed on daily basis.				
	4.	Solid/ Haz Waste	Check compliance of HWM rules.	Quantity and quality monitoring	Periodically	Details are provided in EC Compliance Point No.10 of specific Conditions.				
	5.	Non routine events and accidental release.	Plant drawn, considering likely emergencies and steps required to prevent/limit consequences.	Mock drills and records of the same.	Periodic during process activities.	Every year 4 nos. mock drills carried out in the premise on rotational basis covering all plants.				
	6.	Green Belts	Vegetation, green belt development	More than 50,000 Trees /Year	Once a year	Green belt area is about 36% land area. Total area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt				

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

ix.	The company	Compli	ed.							
	shall undertake all relevant measures for improving the socio-economic conditions of the	Company has embarked Budgetary provision of fund 375.0 lacs for period April 2019 to September 2019 for CSR activities. Till date company has expenditure of 216.88 lacs for CSR activities as per conditions mentioned in the companies CSR (Corporate Social Responsibility Policy) Rules, 2014 and its amendments from time to time in a letter and spirit.								
	surrounding area. CER activities shall be	CSR projects (April 2019 to September 2019):								
	undertaken by involving local villages and administration.	S.N	Description	Location	Final Implementing Agency	Budgetfrom April `19 to September `19	Expenditure			
		1	Enhancement of education practices in Kalyani Shala	Atul, Valsad (Gujarat)	AFT Atul Kelavani Mandal	37.50	26.92			
		2	Imparting training to women to become skilled elementary school teachers (Adhyapika) to improve rural education	Valsad (Gujarat)	AFT ARDF	30.00	28.97			
		3	Promoting socio cultural and extracurricular activities for school children	Atul, Valsad (Gujarat)	AFT ARDF	15.00	11.30			
		4	Providing science and maths training to rural teachers	Ahmedabad (Gujarat)	AFT Vikram A Sarabhai Community Science centre	3.00	3.00			
		5	Women empowerment initiatives	Atul, Valsad (Gujarat)	AFT ARDF	6.00	5.37			
		6	Beekeeping training to farmers to earn livelihood	Dhrampur Kaparad, Valsad (Gujarat)	AFT Under the Mango Tree	5.50	1.40			
		7	Providing health services through health camps	Villages of Valsad (Gujarat)	AFT ARDF	3.00	3.06			
		8	Support to build city scan centre in a hospital	Atul, Valsad (Gujarat)	AFT Kasturba Hospital	10.00	10.00			

		9	Contribution for advance treatment of Cancer patients	Karamsad (Gujarat)	AFT Charuatar ArogyaMandal	5.00	5.00
		10	Assistance to Needy People	Villages of Valsad (Gujarat)	ARDF	3.00	2.53
		11	Up liftment of salt pan worker	Kharaghoda, Surendranagar (Gujarat)	AFT ARDF Gantar	5.00	3.60
		12	Promotion of Sports	Villages of Valsad (Gujarat)	ARDF	12.00	11.40
		13	Enhancement of rural infrastructure	Villages of Valsad (Gujarat)	AFT ARDF	10.00	6.10
		14	Tribal Home stay project	Kevadiya (Gujarat)	AFT	100.00	58.05
		15	Initiative to celebrate 125 th birth anniversary of Sri Kasturbhai Lalbhai (Founder)	Valsad (Gujarat)	AFT	120.00	30.18
		16	Administrative expense			10.00	10.00
			Total			375.00	216.88
х.	The company shall undertake eco- developmental measures including community welfare measures in the project area for the Overall improvement of the environment.	Complied. Company has embarked Budgetary provision of fund 375.0 lacs for period April 2019 to September 2019 for CSR activities. Till date company has expenditure of 216.88 lacs for CSR activities as per conditions mentioned in the companies CSR (Corporate Social Responsibility Policy) Rules, 2014 and its amendments from time to time in a letter and spirit. CSR projects (April 2019 to September 2019):					

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> on of Chemicals Manufasturing Unit By M/c. Atul Ltd. Valsad, Tobsil & Dis

S.N	Description	Location	Final Implementing Agency	Budget from April`19 to September `19	Expenditu e
1	Enhancement of education practices in Kalyani Shala	Atul, Valsad (Gujarat)	AFT Atul Kelavani Mandal	37.50	26.92
2	Imparting Training to Women to become skilled elementary school teachers (Adhyapika) to improve rural education	Valsad (Gujarat)	AFT ARDF	30.00	28.97
3	Promoting socio cultural and extracurricular activities for school children	Atul, Valsad (Gujarat)	AFT ARDF	15.00	11.30
4	Providing science and maths training to rural teachers	Ahmedabad (Gujarat)	AFT Vikram A Sarabhai Community Science centre	3.00	3.00
5	Women empowerment initiatives	Atul, Valsad (Gujarat)	AFT ARDF	6.00	5.37
6	Beekeeping training to farmers to earn livelihood	Dhrampur Kaparad,Valsa d (Gujarat)	AFT Under the Mango Tree	5.50	1.40
7	Providing health services through health camps	Villages of Valsad (Gujarat)	AFT ARDF	3.00	3.06
8	Support to build city scan centre in a hospital	Atul, Valsad (Gujarat)	AFT Kasturba Hospital	10.00	10.00
9	Contribution for advance treatment of Cancer patients	Karamsad (Gujarat)	AFT CharuatarArogyaMand al	5.00	5.00
10	Assistance to Needy People	Villages of Valsad (Gujarat)	ARDF	3.00	2.53
11	Up liftment of salt pan worker	Kharaghoda, Surendranaga r (Gujarat)	AFT ARDF Gantar	5.00	3.60
12	Promotion of Sports	Villages of Valsad (Gujarat)	ARDF	12.00	11.40

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019 Period – APRIL 2019 TO SEPTEMBER 2019 Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

		13	Enhancement of rural infrastructure	Villages of Valsad (Gujarat)	AFT ARDF	10.00	6.10
		14	Tribal Home stay project	Kevadiya (Gujarat)	AFT	100.00	58.05
		15	Initiative to celebrate 125 th birth anniversary of Sri KasturbhaiLalbh ai (Founder)	Valsad (Gujarat)	AFT	120.00	30.18
		16	Administrative expense			10.00	10.00
			Total			375.00	216.88
	A separate Environmental Management Cell equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	Analyz have a	rate Environmental er, TOC Analyzer, pł ppointed M/s. Pollu 8/05/2019 and va	H Meter, TDS Met con Laboratories lid till 27/05/20 ganogram c Chaim Pres HE VP-Lega Manuger Safety	Assurance SHE	Environmental Approved TC	Monitoring we - 5945 , issue
xii.	Thecompanyshallearmarksufficientfundstowardscapitalcostandrecurring cost perannumtoimplementthe	the ent control	easures are impleme tire legal requireme	nt stipulated by S	budget is being allocat SPCB, CPCB & MoEF ap enditure is given in	part from upke	ep of pollution

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u> ion of Chemicale Manufacturing Unit By M/c. Atul Ltd. Valsad, Tobail & Dio

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

	Adequate fund embarked for EMP, Fy.2016-2017:	
--	---	--

S.N	Parameter	Capital Cost per annum (Rs. in lacs) 2016-17	Recurring Cost per annum (Rs. in lacs) 2016-17
1	Air Pollution Control	199.01	-
2	Liquid Pollution Control	389.70	2573
3	Environmental Monitoring and Management	-	37
4	Solid waste Disposal	-	283
5	Occupational health	-	15
6	Green belt	-	9
Tota		588.71	2917

Adequate fund embarked for EMP, Fy.2017-2018:

S.N	Parameter	Capital Cost per annum (Rs. in Iacs) 2017-18	Recurring Cost per annum (Rs. in lacs) 2017-18
1	Air Pollution Control	12.15	-
2	Liquid Pollution Control	203.98	1802
3	Environmental Monitoring and Management	-	93
4	Solid waste Disposal	-	485
5	Occupational health	-	20
6	Green belt	-	10
Total		216.13	2410

Adequate fund embarked for EMP, Fy. 2018-2019:

S.N.	Parameter	Capital Cost per annum (Rs. in lacs) 2018-19	Recurring Cost per annum (Rs. in lacs) 2018-19
1	Air Pollution Control	42.93	-
2	Liquid Pollution Control	134.21	3439.35
3	Environmental Monitoring and Management	-	60.9
4	Solid waste Disposal	-	426.1
5	Occupational health	-	25
6	Green belt	5.44	4.56
Total		182.58	3955.91

Complied.

A copy of the

shall be sent by

Parishad/Municip

letter

project

to

Zilla

clearance

proponent

concerned Panchayat

the

xiii

.

We have informed the public that the project has been accorded environmental clearance by the EAC, MoEF&CC Delhi and that the copies of the clearance letter are available with the GPCB and also be seen at website of EAC/GPCB.

Expansion of ((
conditions stipulated by the Ministry of Environment, Forest and Climate Change as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so earmarked for environment management/ pollution control measures shall not be diverted for any other purpose.	

NGO, if any, fro whom suggestions/ representations any, w received wh	y cal m , if ere the form the form the form the form the form the form the form the form the form form form form form form form form	virunministal Chearance (BC) No. J-12011/108/2018-44-003 dated 11.02.2019	222404	<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	Man Angeland State
also submit monthly reports the status compliance of the stipulated Environmental Clearance conditions including result monitor data (both hard copies well as by e- mail) to respective Regional Office MoEF&CC, respective Zo Office of CP and SPCB. A co of Environment Clearance and s monthly compliance stat report shall posted on	hall six on of submitted 2016 to 20 sof ed in as the of the nal CB py htal six	ly submit the half-year onmental actions plans of the 6 monthly complian 19 & same is being upo SN EC Complian	are monitored by ce reports to the	y the authority time to authority for all six n a.	

The environmental Complied. xv. statement for The Env. Statement (Form-V) for each financial year ending 31stMarch is being submitted to each financial State Pollution Control Board (GPCB) every year time to time on XGN portal as well as hard copy year ending 31st submission. We have also submitted six monthly EC Compliance report periodically in which said March in Form-V information were updated time to time. as is mandated shall be submitted to the concerned State [Form V] Pollution Control (See Rule 14) Board as prescribed under Environmental Statement for the financial year ending the 31st March 2019 the Environment Part - A (Protection) Rules, 1986, as amended (I) Name and address of the owner/occupier of the industry operation or process. Subsequently, Mr. B. N. Mohanan Occupier, Atul Limited, shall also be put Atul - 396 020, Dist.: Valsad on the website of the company (ii) Industry category Primary (STC code) Secondary (STC code) along with the Large scale Chemical Manufacturing Industry status of of compliance (iii) Production Capacity - Please refer Annexure - 1 environmental clearance (iv) Year of establishment : 1952 conditions and (v) Date of last environmental Statement submitted: Sept. 2018. shall also be sent to the respective Part - B Regional Offices of MoEF&CC by e-Water and Raw Material Consumption mail. (1) Water consumption m³/day Process : 7427 kl/day : 1751 kl/day Cooling Domestic : 474 kl/day Name of products Process water consumption per unit of product output Sr_No. During the previous During the current financial year financial year (1)(2) 5.08 kl/mt 4.7 kl/mt 1. Agro products and Inorganic chemical 83.2 kl/mt 70.7 kl/mt 2. Colours 3. Pharma & Polymer 5.04 kl/mt 4.3 kl/mt (2) Raw material consumption Consumption of raw material per unit of output *Name of Name of products During the current raw During the previous materials financial year financial year Please refer Annexure - 2 * Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

Pollutant s Quantity of pollutants Concentrations of pollutants Percentage of variation from prescribed standards with reasons (a)Water COD : 2092 kg/day (235 mg/lit) NiL (b)Arr SOX : 16 Mg/M ² NiL (b)Arr SOX : 16 Mg/M ² NiL Port - D Hazardous Wastes Indicating from the previous (as specified under Hazardous Wastes (Management & Handling) Rules, 1989 Hazardous Wastes During the previous Hazardous Wastes 2237219 1705663 1705663 From process 2237219 1705663 1841204 From pollution control facilities 8571245 9481204 1000000000 Including MEE solt) Part - E Solid Waste During the previous During the current financial year (a)(From process (Fly Ash) 74533859 68353710 1000000000000000000000000000000000000	All and the second second	(Po	arameter a	is specified in the	consent	issued)	
(a)Water COD: 2092 kg/day (235 mg/lt) NIL (b)Air SOX : 18 Mg/M* Port - D Hazardous Wastes (as specified under Hazardous Wastes (Management & Handling) Rules, 1989 Hazardous Wastes During the gravious During the current From process 2237219 1705663 From pollution control facilities 8571245 9481204 Including MEE solt) Part - E Solid Wastes Solid Wastes During the previous During the previous During the current financial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility 912200 Nil (c)(From pollution control facility 912200 Nil (c) 2 Sold 75446059 68353710 Within the unit Within the unit <td c<="" th=""><th></th><th>pollutants discharged</th><th>in</th><th>pollutants discharges</th><th></th><th>cribed standards with</th></td>	<th></th> <th>pollutants discharged</th> <th>in</th> <th>pollutants discharges</th> <th></th> <th>cribed standards with</th>		pollutants discharged	in	pollutants discharges		cribed standards with
Port - D Hazardous Wastes (as specified under Hazardous Wostes (Management & Handling) Rules, 1989) Hazardous Wastes During the previous During the current from process 2237219 1705663 From process 2237219 1705663 From process 2237219 1705663 From pollution control facilities 8571245 9481204 (inclucing MEE solt) Part - E Solid Wastes During the previous During the current financial year financial year (a) From process (Fly Ash) 74533859 68353710 (b) From pollution control facility (c) Quantity recycled or re-utilised 912200 Nii (a) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar watel as solid wastes and indicate disposal practice adopted for both these categor wastes. Part - G Part - G	(b)Air	COD : 2092 kg SOx : 18 Mg/M	yday (235 1ª			NIL	
(as specified under Hazardous Wastes (Management & Handling) Rules, 1989 Hozardous Wastes During the previous During the current Financial year From process 2237219 1705663 From pollution control facilites 8571245 9481204 (including MEE solt) Part - E Solid Wastes During the previous During the current financial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil within the unit (2) Sold 75446059 68353710 (3) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categor wastes. Please Refer Annexure - 3 Part - G Impact of the pollution abotement measures taken on conservation of notur and on the cost of production.				Port - D			
Hozardous Wastes Total Quantity (kg) During the previous During the current From process 2237219 From pollution control facilities 8571245 Solid Wastes Total Quantity (kg) Including MEE solt) Part - E Solid Wastes Total Quantity (kg) Including MEE solt) Part - E Solid Wastes Total Quantity (kg) Innoncial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil within the unit (2) Sold 75446059 68353710 (3) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these catego wastes. Please Refer Annexure - 3 Part - G Implication abotement measures taken on conservation of naturand on the cost of production.							
During the previous During the current From process From process 2237219 1705663 From pollution control facilites 8571245 9481204 (inclucing MEE solt) Part - E Solid Waste Part - E Solid Wastes Total Quantity (kg) Quantity recycled or re-utilised 912200 Nil (a) From pollution control facility 912200 Nil (b) From pollution control facility 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil within the unit 75446059 68353710 (3) Disposed Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these catego wastes. Please Refer Annexure - 3		A A A A A A A A A A A A A A A A A A A					
From pollution control facilities 8571245 9481204 Including MEE solt) Part - E Solid Wastes Total Quantity (kg) Quining the previous During the current financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil (d) From pollution control facility (c) (2) Sold 75446059 68353710 (d) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these catego wastes. Please Refer Annexure - 3 Part - G Impact of the pollution abatement measures taken on conservation of naturand on the cost of production.	Hoz	zardaus Wastes		During the previo	ous	During the current	
Part - E Solid Wastes Total Quantity (kg) During the previous During the current financial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 (2) Sold 75446059 68353710 (3) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categor wastes. Please Refer Annexure - 3 Part - G Impact of the pollution abatement measures taken on conservation of naturant and on the cost of production.				37219	17 9	05663 481204	
Solid Wastes Total Quantity (kg) During the previous During the current financial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil within the unit (2) Sold 75446059 68353710 (3) Disposed Part - F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categories. Please Refer Annexure - 3				- Second	1		
Solid Wastes Total Quantity (kg) During the previous During the current financial year financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (2) Sold 75446059 68353710 (3) Dispased Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categorizates. Please Refer Annexure - 3 Part – G Impact of the pollution abatement measures taken on conservation of naturation on the cost of production.							
During the previous During the current financial year (a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil (c) (1) Quantity recycled or re-utilised 912200 Nil (2) Sold 75446059 68353710 (3) Disposed Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these catego wastes. Please Refer Annexure - 3 Part – G Impact of the pollution abotement measures taken on conservation of naturant on the cost of production.			-				
(a)From process (Fly Ash) 74533859 68353710 (b)From pollution control facility (c) (1) Quantity recycled or re-utilised 912200 Nill (c) (1) Quantity recycled or re-utilised 912200 Nill (c) (2) Sold 75446059 68353710 (3) Disposed Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these cated wastes. Please Refer Annexure - 3 Part – G Impact of the pollution abotement measures taken on conservation of naturation of the cost of production.		Solid Wastes		During the pr	evious	During the current	
(c) (1) Quantity recycled or re-utilised 912200 Nil within the unit (2) Sold 75446059 68353710 (3) Disposed Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categories wastes. Please Refer Annexure - 3 Part – G Impact of the pollution abatement measures taken on conservation of natur and on the cost of production.	(a)From pr	rocess (Fly Ash)		74533859	68	3353710	
(3) Disposed Part – F Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categories. Please Refer Annexure - 3 Part – G Impact of the pollution abatement measures taken on conservation of natur and on the cost of production.	(c) (1) Qua with	intity recycled or an the unit					
Part – F Nease specify the characterisation (in terms of composition and quantum) of hazar vell as solid wastes and indicate disposal practice adopted for both these categ vastes. Please Refer Annexure - 3 Part – G Impact of the pollution abatement measures taken on conservation of nature ad on the cost of production.	100 million 100			10440000	0	0333/10	
Please specify the characterisation (in terms of composition and quantum) of hazar well as solid wastes and indicate disposal practice adopted for both these categ wastes. Please Refer Annexure - 3 Part – G Impact of the pollution abotement measures taken on conservation of natur and on the cost of production.	(3) Disp	0,560					
well as solid wastes and indicate disposal practice adopted for both these categories. Please Refer Annexure - 3 Part - G Impact of the pollution abatement measures taken on conservation of nature and on the cost of production.				Part - F			
Impact of the pollution abatement measures taken on conservation of nature and on the cost of production.	well as sol wastes.	lid wastes and	Indicate (in terms of comp disposal practice	adopted	ind quantum) of haza I for both these cate	
and on the cost of production.				Part - G			
	and on the	cost of product	ion.	ment measures	taken or	conservation of nati	
Part – H Additional measures/investment proposal for environmental protection a pollution, prevention of pollution. Please Refer Annexure - 5	sollution, pr	revention of pol	lution.	nent proposal fo	or enviro		

 a. Company has updated its EMS system as per ISO 14001-201 b. Above ground pipe line network installation job for transfer plants to ETP has been initiated. c. In plant compete treatment for effluent has been initiated in a d. We have installed ATFD and DEE in downstream of MEE to plant. e. Started recovery of various recoverable materials like Copp mix dyes, PTSA, ammonia, etc. from the effluent streams. f. Company has segregated various streams like highly acidic, streams and started recovery from the same. g. We have started sending ofmost all our hazardous wast alternative fuel from them to reduce the carbon footprint. h. Most of the stacks and ETP outlet are being continuous monitoring system and connected to GPCB and CPCB office. i. Scrubbing facility has been updated in Choloro sulfanic acid y scrubber is installed in addition to water scrubber for furth from CSA vent. j. Tank farm of Sulphuric acid, 25% oleum, 65% oleum, liq, SO recover losses, in case of emergency. k. Scrubber system upgraded at Epoxy Plant. j. Project for caustic transfer through pipe line from East to No road safety, operational safety, health safety. m. Underground Benzene storage facility has been upgr containment. 	for transferring effl nitiated in one of our o of MEE to make it is like Copper hydro treams. ghly acidic, highly co- rdous waste to cel otprint. continuously moni- PCB office. Ifonic acid plant sta- er for further reduc trum, liq. SO3, CSA h East to North is cor been upgraded w Products Consee MT/M S50 250 250
Annexure : 1: list of Products Product Azo dyes Sulfur Black Sulfur Dyes range Napithal range	Conse MT/M 550 250 25
Containment. Annexure : 1: list of Products Product Azo dyes Sulfur Black Sulfur Dyes range Napithol range	Products Conse MT/M 550 250 250
Azo dyes Suffur Black Suffur Dyes range Naphthol range	MT/M 550 250 25
Suffur Black Suffur Dyes range Naphthol range	550 250 25
Sulfur Dyes range Naphthol range	25
Naphthol range	
	75
Fast Color Bases	40
Disperse dyes	118,5
Optical Brighteners	10
Reactive Dyes Vat dyes	1273
Caustic soda/potash & sodium sulfide	1800
Liquid Chlorine (Hcl	1600
Carbamate group of Agrochemicals	33.3
Diurón	20
Trichla Carbon	8.3
Cartap Hcl Carbendazim	20.9
Herbicides (2.4-D & related products)	2170
MCPA	
Pyridine based Insecticides & herbicides chemical Imidaclophd	25
Triazole based Fungiside	1.67
Pyrethroides	10
Sulphonyl Urea	25
Glyphysate	50
Isoprothiolane Fiproni	8,3
Formulations	200
Buprofesin	
Imazethpyr	-4
Kresakim Methyl	4
Fenoxoprop	4 1.83 2.08
Cyhalofop Mabendazole	4 1.83 2.08 0.83
Tolbutamide	4 1.83 2.08 0.83 0.83
Quiniodochlor	4 1.83 2.08 0.83
Bulk Drugs & Intermediates	4 1.83 2.08 0.83 0.83 2.83 2.5 15
	4 1.83 2.08 0.83 0.83 2 2.5 15 9.6
Dechlofenac sadium / potassium	4 1.83 2.08 0.83 2 2.5 15 9.6 25
Dechlofenac sadium / potassium Atenolal	4 1.83 2.08 0.83 0.83 2 2.5 15 9.6 2.5 2.5 1,7
Dechlofenac sadium / potassium	4 1.83 2.08 0.83 2 2.5 15 9.6 25

Para hydroxy phenyl acetamide	3
Acyclovir	5.2
Bathenechol	5.2
Pharma Intermediates & Chemicals	300
Epoxy Resin	2500
Vinyl Easter Resins	37.5
Ketone Formaldehyde Resins & Sulphonamide.	20.8
Formaldehyde Resins	
UF/MF/PF/DiCyandiamide Resins	270.9
Polyamide resins	161.7
Anthroquinone, Nophthalene, Benzene Intermediates. (Including Beta – Napthol & BON Acid)	740
Meta hydroxy phenol	460
Carbamite	30
Chlorzaxazone & other related products	5
Agro, Pharma intermediates, Isocyanats & Carbonat Esters, etc.	100
4 Ethyl 2,3 - Diorcopiperazino carbonyl Chloride	3.3
Imino Dibenzyl 5 corbonyl Chloride	0.8
Formaldehyde and base products.	3200
Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts	11550
Sulturic Acid / Oleum / Chlorosulphonic Acid & Salts	A CONTRACT OF A
Sulpha Drug Intermediate	193.8
Acetyl Sulphanilyl Chloride and its derivatives.	1500
Acetanilide	500
Sulpha Methyl Phenazole Sodium	1.1
Pyrazole Base	10.5
Sulphanitic acid	25
Bis Phenol A	416.7
Hexamine	150
Epoxy Intermediates	23.8
Hardener & Auxiliaries	500
Hardener Intermediates	700
Bisphenol S & Intermediate Chemicals	16.6
Sodium Thio sulphate (dry basis)	900
Phosgene	416.667
Total Production	32122.607

Annexure : 2 : List of raw material

Nome	Amount in Tonnes* per month
A CONTRACTOR OF A CONTRACTOR OFTA CONT	16
Aluminium ingots Iron Fillings	50
Alum	40
Aluminium Chloride	40
Anhydrous Ammonia	9
Ammonia gas liquor 25 %(In tanker)	317
Caustic Potash Flakes	75
Caustic Soda Flakes	2623
Caustic soda lye	1218
Caustic Sodia Selution	1325
Chlorine	3822
Chlorosulphonic Acid	250
Hydrochloric Acid (gas)	1000
Hydrochioric Acid 33%	3679
Hydroted Lime	2000
Lime stone powder	1257
Manganese Dioxide	220
Nitric Acid 98%	95
Nitric Acid 60%	50
Oleum 65%	1221
Oleum 25%	140
Phosphoric Acid	50
Potossium Chloride	360
Sodium Chloride	6000
Sadium Thiasulphate	195
Soda Ash	182
Sulphune Acid 98%	2497
Sulphur Powder	1900
Sodium Carbonate	60
Copper chloride	-4
Activated carbon	1
Sulfinate	1
SOC12	2

15% sodium bicarbonate	3
15% H202	28
10% FeSO4	10
Guanidine Nitrate	1
кон	11
Acetanilide	5
Acetic acid	2
Acetic Anhydride	6
Acetonitrile	6
Acetone	3
Aniline oil	4
Anthraquinone	6
Benzene(KL)	66
Bis Phenol A	158
Castor oil (Comm.)	34
Cyonuric Chloride	11
Di Chloro Diphenyl sulphone	10
Dibutyl phthalate	7
Dimethyl Sulphate	14
Dimethyl Formamide (DMF)	34
Dimethyl Amino Dichloro Propane Hydrochloride	
	491
Epichlohydrine	
Formaldehyde	28
Glycerin	24
H-Acid	13
Hexa Hydro Phthalic anhydride	
Methanol (KL)	110
Mono Chloro Acetic Acid	21
Napthalene crude	6(
Phenol	12
Phthalic anhydride	5
Synthetic cresol	5
Tamol MNO	50
Tri ethylene tetramine	1
Toluene	80
Urea	and the second sec
	and the second se
Urea IPA Cresol	23
Urea IPA	23
Urea IPA Cresol CB hyl acetate	23 13 86
Urea IPA Cresol CB hyl acetate MA Tosylate	23 13 86 8 9
Urea IPA Cresol CB hylacetate MA Tosylate yano Pyrazole	23 13 86 8 9 5
Urea IPA Cresol CB hyl acetate MA Tosylate yana Pyrazole hyl acetate	23 13 86 8 9 5 46
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate WIDA	23 13 86 8 9 5 46 69
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate WIDA DA	23 13 86 8 9 5 5 46 69 31
Urea IPA Cresol CB CB MA Tosylate Vano Pyrazole chyl acetate MIDA DA Chloro 5-methyl chloro pyridine	23 13 86 8 9 5 46 69 31 17
Urea IPA Cresol CB chyl acetate MA Tosylate yano Pyrazole chyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide	23 13 86 8 9 5 5 46 69 31 17 9
Urea IPA Cresol CB hyl acetate MA Tosylate yana Pyrazole hyl acetate WIDA DA Chiloro 5-methyl chiloro pyridine odium Methoxide Tisopropyl malonate	23 13 86 8 9 5 46 69 31 17 9 8
Urea IPA Cresol CB chyl acetate MA Tosylate yano Pyrazole chyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide	23 13 86 8 9 5 46 69 31 17 9 8 8 4
Urea IPA Cresol CB hyl acetate MA Tosylate yana Pyrazole hyl acetate WIDA DA Chiloro 5-methyl chiloro pyridine odium Methoxide Tisopropyl malonate	23 13 86 8 9 5 46 69 31 17 9 8 8 4 7
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine oodium Methoxide I isopropyl malonate S2	23 13 86 8 9 5 46 69 31 17 9 8 8 4
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I sopropyl malonate S2 hylene Dibromide	23 13 86 8 9 5 46 69 31 17 9 8 8 4 7
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chioro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 hylene Dibromide Hexane	23 13 86 8 9 5 46 69 31 17 9 8 8 4 7 17
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 hylene Dibromide Hexane - cresol	23 13 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503
Urea IPA Cresol CB cb cb cb cb cb cb cb cb cb cb	23 13 13 86 8 9 5 46 69 31 17 9 8 8 4 7 17 503 376 1
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 thylene Dibromide Hexane - cresol D2CI2 PS CF	23 13 86 8 9 5 46 69 31 17 9 8 8 4 4 7 17 17 503 376 1 13
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide Isopropyl molonate S2 hylene Dibromide Hexane -cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine	23 13 86 8 9 5 46 69 31 17 9 8 8 4 7 7 17 503 376 1 13 13
Urea IPA Cresol CB chyl acetate MA Tosylate yano Pyrazole chyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide risopropyl malonate S2 chylene Dibromide Hexane - cresol D2Cl2 PS CF Amino 4-6-Dimethoxy pyridine ioxane	23 13 86 8 9 5 46 69 31 17 9 8 8 4 7 17 503 376 1 13 13 13 45
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chioro 5-methyl chioro pyridine odium Methoxide i isopropyl malonate S2 hylene Dibromide Hexane -cresol D2Cl2 PS CF Amino 4-6-Dimethoxy pyridine ioxane -N Dimethyl aniline	23 13 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503 376 1 1 3 13 13 13 15
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole chyl acetate MIDA DA Chiloro 5-methyl chiloro pyridine odium Methoxide I isopropyl malonate S2 chylene Dibromide Hexane -cresol D2Cl2 PS CF Amino 4-6-Dimethoxy pyridine loxane -N Dimethyl aniline NA	23 13 13 13 13 13 13 146 69 31 17 9 8 4 4 7 17 503 376 1 13 13 13 15 15
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I sopropyl malonate S2 hylene Dibromide Hexane -cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane -N Dimethyl aniline NA BU	23 13 13 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503 376 1 13 13 45 15 15 9 9
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I sopropyl malonate S2 hylene Dibromide Hexane - cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane - N Dimethyl aniline NA BU	23 13 13 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503 376 1 13 13 45 15 9 2
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I sopropyl malonate S2 hylene Dibromide Hexane -cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane -N Dimethyl aniline NA BU	230 133 86 8 9 5 46 69 31 17 9 8 8 4 4 7 17 503 376 1 1 376 1 1 376 1 1 376 1 5 376 1 1 5 9 9 9
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I sopropyl malonate S2 hylene Dibromide Hexane - cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane - N Dimethyl aniline NA BU	230 133 86 8 9 5 46 69 31 17 9 8 8 4 7 7 17 503 376 1 1 13 13 13 13 45 15 15 9 9 2
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole chyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 hylene Dibromide Hexane -cresol D2Cl2 PS CF Amino 4-6-Dimethoxy pyridine ioxane -N Dimethyl aniline NA BU EE hionyl Chloride -phenoxy benzaldehyde	230 133 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503 376 1 17 503 376 1 13 13 13 13 13 13 13 13 9 9 2 1
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide Lisopropyl malonate S2 hylene Dibromide Hexane -cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine loxane -N Dimethyl aniline NA BU FE mionyl Chloride -phenoxy benzaldehyde	23 13 13 13 13 13 13 13 146 69 31 17 9 8 4 4 7 17 503 376 1 13 13 13 45 15 9 2 1 2 1 2
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 thylene Dibromide Hexane - cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane - N Dimethyl aniline NA BU FE nionyl Chloride - phenoxy benzaldehyde rel: pol / Lignite	230 133 133 134 135 135 135 135 137 137 137 137 137 137 13 133 133 133
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide Lisopropyl malonate S2 hylene Dibromide Hexane -cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine loxane -N Dimethyl aniline NA BU FE mionyl Chloride -phenoxy benzaldehyde	230 133 86 8 9 5 46 69 31 17 9 8 8 4 4 7 17 503 376 1 1 13 13 13 13 45 15 15 9 9 2 1 1 2
Urea IPA Cresol CB chyl acetate MA Tosylate yana Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide I isopropyl malonate S2 thylene Dibromide Hexane - cresol D2CI2 PS CF Amino 4-6-Dimethoxy pyridine ioxane - N Dimethyl aniline NA BU FE nionyl Chloride - phenoxy benzaldehyde rel: pol / Lignite	230 13: 86 8 9 5 46 69 31 17 9 8 4 4 7 17 503 376 1 13 13 45 15 15 9 2 1 2 46925
Urea IPA Cresol CB hyl acetate MA Tosylate yano Pyrazole hyl acetate MIDA DA Chloro 5-methyl chloro pyridine odium Methoxide Isopropyl molonate S2 hylene Dibromide Hexane -cresol D2Cl2 PS CF Amino 4-6-Dimethoxy pyridine ioxane -N Dimethyl aniline NA BU FE mionyl Chloride -phenoxy benzaldehyde test Dal (Ki)	8 9 5 46 69 31 17 9 8 4 7 17 503 376 1 13 13 15 9 2 1 2 46925 640

4		1	-	
Description of waste	Physical form	Calorific Value Cal / gms	Authorized Quantity MT/M	Natur compi
Graphite granules from	Solid	Similar to Carbon	0.0417	Inorge
decomposer Sludge from recycle unit,ground floor & scok filter	Solid	No Calorific Value	0,014	lhorge
Sludge from Demercurisation Plant	Semi Solid	Nil	1	Inorge
Membranes	Salid	19	6	Polyfli
Waste Resin,	Solid	1	0.05	Polyci Polyrr
Sulfurised Carbon.	Solid	6000	0.003	Carbo produ
Activated Carbon.	Solid	6000	0.0104	Carbo produ
Brine parification sludge,	Sludge	No Calorific Value	2.42.5	Inorge e.g. Ci
Sulphur sludge.		5000	5.83	Inorge and S
Hot Gas filter Ash. Bottom Sludge ofter recovery of	Solid Solid	No calorific Value 5000	0.02	thorge Inorge
Sulphur Sludge Waste Catalyst,	Solid	No caloritic Value	0.083	Inorge
Spent Solvents,	-		5	Non F Solver
OCBC / OCT distillation residue,	Visc. Liq.	8300	154.042	Polym
waste residue Bulk Intermediate (meta budge a stand L/Tar)	Solid	-	15	10-12 benze
meta hydroxy phenol) (Tar). Waste residue (from resorcino)	Solid	×	15	-
Urea Formaldehyde ^p olymer	Solid	3500	0.25	Organ
Sludge containing higheramino	Tor	5200	0.417	Polym
compound, Filter cake of Epoxy resins with	Semi Solid	3200	0.833	amine Polyn
resin contamination	THE Y SHE R.	11 T T T T T T T T T T T T T T T T T T	Contraction of the same	comp
Enory Resin (Eiter Cake with	Solid	3200	130.29	
Epoxy Resin (Filter Cake with resin contamination). Aluminium Hydroxide,	Solid	3200 No calorific Value	130.29 15.417	Polyn comp Mostl
resin contamination). Aluminium Hydroxide. Iron sludge. Brass residue,	Solid Solid Solid	No calorific Value	15.417 80 0.667	Polym comp Mostly Mostly Iran, oxide Mostly Copper & Iran.
resin contaminati <u>on).</u> Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue,	Solid	No calorific Value	15.417 80 0.667 8.67	Polym comp Mostly Mostly Iran, oxide Mostly Copper & Iran. Polymeric aromatic. Organics.
resin contamination), Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Dorco / filter and sludge, Dust (Agro plant)	Solid Solid Solid Tar Solid Solid Solid	No calorific Value No calorific Value No calorific Value 6500	15.417 80 0.667 8.67 2.083 3	Polym comp Mostly Mostly Iran, oxide Mastly Copper & Iran. Polymeric aramatic Organics. Mainly Carbon. Mixture of Dust, Rust & Spillage chemicals
resin contamination), Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Dorco / filter aid sludge,	Solid Solid Solid Tar Solid	No calorific Value No calorific Value No calorific Value 6500	80 0.667 8.67 2.083	Polym comp Mostly Mostly Mostly Iran, oxide Mostly Capper & Iran, Polymeric aramatic, Organics, Mainly Carbon, Mixture of Dust, Rust & Spillage chemicals Water, Iran Specific gravity 1.1557
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Darco / filter aid sludge, Dust (Agro plant) Iron Residue,	Solid Solid Solid Tar Solid Solid Solid Wet cake	No calorific Value No calorific Value No calorific Value 6500	15.417 80 0.667 8.67 2.083 3 62.5	Polym comp Mostly Mostly Mostly Mastly Copper & Iron. Polymeric aromatic Organics. Marty Carbon. Mixture of Dust, Rust & Spillage chemicals Water, iron Specific gravity 1.1557 Organic 0.87% Specific gravity 80% solid, inorganic &
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Diaco / filter aid sludge, Diaco / filter aid sludge, Diaco / filter aid sludge, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg	Solid Solid Solid Tar Solid Solid Solid Wet coke Semi Solid	No calorific Value No calorific Value No calorific Value 6500	90 0.667 8.67 2.083 3 62.5 0.4	Polym comp Mostly Mostly Mostly Copper & Iron. Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust. Rust & Spillage chemicals Water, iron Specific gravity 1.1557 Organic. 0.87 % Specific gravity
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Darco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystol residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water	Solid Solid Solid Tar Solid Solid Solid Wet coke Semi Solid	No calorific Value No calorific Value No calorific Value 6500	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5	Polym comp Mostly Mostly Mostly Mostly Capper & Iron. Polymentc aromatic Dragonics. Mainly Carbon. Mixture of Dust. Rust & Spillage chemicals Water, Iron Specific gravity 1.1557 Dragonic 0.87 % Specific gravity 80% solid, inorganic & organic content
resin contamination]. Aluminium Hydroxide, Iran sludge, Brass residue, Still / Other residue, Darco / filter aid sludge, Dust (Agro plant) Iran Residue, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg recavery.	Solid Solid Solid Tar Solid Solid Solid Wet coke Semi Solid Wet coke	No calorific Value No calorific Value No calorific Value 6500	15.417 90 0.667 8.67 2.083 3 62.5 0.4 0.5 1	Polym comp Mostly Mostly Mostly Mostly Capper & Iran. Polymeric aromatic Organics Mainly Carbon. Misture of Dust. Rust & Spillage chemicals Water, Iran Specific gravity 1.1557 Organic 0.87 % Specific gravity 80% solid, ihorganic & organic content Containing Hg
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment,	Solid Solid Solid Tar Solid Solid Wet cake Semi Solid Wet cake Solid	No calorific Value No calorific Value No calorific Value 6500	15.417 90 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5	Polym comp Mostly Mostly Mostly Mostly Copper & Iron. Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust. Rust & Spillage chemicals Water, iron Specific gravity 1.1557 Organic O.87 % Specific gravity 80% solid, inorganic & organic content Containing Hg Organic, inorganic Residual product particles Carbon cake contains aq. Methanol
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Darco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystol residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System, Spent carbon, Date expired, discarded and	Solid Solid Solid Tar Solid Solid Wet cake Semi Solid Wet cake Solid Solid Solid	No catorific Value No catorific Value Na catorific Value 6500 2500 	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001	Polym comp Mostly Mostly Mostly Mostly Copper & Iron. Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust. Rust & Spillage chemicals Water, iron Specific gravity 1.1557 Organic O.87 % Specific gravity 80% solid, inorganic & organic content Containing Hg Organic, inorganic Residual product particles Carbon cake contains aq. Methanol
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Darco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystol residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water beatment, Dust from Air Filtration System, Spent carbon, Date expired, discarded and off - specification product, Spent Mother liquor, Ki/Month	Solid Solid Solid Tar Solid Solid Wet cake Serni Solid Wet cake Solid Solid Solid	No calentic Value No calentic Value No calentic Value No calentic Value 2500 - - - - - 6000	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75	Polym comp Mostly Mostly Mostly Mostly Mostly Copper & Iron. Polymeric aromatic Organics Mainly Carbon. Misture of Dust. Rust & Spillage chemicals Water, Iron Specific gravity 1.1557 Organic 0.87 % Specific gravity. 80% solid, inorganic & organic content Containing Hg Organic, Inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Spent Organic solvent
resin contamination). Aluminium Hydroxide, Brass residue, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) fron Residue, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System. Spent carbon, Date expired, discarded and off - specification product,	Solid Solid Solid Tar Solid Solid Wet cake Semi Solid Wet cake Solid Solid Solid Solid	No calentic Value No calentic Value No calentic Value No calentic Value 2500 - - - - - 6000	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008	Polym comp Mostly Mostly Mostly Mostly Copper & Iron. Polymeric aromatic. Organics. Mainly Carbon. Mixture of Dust. Rust & Spillage chemicals Water, iron Specific gravity 1.1557 Organic Organic for ganicy 80% solid, inorganic Containing Hg Organic, inorganic Residual product particles Carbon cake contains ag. Methanol
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System. Spent carbon, Date expired, discarded and off - specification product, Spent Mother liquor, Ki/Month Spent solvent, Still / Other residue, Pyridine based insecticides & herbicides (Darco / Filter aid	Solid Solid Solid Tar Solid Solid Wet cake Semi Solid Wet cake Solid Solid Solid Solid Solid Solid	No calentic Value No calentic Value No calentic Value No calentic Value 2500 - - - - - 6000	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75 19.75	Polym comp Mostly Mostly Mostly Mostly Mostly Copper & Iron. Polymeric aromatic Organics Mainly Carbon. Misture of Dust. Rust & Spillage chemicals Water, Iron Specific gravity 1.1557 Organic 0.87 % Specific gravity. 80% solid, inorganic & organic content Containing Hg Organic, Inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Spent Organic solvent
resin contamination]. Aluminium Hydroxide, Iron sludge, Brass residue, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystol residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System. Spent carbon, Date expired, discarded and off - specification product, Spent Nother liquor, Ki/Month Spent solvent, Still / Other residue, Pyridine based insecticides & herbicides (Darco / Filter aid Sludge). Sufforyl Urea (Residue), Triazole based Fungicides	Solid Solid Solid Tar Solid Solid Wet cake Solid Solid Solid Solid Solid Solid Liquid Liquid Solid	No calonfic Value No calonfic	15.417 90 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75 63.66	Polym comp Mostly Iran, oxide Mostly Iran, oxide Mastly Copper & Iran. Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust, Rust & Spillage chemicals Water, iran Specific gravity 1.1557 Organic 0.87 % Specific gravity, 80% Solid, inorganic & organic content Containing Hg Organic, inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Sperit Organic solvent Mainly carbon
resin contamination]. Aluminium Hydroxide, Irran sludge, Brass residue, Still / Other residue, Darco / filter and sludge, Dust (Agro plant) Irran Residue, PER crystol residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System. Spent corbon, Date expired, discarded and off - specification product, Spent Mother liquor. Ki/Month Spent solvent, Still / Other residue, Pyridime based insecticides & herbicides (Darco / Filter aid Sludge).	Solid Solid Tar Solid Solid Solid Wet cake Semi Solid Wet cake Solid Solid Solid Solid Solid Liquid Solid Solid Solid Solid Solid	No calonfic Value No calonfic Value Na calonfic Value 6500 2500 - - - - 6000 - - - 2500 6500	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75 3.62 14.27	Polym comp Mostly Iran, oxide Mostly Iran, oxide Mastly Copper & Iran. Polymeric aramatic Organics. Mainly Carbon. Mixture of Dust, Rust & Spillage chemicals Water, Iran Specific gravity 1.1557 Organic content Containing Hg Organic content Containing Hg Organic, Inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Sperit Organic solvent Mainly carbon Mainly carbon
resin contamination]. Aluminium Hydroxide, Iron sludige, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) Iron Residue, PER crystal residue, PER crystal residue, Hyflo sludge, Fifter aid sludge for Hig recovery. Sludge from waste water treatment, Dust from waste water treatment, Dust from Air Filtration System. Spent carbon, Date expired, discarded and off- specification product, Spent Mather liquor, Ki/Month Spent solvent, Still / Other residue, Pryname based insecticides & herbicides (Darco / Filter aid Sludge). Sufforyl Urea (Residue), Triazole based Fungicides (Residue), Pyrethroides	Solid Solid Solid Tar Solid Solid Solid Wet cake Solid Solid Solid Solid Solid Liquid Liquid Sol	No catorific Value No catorific Value No catorific Value No catorific Value 2500 	15.417 80 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75 63.66 3.62 14.27 1.28 0.6	Polym Comp Comp Mostly Mostly Mostly Mostly fran, oxide Mostly Copper & Iron. Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust, Rust & Sprillage chemicals Water, Iron Specific gravity 1.1557 Organic Organic gravity 1.1557 Organic content Containing Hg Organic, Inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Sperit Organic solvent Methanol Mainly contains Sperit Organic Polymeric Organic Polymeric Organic Polymeric Organic Non flammable, non reactive, partly degamic Inorganic
resin contamination]. Aluminium Hydroxide, Brass residue, Brass residue, Still / Other residue, Dorco / filter aid sludge, Dust (Agro plant) fron Residue, PER crystal residue. Hyflo sludge, Filter aid sludge for Hg recovery. Sludge from waste water treatment, Dust from Air Filtration System. Spent carbon, Date expired, discarded and off - specification product, Spent Mother Inquor, Ki/Month Spent solvent, Still / Other residue, Pyridime based Insecticides & herbicides (Darco / Filter aid Sludge). Suifonyl Urea (Residue), Trirazole based Fungicides [Residue], Pyrethroides Hyflo,	Solid Solid Tar Solid Tar Solid Solid Wet coke Serni Solid Wet coke Solid Soli	No calentific Value Na catentific Value Na catentific Value Na catentific Value 6500 2500 - - 6000 - - 6000 - - 6000 - - - 6000 - - 6000 - - 6000 - - - - 6500 6500 6500 6500	15.417 90 0.667 8.67 2.083 3 62.5 0.4 0.5 1 5 0.001 40 0.008 19.75 63.66 3.62 14.27 1.28 0.6 15.75	Polym comp Mostly Mostly Mostly Mostly Mostly Mostly Polymeric aromatic Organics. Mainly Carbon. Mixture of Dust, Rust & Spidlage chemicals Water, iron Specific gravity 1.1557 Organic 0.87 % Specific gravity 80% solid, inorganic & organic content Containing Hg Organic, inorganic Residual product particles Carbon cake contains aq. Methanol Aqueous Carbon Cake - Mainly contains Spent Organic solvent Methanol Mainly contains Spent Organic Solvent Methanol Mainly contains Polymeric Organic Polymeric Organic Non flammable, non reactive, partly arganic Inorganic

<u>COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER</u> <u>NO.:F. No. J-11011/108/2015-IA-II (I), DATED: 11/02/2019</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u>

Expansion of Chemicals Manufacturing Unit By M/s. Atul Ltd, Valsad, Tehsil & Dist-Valsad,

xvi.	The project	Complied.								
	proponent shall									
	inform the public		19 Online, and inform the public that the project has							
	that the project		and advertised in local newspapers that are widely							
	has been	circulated in the region with vernacular language Guajarati and another in English as per								
	accorded	below details: New Paper Add Dated: 17	th Feb,2019							
	environmental									
	clearance by the	1 Outranti anna ann NOutrant Ca								
	Ministry and	1. Gujarati news paper: "Gujarat Sa	machar							
	copies of the	2. Gujarati news paper:"Sandesh"								
	clearance letter	3. English news paper: Times of Ind	la "Surat Edition"							
	are available with									
	the									
	SPCB/Committee	Photographs of newspaper ADD:								
	and may also be									
	seen at Website of									
	the Ministry at	Cuievet Compohen Dt 17 2 10	Candaah dh 17 2 10							
	http://moef.nic.in	Gujarat Samachar Dt.17.2.19	Sandesh dt.17.2.19							
	. This shall be									
	advertised within									
	seven days from the	ાં સમગ્ર પ્રાથમિત્ર અંત પુદ્ધી શક્ત કરશી થયેલ છે. આ અનની ગામના દિવર બાળખેને હતા દિવર કે દુલ્લાઈ એ વિદ્યોર્થન સ્વતંત્ર અને અનુસંઘન જેવે પાવે છે.	เหลือ (1) พระสุขาย (พรีมส์ หรือสารายางารายาง) แล้วสำหาร (นองรับ - นร							
	date of issue of the clearance									
	letter, at least in	:=El બાલા આતલ લિમિટેક, આત ૩૯૬ ૦૨૦, ગુજરાત	અતુલ લિમિટેક, અતુલ ૩૯૬ ૦૨૦, ગુજરાત							
	two local	ો આદી જણાવવામાં આવે છે કે ભારત સરકારના પ્રયોવરણ વન અને કસરામિટ ચેન્જ મંત્રાલગ્ર હારા	આથી જણાવવામાં આવે છે કે ભારત સરકારના પર્યાવરણ, વન અને કલાઈમેટ ચેન્જ							
	newspapers that	પ્રેસી આ ગામ આ ગ	મંત્રાલય દારા અનુલ લિમિટેડ, અનુલ ૩૯૯ ૦૨૦, ગુજરાતને પત્રક્રમાંક જે-							
	are widely	માં કેમ્પ્રઆરી ૨૦૧૯ ના રોષ કેમિકલ મેન્યુકેક્સરીંગ ધુનિટના સચિત વધારાની પંચાવરણીય મંજૂરી	11011/108/2015-IA-II(I) ના. ૧૧- કેબ્રુઆરી ૨૦૧૯ના રોજ કેમિકલ મેન્યુકેક્ચરીંગ							
	circulated in the	મરીકાનું કંપ્યુઆરો રચ્ચાર ના રાજ પ્રશ્નાડય મન્યુપ્રક્લતાંગ યુક્લાદના સુચાર વચારાના ચચાર વરશાય મજૂરા સર્વે - યાળેટા છે. ઉપરોક્ત પગલી નકલ ગુજરાત પડ્ડલા નિયંત્રણ બોર્ડની કહેવી ઉપરાંત પર્યા વરશ. વન	યુનિટના સુચિત વધારાની પર્યાવરલીય મંજૂરી મળેલ છે. ઉપરોક્ત પત્રની નકલ ગુજરાત							
	region of which	The second se	યુભારમાં સુચ્યત વચારમાં વચાવરસાય મહુરા મળાય છે. ઉપરાંક્ત પત્રમાં મકલ મુકરાતો પ્રદૂધલ નિયંત્રલ ઓર્ડની કચેરી ઉપરાંત પર્યાવરલ, વન અને કલાઈમેટ ચેન્જ મંત્રાલયની							
	one shall be in the	ર્યો કેન્દ્ર 1808 અને કલાઈમેટ વેન્દ્ર મંત્રાહવાની લેબસાઇટ Imp/imodelete.in ઉપર ઉપલબ્ધ છે.	ચંદ્રથય ભાષત્ર બાદના કપરા ઉપરાંત પ્રયાપરંક, પંચ અને કબાઇમદ પગ્ક નગાવવતા વેબસાઈટ http://moef.nic.inઉપર ઉપલબ્ધ છે.							
	vernacular		avause http://moet.nic.in.uve.uvisied.							
	language of the	- M64 MICHIE	જાતેર નિવિધ							
	locality concerned									
	and a copy of the	Time of	India dt.17.2.19							
	same shall be									
	forwarded to the		•							
	concerned Regional	Δ	tul Ltd.							
	Office of the	Atri	396 020 Guiarat							
	Ministry.	Paul	tul 396 020, Gujarat has been							
	,	Altur Lito localed at A	intal clearance vide F no. J-							
		BOODTOBO ENVIOLIME	() dated February 11, 2019 by the							
		a finishing of Frankton mi	ant Forest and Chinate Change,							
		Conservation of The	a for the proposed project of							
		a second and all all all all all all all all all al	als manufacturing unit. The copy							
		and a set in the amount of	service letter is available with the							
		The second the second s	trol Board and may also be seen							
		on the website of the I	Ministry at http://moef.nic.in							
		Chinese and the								
xvii	The project	Complied.								
XVII	authorities shall	complied.								
·	inform the	We have communicated with the regional	officer & MoEF&CC towards the status of work and							
	Regional Office as	financial closure time to time. We have al								
	well as the									
	wen as the									

Ministry, the Date	report periodically in which said information were updated time to time.
of financial closure and final approval of the	We have obtained CTE after receiving ToR. CTE was granted by GPCB Vide No. GPCB/CCA-VSD-313(12)/ID: 23158/363958 on 25.7.2016 (CTE no. 80394) Valid Till- 17/7/2023.
project by the concerned authorities and the date of start of the project.	We had applied for amendment in existing CTO after receiving EC. CTO amendment has been granted by GPCB Vide Letter No. GPCB/CCA-VSD-313(16)/ID:23158/513897, Dated 17.7.2019 (CTO amendment No. AH 102080), Valid Till-03/11/2019. Renewal for the same has been received with Provisional consent order no. 105110 valid up to 30.09. 2025.

Atul Limited

Project: Setting up an addition captive power plant of 22 MW at post Atul, Dist. Valsad EC Compliance Report for the period April 2019-September 2019as per EC No. SEIAA/GUJ/EC/1(d)/340/2016

No.	Condition ific Conditions :	Com	pliance St	tatus					
1.	Unit shall comply the emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated 07/12/2015.	Project Proponent vide letter dated 10.12.2019 received in MoEF&CC, RO Bhopal on 10.12.2019 submitted following: Complied. We ensured that at no time the emission level will go beyond the stipulated standards and or prescribed limits. In such cases / Occurrences we will intimate to board & authority time to time. In event of failure of APCM, the unit shall not restarted until the control measures are rectified to achieve efficiency. Stack details are as follow:							
			ack Io.	Stac	k Attach	ned to	Stack Ht. (in Mtr)	APCN	I
			2 3 4	FBC Boile FBC Boile FBC Boile FBC Boile Soiler (50	er E2 (34 er E3 (50 er W1(45	TPH) TPH) TPH)	56 56 80 70 106	Electro S Precipitator Field)	(Four
			0		by only (10	Adequate stac	k height
l			7 D.	G.Set (15 b	00 KVA) by only	– Stand	11	Adequate stac	k height
		appro Flue 87 m mg/r ment durir Flue 142 n Ment durir Flue 148 n 95 n ment durir The r at no sum	pyed TC-5 gas stack ig/nm3 during cioned in the glast six r gas stack a mg/nm3 during cioned in the glast six r gas stack a mg/nm3 during last six r gas stack a mg/nm3 during last six r mg/nm3 during gas stack a mg/nm3 during ing last six r	945, issu Analysis ring month he Notific month mo Analysis i uring mor he Notific month mo Analysis i uring mor uring mor he Notific month mo value (SP mission l en below	ie date-: report s th of Jur of Augu cation by ponitoring report sl nth of Au cation by ponitoring report sl nth of Ju nth of Ju nth of Ju cation by ponitoring	28/05/20 hows that r he and min st which is y MOEF&CC period (Ap hows that r ugust whic y MOEF&CC period (Ap hows that n ine and mir April which y MOEF&CC period (Ap hows that n ine and mir April which y MOEF&CC period (Ap hows that n hows that n	Laboratories 19 and validity maximum concentre below permis C vide S.O. 33 oril-2019 to Sep maximum concent in below pe C vide S.O. 33 oril-2019 to Sep maximum concent is below per C vide S.O. 33 oril-2019 to Sep maximum concent is below per C vide S.O. 33 oril-2019 to Sep maximum concent is below per C vide S.O. 33 oril-2019 to Sep	till 27/05/2 0 entration of SPM is sible emission 05(E) dated 0 otember- 2019 entration of SP entration of SP entration of SP otember-2019 entration of SPM missible limit 05(E) dated 0 otember-2019 entration of SPM missible limit 05(E) dated 0 otember-2019	D21. PM is found 34 standards 7/12/2015 9). D2 is found standards 57/12/2015). Dx is found is found standards 7/12/2015).
		S N	Stack Attached	Stack Ht	APCM	Permissible Limit	April-	Results May-	June-
		1	To FBC boiler E1 (34 TPD)	56 Mt		SPM- 100	2019 75.0 98.0 120.0	2019 (During sampling) Not in operation	2019 (During sampling) Not in operation
		2.	FBC Boiler E2 (34 TPH	56 Mt		mg/Nm 3 SO2- 600	(During sampling) Not in operation	During	84 132 150

	<u>By M/s. At</u>	ul Ltd, \	/alsad				
3.	FBC Boiler E3 (50 TPH)	80 Mt		mg/Nm 3 NOx-	80.0 128.0 145.0	85 135 152	81 133 148
4.	FBC Boiler W1(45 TPH)	70 Mt	E	600 mg/Nm 3	65.0 95.0 135.0	70 98 145	68 96 142
5.	Boiler (50 TPH x 2Nos.) D.G set (1010 KVA) – stand by only	106 Mt 10 Mt	S P (Field) Adequ ate Stack Ht	**SPM- 50 mg/Nm 3 SO2- 600 mg/Nm 3 NOx- 300 mg/Nm 3 Hg-0.03 mg/Nm 3 SPM- 150 mg/Nm 3	45.0 105.0 95.0 ND 39.8 4.4 24.1	48 112 99 ND 30.2 4.9 33.1	47 109 95 ND 19.8 4.6 29.5
7	D.G.Set(1 500 KVA) – Stand by	11 Mt		SO2- 100 ppm NOx-50 ppm	27.6 4.1 21.7	29.6 3.9 24.8	29.8 4.0 27.9
**Pe	only	itsareasp	erMoEFN	lotificationD	 ated:7/12/2015.		2110

	5	Stack	•	. 1	Permissible			Results		
S N		tached To	Stac Ht	APCM	Limit	July-20		Aug-2019	Sept- 2019	
1			56 Mt			87 120 135		65 103 123	60 114 142	
2.		C iler E2 4 TPH	56 Mt		SPM-100 mg/Nm3 SO2-600	82 127 147		83 108 138	80 107 138	
3.		C iler E3) TPH)	80 Mt	ESP(mg/Nm3 NOx-600 mg/Nm3	82 126 138		73 142 147	68 135 132	
4.	W	C biler 1(45 PH)	70 Mt	4 Field)		68 94 132		53 105 120	64 110 127	
5.	Bc (50	oiler) TPH Nos.)	106 Mt		**SPM-50 mg/Nm3 SO2-600 mg/Nm ³ NOx-300 mg/Nm ³ Hg-0.03 mg/Nm ³	47 109 95 ND		34 120 84 ND	29 138 98 ND	
6	(10 KV	G set 010 /A) – and by Ily	11 Mt	Adequat e Stack	SPM-150 mg/Nm3 SO2-100	42.8 4.9 34.8		27.6 4.8 29.7	30.8 6.4 32.6	
7	50 -	G.Set(1 0 KVA) and by	11 Mt	Ht	ppm NOx-50 ppm	30.2 4.6 33.5		27.2 3.84 24.8	34.9 4.4 37.8	
Date	ed:7 nma	issible li 7/12/20 ry of St Stack Attache)15.9 ack i (5.0.3305(E	MoEF Notific) Standard values as	ation Unit		lues for the il 19- Septen		
		to			per CCA		Min	. Max.	Avg.	
				SPM	100	mg/Nm ³	65	87	76	╢
1		FBC boiler E	1	SO ₂	600	mg/Nm ³	98	120	109	╢
'		(34 TPI		NOx	600	mg/Nm ³	120	142	131	╢
				SPM	100	mg/Nm ³	80	84	82	╢
2	2.	FBC boiler E	2	SO ₂	600	mg/Nm ³	103	132	118	╢
		(34 TPI		NOx	600	mg/Nm ³	138	150	144	╢
		FBC		SPM	100	mg/Nm ³	68	85	77	╢
3	3.	Boiler E (50 TPI	H)	SO ₂	600	mg/Nm ³	126	142	134	

		NOx	600	mg/Nm ³	132	152	142
	FBC	SPM	100	mg/Nm ³	53	70	62
4.	Boiler W1(45	SO ₂	600	mg/Nm ³	94	110	102
	TPH)	NOx	600	mg/Nm ³	120	145	133
	D.G set	SPM	150	mg/Nm ³	19.8	42.8	31.3
5	(1010 KVA) –	SO ₂	100	mg/Nm ³	4.4	6.4	5.4
	stand by only	NOx	50	mg/Nm ³	24.1	34.8	29.4
	D.G.Set(15	SPM	150	mg/Nm ³	27.6	30.2	28.9
6.	00 KVA)– Stand by	SO ₂	100	PPM	3.9	4.6	4.3
	only	NOx	50	PPM	21.7	37.8	29.8

No.	Stack Attached	Parameter	Standard Unit values as		Values for the period April 19- September 19			
	to		per CCA		Min.	Max.	Avg.	
		SPM	50.0	mg/Nm ³	29	48	39	
_	Boiler (50 TPH x 2	SO ₂	600	mg/Nm ³	105	138	122	
7.	Nos.)	NOx	300	mg/Nm ³	84	99	92	
		Mercury	0.03	mg/Nm ³	ND	ND	ND	

Photographs of ESP & Stack attached to Boiler and D.G.Set:

ESP

STACK

D.G.SET STACK (D.G.SET)

The Ambient Air Quality is being monitored at regular interval for ensuring the compliance. The testing lab appointed is M/s. Royal Environment Auditing & Consultancy Service, Surat NABL Approved **TC – 5948**, issue date-**1/06/2019** and valid till **31/05/2021**.

Ambient Air quality analysis report shows that maximum concentration of PM2.5 is found 58.0 mg/Nm3 at TSDF site and minimum concentration is found 10.0 mg/Nm3 at Wyenth Colony during last six month monitoring period (April-2019 to September-2019). These result are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated 07/12/2015 during last six month monitoring period (April-2019 to September-2019).

Ambient Air quality analysis report shows that maximum concentration of PM10 is found 62.0 mg/Nm3 at Nr.West site of ETP and minimum concentration is found 7.8 mg/Nm3 at TSDF site during last six month monitoring period (April-2019 to September-2019). These results are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated 07/12/2015 during last six month monitoring period (April-2019).

Ambient Air quality analysis report shows that maximum concentration of SO₂ is found 13.5 mg/Nm3 at opposite shed D site and minimum concentration is found 4.1 mg/Nm3 at Wyenth colony site during last six month monitoring period (April-2019 to September-2019). These results are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated 07/12/2015 during last six month monitoring period (April-2019 to September-2019).

Ambient Air quality analysis report shows that maximum concentration of SO₂ is found 17.5 mg/Nm3 at Main Guest \house and minimum concentration is found 4.6 mg/Nm3 at Wyenth Colony during last six month monitoring period (April-2019 to September-2019). These results are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated 07/12/2015 during last six month monitoring period (April-2019 to September-2019).

Ambient air	monitoring	Reports:
-------------	------------	-----------------

Station	Parameter	Limit microgram/NM ³	Values for the period April 19- Sept 19			
			Min.	Max.	Avg.	
66 KV	RSPM (PM2.5)	60	21.3	45	32.2	
	PM10	100	37.6	58	45.7	
	SO2	80	7.5	9.8	8.95	
	NOx	80	7.9	16.4	10.4	
	Ammonia	850	ND	ND	ND	
	HCI	200	ND	ND	ND	

By M/s. Atu	<u>l Ltd, Valsad</u>				
OppositeShedE	RSPM (PM2.5)	60	27	56	41.7
	PM10	100	34	60	46.8
	SO2	80	7.9	13.5	10.4
	NOx	80	8.3	11.3	9.6
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Near West site	RSPM (PM2.5)	60	24	42	34
ETP	PM10	100	37	62	51.7
	SO2	80	8.3	11.2	9.9
	NOx	80	7.2	10.2	9.1
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Near North ETP	RSPM (PM2.5)	60	27	40	34.2
	PM10	100	38	68	50.5
	SO2	80	6.4	10.6	8.97
	NOx	80	5.8	9.8	8.6
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
TSDF	RSPM (PM2.5)	60	26	58	43
	PM10	100	7.8	59	44.97
	SO2	80	7.4	10.8	9.2
	NOx	80	6.3	9.5	7.9
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND

Main Guest House	, ,	60	12	38	23.2
	PM10	100	25	53	39.8
	SO2	80	4.5	10.5	7.5
	NOx	80	5.1	17.5	10.6
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth Colony	RSPM (PM2.5)	60	10	32	19.5
	PM10	100	26	50	38
	SO2	80	4.1	9.5	6.7
	NOx	80	4.6	14.2	9.4
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Gram panchayat	RSPM (PM2.5)	60	12	45	25
hall	PM10	100	29	47	38.8
	SO2	80	5.8	9.2	7.6
	NOx	80	5.7	14.2	10.0
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Main office,	RSPM (PM2.5)	60	18	35	27.3
North site	PM10	100	35	58	46.7
	SO2	80	7.2	9.5	8.5
	NOx	80	7.3	14.2	11.3
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND
Haria water tank	RSPM (PM2.5)	60	16.3	39	26.8
	PM10	100	22.2	41.1	34.7
	SO2	80	6.7	9.5	8.4
	NOx	80	5.8	15.8	9.5
	Ammonia	850	ND	ND	ND
	HCI	200	ND	ND	ND

		<u>By M/s. Atul Ltd, Valsad</u>
2.	All measures shall be taken to prevent	Complied.
	soil and ground water contamination.	To monitor the soil and ground water Quantity, online flow meter is installed at the inlet and outlet line of ETP. We are not extracting ground water as a source of water. We are using River (Par) as a source of fresh water. We have adequate control measured for any leakages from the plant. We have developed RCC pipeline for collecting our effluent. We have maintained and regularly check ground and soil quality once in year through M/s. Pollucon Laboratories Pvt.Ltd. NABL approved TC-5945 , issue date- 28/05/2019 and validity till 27/05/2021 .
		We are regularly monitor (once in year) through reputed institute (M/s . Pollucon Laboratories Pvt.Ltd, surat) to access the impacts on soil and ground water quality. As per details study report shows that there is no soil and ground water contamination found. No ground water is tapped for meeting the project requirements. Neutralization pit has been put in service for waste water generated from D.M. Plant. RO plant is commissioned to recycle the cooling tower make up water. Entire quantity of waste water is being utilized in ash quenching and coal storage yard to attend coal smoldering. Hence, our CPP unit is achieved ZLD .

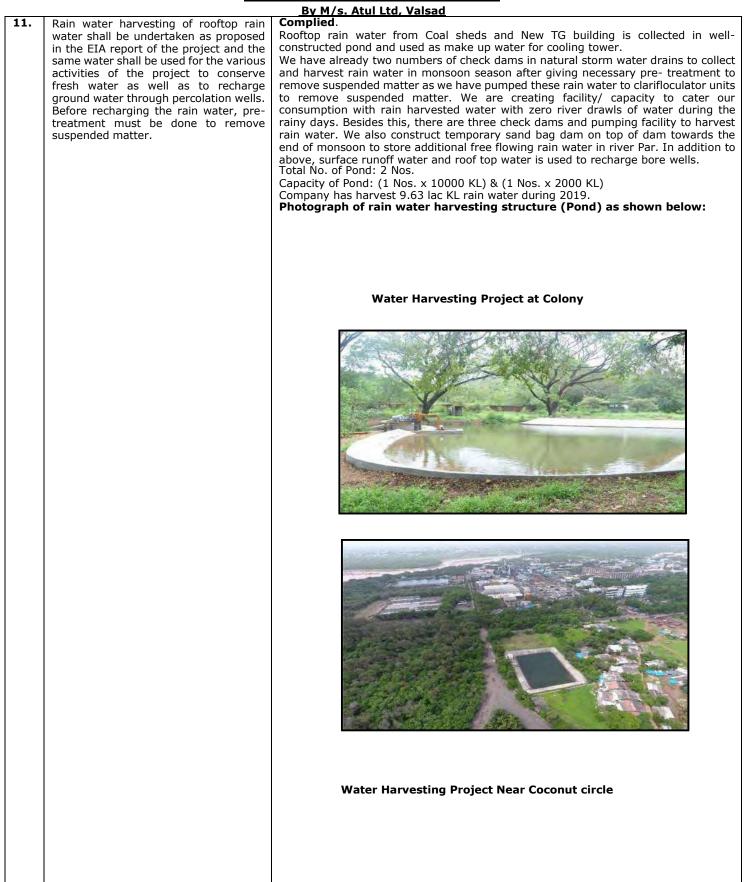
	Bits Construction Construction <thconstruction< th=""> Construction</thconstruction<>	A B25. Incode 31/04/2018 A Determine Adv Fee Quantities (Notac Sample Control of Sample 30/04/2 (Notac 2018) Sample 2018 (Notac 2018) Sample 20
3. The project proponent shall submit the detailed study report to Gujarat Pollution Control Board (GPCB) at least once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality, if any due to application of waste water generation from the CPP and shall adopt the additional mitigation measures as may be suggested through such studies.	Complied. We are regularly submitting (once in year) GPCB & MoEF&CC, through reputed institute of M/s. Pollucon Laboratory Pvt. Ltd.) to asse ground water quality. Refer Annexure-X. No ground water is tapped for meeting the project r water as a source of fresh water. However Neutraliz for waste water generated from D.M. Plant. RO p the cooling tower make up water. Entire quantity o ash quenching and coal storage yard to attend coal unit is achieved ZLD. We are ensured that solid waste is stored in identified area, provided with covered shed, impervious f facility to prevent soil contamination. Detailed study report on Groundwater and soil qua	(NABL accredited Laboratory ess the impacts on soil and requirements. We are using river cation pit has been put in service lant is commissioned to recycle f waste water is being utilized in al smoldering. Hence, our CPP ed solid hazardous waste storage looring and leachate collection

	A.2:WATER:	NTHE P A	Biologi Versione B 21/12/2018 Unit 0 Standard Territoria Biologi Versione Standard Territoria Biologi Versione Biologi Versione Standard Territoria Biologi Versione Biologi Versione Biologi Versione Discolari Biologi Versione Biologi Versione Discolari Biologi Versione Standard Territoria Discolari Versione Biologi Versione Standard Territoria Discolari Versione Biologi Versione Standard Territoria Biologi Versione Biologi Versione Standard Territoria Biologi Versione Biologi Versione Standard Territoria		1 2 3 3 4000 00 40 10 10 10 10 10 10 10 10 10 10 10 10	ADD: Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Sciences Status Science	
4.	The fresh water requirement for the proposed expansion shall not exceed 2095 KL/day and it shall be met through the existing water supply system from River par.	The average water consumption for the last six month compliance period (April- 2019 to September-2019) is 1187 KL/day only which is well within the permissible					
		SN	Month	Qty. F/W (KL/Month)	Min.	Max.	Avg. Qty. F / W
		1		· · ·	(KL / Day)	(KL / Day)	(KL / Day)
		2	April 2019 May 2019	35321 31095	1100 910	1178 1113	1139 1003
		3	June 2019	31991	1005	1120	1066
		4	July 2091	39040	1198	1310	1259
		5	August 2019	38793	1210	1408	1293
		6	September 2019	33986	1321	1498	1359
		wastew is met attache	ater generation w	vent beyond the sting water si xure-VI for v	e stipulated v upply systen vater permi	value. Fresh w n from river ssion from	at at no time the ater requirement par. Please find

۹ هار المائلة : مائلة : مائلة :	and and any file 1.12
$\begin{array}{cccc} \partial \mathcal{R} & & \partial - \mathcal{L} & \partial \\ \text{white the left} & & e \in -\mathcal{A} & \mathcal{R} & \\ \text{subset the left} & & e \in -\mathcal{U} & \mathcal{S} & \mathcal{R}^{1} \\ \text{subset} & & & e \in -\mathcal{U} & \mathcal{S} & \mathcal{R}^{1} \\ \text{subset} & & & e \in -\mathcal{S} & \mathcal{S} & \mathcal{R}^{1} \\ \end{array}$	
Beam may a shifting hay na a shifting hay na huar u calcula dournan inana national calcular paired in search areas and working how may are unane. The calcular pair is a standard in the search areas and a search areas and a	39 Gin granm GULARAT BE 850803 au State Art State 30 State au State Art Art Art State 30 State au State Art
 env reme til visse andress strettet segner och deltarte och verstelleren med den verste ändelt soci verste verste sociale soci verste verste sociale social social sociality, social avail för mensen vers verste verste social social social filtere-remense verste verste social social social filtere-remense verste verste social social sociality, social social social social social social. 	Taminel, And Versionite to this agreement while the "Lineau" Webb common their infinite insertion decrements captions and actives, for themate to include the advancement and the second accesses and actives, for themate to include the advancement accesses and accesses being is regulated afters a Anis Lineau, C I build Mays, Second and Second accesses and accesses and accesses and Second accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and Second accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and accesses and acc

Permission from the Concern authority for additional water requirement shall be obtained.

Complied.


We already have permission for withdrawal of water for industrial purpose from Par River @ Village Atul from Government of Gujarat for this additional requirement. Please find attached herewith **Annexure-VI for water permission** from concerned authority for additional water requirement.

2 - 1428-17-001-17419-181-17-9 4 L	ない ちゃんちょうないない 可で 安美市の 装着 かいかす
adiusa syainidi sili no ¹⁶ 47-36-1010. - ¹⁶ 87-36-1010. - ¹⁶ 87-36-1010. - ¹⁶ 87-363-41.400a (2014) - ¹⁶ 87-305-101(1) - ¹⁶ 87-305-100(1) -	And and an an and an and an
$\begin{array}{cccc} \omega & \varphi & - \mathcal{L} & - \mathcal{L} & \varphi & - \mathcal{L} &$	
Area ango alulta sega ang atami aligi gi uti uri utimudi teunani semen sedan sebaran teun uri uri uri utimu ang atami uni utimu ang atami utimu atami	Statistical State
ચિંગ્રહ્યું: (*) પ્રચ્લાપ્યક (*) (*) કારાજ્યમંત્રની ચારા (*) કારાજ્યમંત્રની ચારા (*) કારાજ્યમંત્રની ચારા (*) આવા પાછી)	937100 mblic some per pase wante trem Northel "RIVER NAC" IN Das Valued for targe as a single series of the Series and Series a
 were constable allower stratest empires whe defend a set were and any here were along all the strate server and any. with reast with allower strates and allower any. 	Landred, And Versinstein in a generation with Edit Montane Wales Tam. Revises, And Landred, And Versinstein in a langement online for "Landson" Webb operation dott unline senset observice explores and addred in Manual in Society and Antonia Statistication potentiary. Accesses and support foreign languages and affers a Andel Henn, G I Paul Marg, N. & Co.
ા માર્ગિ, જે લાભાર, માટે જણ તેમજ પડ્ટી, અવેલાં પ્રાપ્ય માટુ જિલ્લા- સ્થામમાં અન્ય પાણી અને વાણી મા લાવીને વાપતી.	Estatione Equation, Toping Call Distribution, Strate of Distrate of Distrate of Distrate of Di

5	Metering of water shall be done and its records shall be maintained. No ground water shall be tapped in any case for meeting the project requirements.	Magnetic water flow meter is attached at inlet line of ETP and reuse line (outlet)							
			Water meter @ I	nlet line	Wate	er Meter @ F	Reuse line		
6.	The industrial effluent generation from the proposed expansion shall not exceed 270 KL/day and entire quantity of effluent shall be utilized for ash quenching, dust suppression, fire hydrant make up, Gardening plants floorcleaning.	during in the r month six mo within / reuse Entire to atte plants	water generation last six compliant month of April-201 of July-2019. The nth – April 2019 the prescribed lim ed after giving neu quantity of waste	ce month. Minin 19. Maximum wa average wastew to September 20 it of 270 KL/Day utralization & RC water is being u ng, dust suppre no waste water	num waste waste water g water genera (19) is 169 and entire w treatment. tilized in asl ession, fire	water genera eneration is 2 ation for the r .7 KL/day. (waste water c n quenching, hydrant mak	t of 270 KL/Day tion is 46 KL/Day 229 KL/Day in the eport period (last Dnly which is well quantity is utilized coal storage yard coal storage yard		
		SN	Month	Waste water Generation (KL/Month)	Min. (KL/Day)	Max. (KL/Day)	Avg. Waste water Generation/ Reused Qty (KL/Day)		
		1	April 2019	1659	46	61	55		
		2	May 2019 June 2019	4857 5692	138 181	174 199	156 190		
		4	July 2019	6725	208	229	218		
		5	August 2019	6346	191	222	206		
		6	September 2019	4874	175	202	192		
		The maximum values (229 KL/Day) during the compliance period (April- 2019 to September-2019) confirms that at no time the wastewater generation went beyond the stipulated value.							
7.	There shall be no discharge of industrial effluent from the proposed project in any case.	KL/Day Neutra	lied. rial Waste water / during last s lization pit has b Entire Avg. Quan ning and coal stor it make up, Garde	six compliance	months (ice for wast	April-19 to e water gen	September-19).		

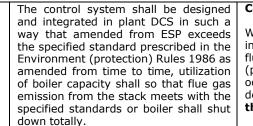
8.	Domestic waste water generation shall not exceed 1 KL/day Which shall be disposed of into soak system.	 be Domestic water generation in not exceeding then prescribed limit of Ed six compliance months (April-2019 to September-19). The minimum domestic waste water generation is 0.75 KL/Day in August Maximum domestic waste water generation is 0.98 KL/Day in September average wastewater generation for the report period (last six month – A September 2019) is 0.85 KL/day only which is well within the limit. Dow water disposed through soak pit / septic tank system. 								
		S N Month	Domestic waste water Generation (KL/Month)	Min. (KL / Day)	Max. (KL/Day)	Waste water Generation (KL/Day)				
		1 April 2019	29	0.9	0.95	0.9				
		2 May 2019	30	0.9	0.96	0.9				
		3 June 2019	25	0.75	0.8	0.8				
		4 July 2019	27	0.88	0.96	0.9				
		5 August 2019	26	0.75	0.88	0.8				
		6 September 2019	29	0.85	0.98	0.9				
9.	The unit shall provide metering facility at the inlets and outlets of the collection cum reuse system of waste water and maintain records of thesame. Complied. Magnetic Flow Meter is provided at the inlet of the collection tank and reus of waste water and records are being maintained. Magnetic Flow Meter is provided at the inlet of the collection tank and reus of waste water and records are being maintained. Photograph of water meter shown below: Photograph of water meter shown below:									
						RO				
		Water meter @ In	let line	Water	meter @ Reus	se line				

			BV M/S	5. Atui	<u>Ltd, Valsa</u>	aa						
					er consum ter readi					on on t	he bas	is ofI/L
			ſ	SN	Month	co	Water Insumptio (Inlet) KL/Month	n G	astewa enerati (Outle	on t)		
			_		April 2019		35321	/ (1659	un <u>)</u>		
					May 2019 June 2019		31095 31991		4857 5692			
			F		July 2091		39040		6725			
	-			5	August 2019		38793		6346			
				6	September 2019	;	33986		4874			
10.	Proper logbooks of waste water reuse system showing quantity and quality of effluent reused shall be maintained and furnished the GPCB from time to time.	Cor We & r met corr Mor	Captive mplied. are propeuse dat ter for que munication	e powe perly m ta show uantity te regul e wate	ve are acl er plant. vaintaining ving quant and TOC n larly to GP er consum ole:	logbool tity and neter for CB from	k of wate quality r quality n time to	er consum of effluer of Reusec time.	nption, nt by r l efflue	waste v means c nt. Furn	water go of Magr ished th	eneration netic flow nese data
		S N	Μ	onth	con	Water sumptio	on ge	ste wate		Reuse /Month)		Reuse KL / Day
					(KL	/Month)) (KL	/Month)	-	,)
		1	Apr	ril 2019		35321) (KL	/Month) 1659		1659) 55
		1	•	ril 2019 y 2019) (KL			,) 55 156
			Ma			35321) (KL	1659		1659		
		2	Ma Jur	y 2019 ne 2019		35321 31095) (KL	1659 4857 5692		1659 4857 5692		156 190
		2 3	Ma Jur Jul	y 2019 ne 2019 ly 2091		35321 31095 31991) (KI	1659 4857		1659 4857 5692 6725		156 190 218
		2 3 4	Ma Jur Jul Augi	y 2019 ne 2019	9	35321 31095 31991 39040) (KL	1659 4857 5692 6725		1659 4857 5692		156 190
		2 3 4 5 6 The V inter	Ma Jur Jul Augi Septer Waste W val for	y 2019 ne 2019 ly 2091 ust 2019 mber 20 vater ar ensurin n-house	9 019 nalysis at last six m	35321 31095 31991 39040 38793 33986 RO outle ality of	et is mor waste waste w	1659 4857 5692 6725 6346 4874 hitored in water ma	aintaine of reus	1659 4857 5692 6725 6346 4874 use Labo	, per reu	156 190 218 206 192 at regula se qualit
		2 3 4 5 6 The V inter	Ma Jur Jul Augi Septer Waste W val for dards .Ir	y 2019 ne 2019 ly 2091 ust 2019 mber 20 Vater ar ensurin n-house s as bel	9 019 019 lag the qu last six m ow: pH	35321 31095 31991 39040 38793 33986 RO outle ality of oonthly r	et is mor waste v monitorir RO O	1659 4857 5692 6725 6346 4874 hitored in water ma ng report utlet (mg ardness	aintaine of reus /I)	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate	per reu ed efflue TDS	156 190 218 206 192 at regula se qualit ent qualit
		2 3 4 5 6 The V inter stanc (RO	Ma Jur Jul Augu Septer Waste W val for dards .Ir outlet) is	y 2019 ne 2019 ly 2091 ust 2019 mber 20 Vater ar ensurin n-house s as bel Min	9 019 019 lag the qu last six m ow: pH Max	35321 31095 31991 39040 38793 33986 RO outle ality of onthly r	et is mor waste v monitorir RO O Hi Min	1659 4857 5692 6725 6346 4874 hitored in water ma og report utlet (mg ardness Max	intaino of reus /I) Avg	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate	TDS	156 190 218 206 192 at regula se qualit ent qualit
		2 3 4 5 6 The stanc (RO Apr	Ma Jur Jul Augu Septer Waste W val for dards .Ir outlet) is	y 2019 ne 2019 ly 2091 ust 2011 mber 20 vater ar ensurin n-house s as bel Min 6.5	9 019 019 last six m ow: pH Max 7.2	35321 31095 31991 39040 38793 33986 RO outle ality of onthly r Avg 6.8	et is mor waste v monitorir RO O H Min 28	1659 4857 5692 6725 6346 4874 hitored in water man og report utlet (mg ardness Max 35	aintaine of reus /I) Avg 32	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate Min 115	TDS Max 123	156 190 218 206 192 at regula se qualit ent qualit
		2 3 4 5 6 The stance (RO 6	Ma Jur Jul Septer Waste W val for Jards .Ir outlet) is	y 2019 ne 2019 ly 2091 ust 2019 mber 20 /ater ar ensurin house s as bel Min 6.5 6.8	9 019 019 last six m ow: pH Max 7.2 7.1	35321 31095 31991 39040 38793 33986 RO outle ality of onthly r 6.8 7.0	et is mor waste v monitorir RO O Hi Min 28 40	1659 4857 5692 6725 6346 4874 hitored in water mains report utlet (mg ardness Max 35 49	aintaine of reus /I) Avg 32 45	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate Min 115 110	TDS Max 123	156 190 218 206 192 at regula se qualit ent qualit Avg 119 115
		2 3 4 5 6 The ¹ stanc (RO (Apr May Jun	Ma Jur Jul Augu Septer Waste W val for dards .Ir outlet) is	y 2019 ne 2019 ly 2091 ust 2011 mber 20 vater ar ensurin n-house s as bel Min 6.5	9 019 019 last six m ow: pH Max 7.2	35321 31095 31991 39040 38793 33986 RO outle ality of onthly r Avg 6.8	et is mor waste v monitorir RO O H Min 28	1659 4857 5692 6725 6346 4874 hitored in water man og report utlet (mg ardness Max 35	aintaine of reus /I) Avg 32	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate Min 115	TDS Max 123	156 190 218 206 192 at regula se qualit ent qualit
		2 3 4 5 6 The V stance (RO 0 (RO 0 May Jun	Ma Jur Jul Aug Septer Waste W val for dards .Ir outlet) is il-19 y-19 ie-19	y 2019 ne 2019 ly 2091 ly 2091 mber 20 vater ar ensurin n-house s as bel Min 6.5 6.8 6.7	9 019 019 1 ast six m 0 w: 0 0 0 0 0 0 0 0 0 0 0 0 0	35321 31095 31991 39040 38793 33986 RO outle ality of onthly r Avg 6.8 7.0 7.2	et is mor waste w monitorir RO O H Min 28 40 23	1659 4857 5692 6725 6346 4874 hitored in water many report utlet (mg ardness Max 35 49 31	Aintaine of reus //) Avg 32 45 28	1659 4857 5692 6725 6346 4874 use Labo ed as p se treate Min 115 110 95	TDS Max 123 119	156 190 218 206 192 at regula se qualit ent qualit Avg 119 115 100

By M/s. Atul Ltd, Valsad

	A 24TD-	В	<u>y M/s. Atul Ltd,</u>	vaisau							
	A.3AIR:										
12.	Existing two coal fired steam boilers shall be replaced with two AFBC Boilers having capacity 50 TPH each.	Complied . In the existing unit, two numbers of Stoker Fired Boilers (SFB) are provided with Scrubbers for dust collection. As, it is old technology and not feasible to provide ESP with these boilers, the SFBs are replaced with higher efficiency boilers with adequate APC facility (4 field ESP).									
13.	Fuel (Indian coal/and or Imported coal and or Lignite) to the tune of 16725 MT/M shall be used for proposed boilers.	The a Septe	Complied . The average fuel consumption for the report period (last six month – April 2019 to September 2019) is 13952 MT/M only which is well within the limit. Detail break up is given in below table:								
		SN	Month	Min. (MT/Month)	Max. (MT/Month)	Avg. Fuel consumption (MT/Month)					
		1	April 2019	10988	12004	11496					
		2	May 2019	12890	13338	13114					
		3	June 2019	14834	15432	15133					
		4	July 2091	15320	15994	15657					
		5	August 2019	14855	15229	15042					
		6	September 2019	13058	13488	13269					
				uring the compliance nd the stipulated val		at no time the fuel					

<u>By M/s. Atul Ltd, Valsad</u>


14.	Sulfur and ash content of the fuel to be	Comp	lied.			
	used shall be analyzed and its record	We ar	e using Indian Coal or			
	shall be maintained.		bility. We are regular			
		ultima	ite analysis of coal / Li	gnite which show	% Ash content,	GCV, Sulphur con
		and h	eavy metal present in	coal /lignite. Plea	ase find attached	d herewith one mo
			nd lignite analysis rep			
			ave seen that Minimu			% in India coal L
			e and Maximum Ash			
			um Ash Content identi		gnite coal-2 and	Maximum ash con
			fied 24.32 in Lignite co			
		We ha	ave seen that Minimun	n sulphur content	identified 0.49	% in Indian Coal l
		sampl	e and Maximum Sul	phur ['] content ide	ntified 0.82% I	ndian coal-2 sam
		Minim	um sulphur content id	lentified 0.26% i	n lignite coal-2	sample and Maxin
			ur content identified 0.			
		Morcu	ry is not identified in a	ny comple of coo	Land lignita	
		Pleas	e find attached here	with fuel analys	sis report which	n snows Sulphur
		and a	sh content present i	in Indian coal ai	nd lignite.	
		Desci	iption of sample: In	dian Coal Lot-1	#	
			sis by : Pollucon La			
		S.N.	Parameters	Unit	Result	Date of Sampling
		1.	Ash Content	%	21.59	· · ·
		2.	GCV	Kcal/kg	4980	
		3.	Sulphur	%	0.580	08/11/2019
		3. 4.			0.580 ND	
			Mercury	Mg/Kg	ND	
		Desci	iption of sample: Ind	ian Coal Lot-2#		
			sis by : Pollucon Labo			
		S.N.	Parameters	Unit	Result	Date of
						Sampling
		1.	Ash Content	%	20.82	
		2.	GCV	Kcal/kg	4988	00/11/2010
		3.	Sulphur	%	0.820	08/11/2019
		4.	Mercury	Mg/Kg	ND	
					ND	
			iption of sample: Ind			
			sis by : Pollucon Labo			
		S.N.	Parameters	Unit	Result	Date of Sampling
		1.	Ash Content	%	45.42	
		2.	GCV	Kcal/kg	3310	00/11/0010
		3.	Sulphur	%	0.815	08/11/2019
		-				
		4.	Mercury	Mg/Kg	ND	
			iption of sample: Ind	ian Coal Lot-4#		
		Descr				
		Analy	sis by : Pollucon Labo		ABL Approveu)	
		Descr Analy S.N.	sis by : Pollucon Labo	vratory Pvt.Ltd. (N	Result	
		Analy S.N.	sis by : Pollucon Labo Parameters	Unit	Result	Date of Sampling
		Analy S.N.	sis by : Pollucon Labo Parameters Ash Content	Unit %	Result 33.59	Sampling
		Analy S.N. 1. 2.	sis by : Pollucon Labo Parameters Ash Content GCV	Unit % Kcal/kg	Result 33.59 3865	
		Analy S.N. 1. 2. 3.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur	Unit % Kcal/kg %	Result 33.59 3865 0.49	Sampling
		Analy S.N. 1. 2. 3. 4.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury	Unit % Kcal/kg % Mg/Kg	Result 33.59 3865	Sampling
		Analy S.N. 1. 2. 3. 4. Descr	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind	Unit % Kcal/kg % Mg/Kg ian Coal Lot-5#	Result 33.59 3865 0.49 ND	Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo	Unit Kcal/kg Mg/Kg ian Coal Lot-5# vratory Pvt.Ltd. (N	Result 33.59 3865 0.49 ND ABL Approved)	Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind	Unit % Kcal/kg % Mg/Kg ian Coal Lot-5#	Result 33.59 3865 0.49 ND	Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters	Unit Kcal/kg Mg/Kg ian Coal Lot-5# rratory Pvt.Ltd. (N Unit	Result 33.59 3865 0.49 ND ABL Approved) Result	Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content	Unit Kcal/kg Mg/Kg ian Coal Lot-5# rratory Pvt.Ltd. (N Unit	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34	Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV	Unit Kcal/kg Mg/Kg ian Coal Lot-5# ratory Pvt.Ltd. (N Unit % Kcal/kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385	Sampling 08/11/2019 Date of Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur	Unit Kcal/kg Mg/Kg ian Coal Lot-5# rratory Pvt.Ltd. (N Unit	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97	Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur	Unit Kcal/kg Mg/Kg ian Coal Lot-5# pratory Pvt.Ltd. (N Unit % Kcal/kg %	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385	Sampling 08/11/2019 Date of Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV	Unit Kcal/kg Mg/Kg ian Coal Lot-5# ratory Pvt.Ltd. (N Unit % Kcal/kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97	Sampling 08/11/2019 Date or Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury	Unit Kcal/kg Mg/Kg ian Coal Lot-5# pratory Pvt.Ltd. (N Unit % Kcal/kg % mg/Kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97	Sampling 08/11/2019 Date or Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr 3. 4.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign	Unit Kcal/kg Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Unit Kcal/kg Kcal/kg Kcal/kg Kcal/kg ite Coal Lot-2#	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr Analy	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign sis by : Pollucon Labo	Unit % Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Unit % Kcal/kg % mg/Kg ite Coal Lot-2# oratory Pvt.Ltd. (N	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr 3. 4.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign	Unit Kcal/kg Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Unit Kcal/kg Kcal/kg Kcal/kg Kcal/kg ite Coal Lot-2#	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr Analy S.N.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign sis by : Pollucon Labo Parameters	Unit Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Unit Kcal/kg Kcal/kg Kcal/kg ite Coal Lot-2# oratory Pvt.Ltd. (N Unit	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. 4. 3. 4. 3. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 2. 5. 8. 1. 1. 5. 8. 1. 1. 5. 8. 1. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign sis by : Pollucon Labo Parameters Ash Content	Unit Kcal/kg Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Kcal/kg Kcal/kg Mg/Kg ite Coal Lot-2# oratory Pvt.Ltd. (N Unit Kcal/kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND ABL Approved) Result 3285 0.97 ND ABL Approved) 23.20	Sampling 08/11/2019 Date of Sampling 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descri Analy S.N. 1. 2. 3. 4. Descri Analy S.N. 1. 2. 3. 4. Descri Analy 2. 3. 4. Descri Analy 2. 3. 4. 2. 3. 4. 2. 3. 4. 2. 3. 3. 4. 3. 5. 8. 7. 5. 7. 5. 7. 8. 7. 8. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury Tiption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign sis by : Pollucon Labo Parameters Ash Content GCV	Unit Kcal/kg Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Kcal/kg Kcal/kg Kcal/kg ite Coal Lot-2# oratory Pvt.Ltd. (N Kcal/kg Kcal/kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling 08/11/2019 08/11/2019
		Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 4. Descr Analy S.N. 1. 2. 3. 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. 4. 3. 4. 3. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 1. 2. 5. 8. 1. 1. 2. 5. 8. 1. 1. 5. 8. 1. 1. 5. 8. 1. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 8. 1. 5. 7. 5. 7. 5. 7. 5. 7. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Ind sis by : Pollucon Labo Parameters Ash Content GCV Sulphur Mercury iption of sample: Lign sis by : Pollucon Labo Parameters Ash Content	Unit Kcal/kg Kcal/kg Mg/Kg ian Coal Lot-5# oratory Pvt.Ltd. (N Kcal/kg Kcal/kg Mg/Kg ite Coal Lot-2# oratory Pvt.Ltd. (N Unit Kcal/kg	Result 33.59 3865 0.49 ND ABL Approved) Result 36.34 3385 0.97 ND	Sampling 08/11/2019 Date of Sampling 08/11/2019

Descri Analys	Description of sample: Lignite Coal Lot-1# Analysis by : Pollucon Laboratory Pvt.Ltd. (NABL Approved)								
S.N.	Parameters	Unit	Result	Date of Sampling					
1.	Ash Content	%	24.34						
2.	GCV	Kcal/kg	4318	-					
3.	Sulphur	%	0.52	08/11/2019					
4.	Mercury	Mg/Kg	ND						

echanism for an in-built onitoring for radio activity stals in coal/lignite and Fly bottom ash) shall be put	Analys	Parameters Copper Nickel Zinc Cadmium Lead Chromium Sodium Mercury	Unit Mg/Kg	Result 24.35 13.40 20.78 ND 13.13	Date of Sampling 08/11/2019
tals in coal/lignite and Fly bottom ash) shall be put	2. 3. 4. 5. 6. 7. 8. Descri Analys	Nickel Zinc Cadmium Lead Chromium Sodium Mercury	Mg/Kg	13.40 20.78 ND ND 13.13	08/11/2019
g bottom ash) shall be put	3. 4. 5. 6. 7. 8. Descri Analys	Nickel Zinc Cadmium Lead Chromium Sodium Mercury	Mg/Kg	20.78 ND ND 13.13	
	4. 5. 6. 7. 8. Descri Analys	Cadmium Lead Chromium Sodium Mercury	Mg/Kg	ND ND 13.13	08/11/2019
	4. 5. 6. 7. 8. Descri Analys	Lead Chromium Sodium Mercury	Mg/Kg	ND ND 13.13	08/11/2019
	5. 6. 7. 8. Descri Analys	Lead Chromium Sodium Mercury	Mg/Kg	ND 13.13	
	6. 7. 8. Descri Analys	Chromium Sodium Mercury		13.13	00/11/2010
	7. 8. Descri Analys	Sodium Mercury			
	8. Descri Analys	Mercury		190	
	Descri Analys			ND	
	S.N.	sis by : Pollucon La Parameters	boratory Pvt.Ltd.	(NABL Approv Result	Date of
					Sampling
	1.	Copper		27.88	
	2.	Nickel		20.27	
	3.	Zinc		35.26	
	4.	Cadmium		ND	
	5.	Lead	Mg/Kg		08/11/2019
	6.			17.70	
	7.	Sodium		197	
	8.	Mercury		ND	
	Analys	sis by : Pollucon La	boratory Pvt.Ltd.		•
	S.N.	Parameters	Unit	Result	Date of Sampling
	1.	Copper		19.83	
	2.	Nickel		19.28	
	3.	Zinc		83.14	
	4.	Cadmium		ND	
	5.	Lead	Mg/Kg	ND	08/11/2019
	6.	Chromium		15.76	
	7.	Sodium		194	
	8.	Mercury		ND	
		5. 6. 7. 8. Descri Analys S.N. 1. 2. 3. 4. 5. 6. 7. 8. Descri	5. Lead 6. Chromium 7. Sodium 8. Mercury Description of sample: In Analysis by : Pollucon Lat S.N. Parameters 1. Copper 2. Nickel 3. Zinc 4. Cadmium 5. Lead 6. Chromium 7. Sodium 8. Mercury Description of sample: In	5. Lead Mg/Kg 6. Chromium Mg/Kg 7. Sodium Sodium 8. Mercury Mercury Description of sample: Indian Coal Lot-2# Analysis by : Pollucon Laboratory Pvt.Ltd. Mg/Kg S.N. Parameters Unit 1. Copper Unit 2. Nickel Mg/Kg 3. Zinc Mg/Kg 6. Chromium Mg/Kg 7. Sodium Mg/Kg 8. Mercury Mg/Kg	5.LeadMg/KgND6.Chromium17.707.Sodium1978.MercuryNDDescription of sample: Indian Coal Lot-2# Analysis by : Pollucon Laboratory Pvt.Ltd. (NABL ApprovS.N.ParametersUnitResult1.Copper19.832.Nickel19.283.Zinc83.144.CadmiumND5.LeadND6.Chromium15.767.Sodium1948.MercuryND

		C	Charamaiuma				4.40	
		6. 7.	Chromium Sodium			-	4.16 85	_
		7. 8.	Mercury				D	-
		0.	Mereary					
		Descri Analys	ption of sam is by : Pollu	ple: Indi	an Coal I	Lot-5# vt I td. (NAF	RI Annrovec	1)
		S.N.	Parameters		Unit		esult	Date of Sampling
		1.	Copper				5.34	
		2.	Nickel				8.02	
		3. 4.	Zinc				4.82 D	_
		4. 5.	Cadmium Lead		— м		D	08/11/2019
		6.	Chromium				6.14	-
		7.	Sodium				84	
		8.	Mercury			N	D	
			ption of sam is by : Pollu Parameters	con Labo		vt.Ltd. (NAI	<u>3L Approvec</u> esult	Date of
								Sampling
		1.	Copper Nickel				5.30	╡
		2. 3.	Zinc		_		6.01 5.54	4
		4.	Cadmium			N	D.04	-
		5.	Lead		M		D	08/11/2019
		6.	Chromium				8.74	
		7.	Sodium				01	
		8.	Mercury			N	D	
		S.N. 1. 2. 3. 4. 5.	Parameters Copper Nickel Zinc Cadmium Lead Chromium	; 	Unit	2 1 2 g/Kg N	esult 9.2 7.05 3.49 D D	Date of Sampling 08/11/2019
		6. 7. 8.	Sodium Mercury			8	4.53 6.7 D	
16.	Height of flue gas stacks attached to							lispersed through
	boilers shall be minimum 74.58 meters.	adequa Stack No.	te height of s Stack attached to	tacks as p Stack height	APCB :	standard as g Parameter	Permissible	Applicable permissible
				In Meter				imitafter2 years of Notification S.O.3305(E) dated. 07/12/2017 i.e. from 06/12/2017
		1.	Boiler (50 TPH x 2Nos.)	106	ESP with 4 field	PM SO ₂ NOx Mercury (Hg)	50 mg/NM ³ 100 ppm 50 ppm 	50 mg/NM ³ 600ppm 300ppm 0.03 mg/NM ³
		Height	lers : Stack H of the stack is			n is actually I	nigher than n	orms.
17.	A flue gas stack of 74.58m height shall be provided with online monitoring system to proposed steam Boiler.	have in	of the stack is	e monitorii	ng system	n to steam bo		x 2 Nos.) . We SOx and NOx is

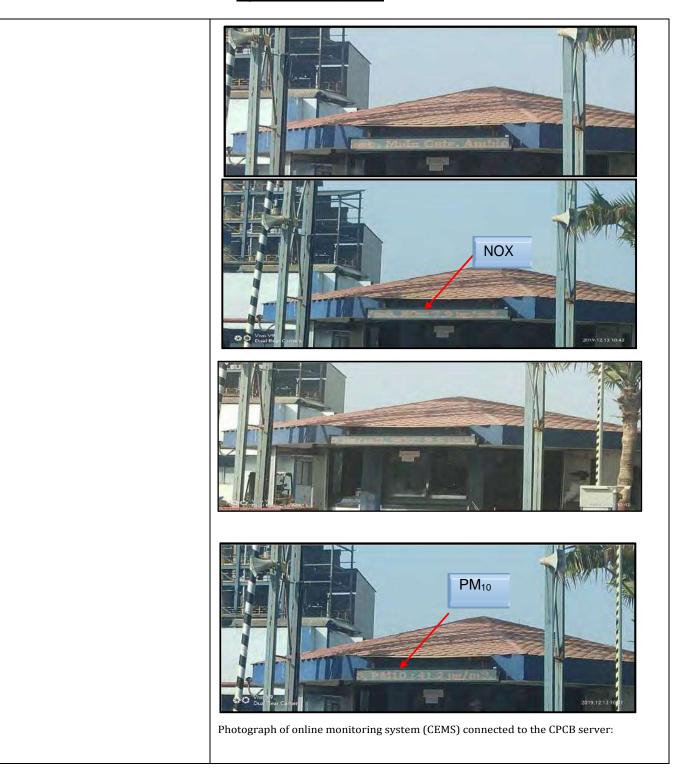
	Mercury gas emission from stacks shall also be monitored on periodic basis.	Stack No.	Stack attached to	Stack height In Meter	APCM		Permissible limit	perr limi yea Noti S.O. date 07/ ² i.e.	licable nissible tafter2 rs of fication 3305(E) ed. 12/2017 from 12/2017		
		1.	Boiler (50 TPH x 2 Nos.)	106	ESP with 4 field	SO ₂ NOx	50 mg/NM [;] 100 ppm 50 ppm 	3 50 r 600 300	ng/NM ^o opm		
		Enviror For Mer No Me six mo	ment Auditi rcury stack e rcury is De onth monito	s also monito ng & Consult emission data tected in Fl pring result	ancy Serv a please re ue gas st a	ice, Ŕajkot, fer specific	an NABL a condition	approved No.1.	agency.		
18.	High efficiency Electro static precipitators (ESP) with efficiency not less than 99.9% shall be installed for control of flue gas emission from the proposed Boilers.	efficien propose reports permise Annex	ve installed icy to contro ed boilers. s shows tha sible limit f ure-XI.	high efficien ol of flue ga Last six mo t Avg. SPM of 50 mg/N SP as shown	as emissio onth (April emission Im ³ . Deta	n within th -2019 to s is identify	e permiss September 39 mg/Ni	ible límit ·-2019) i m³ which	from the monitoring is below		
				Ē	SP						
	The ESP shall be operated efficiently to ensure that particulate matter emission does not exceed the GPCB norms.	Complied . GPCB Permissible limit for PM is 50 mg/NM ³ . Particulate matter emission did not exceed the GPCB norms during report period (April 2019 to September 2019) Which shows that ESP is working efficiently (99.9%). Stack PM emission data from April-2019 to September-2019 is mention below table:									
		No.	Stack Attached	Parameter	Standard values as	;	Values 1 19- Sep	or the pe tember 1	riod April 9		
			to		per CCA		Min.	Max.	Avg.		
		1		SPM	50.0	mg/Nm ³	29	48	39		
		2	Boiler (50	SO ₂	600	mg/Nm ³	105	138	122		
		3	TPH x 2 Nos.)	NOx	300	mg/Nm ³	84	99	92		
		4	-	Mercury	0.03	mg/Nm ³	ND	ND	ND		

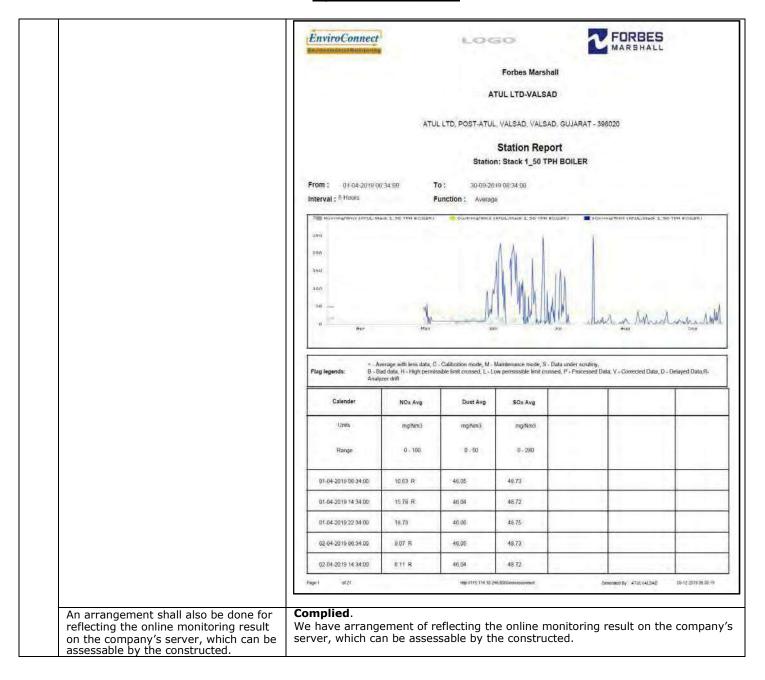
Complied.

We have designed and integrated in Plant DCS in such a way that in event of ESP in working not efficiently or something found fault or operation issue due to which flue gas emission go beyond the specified standard prescribed in the Environment (protection) Rules 1986 as amended from time to time than in such cases / occurrence we will intimate to board & authority to stop the operation plant or decrease the load of power plant. We will not restart or increase the load until the control measures are rectified to achieve the 100 percent efficiency.

Flue gas stack analysis is monitored at regular interval (Monthly) for ensuring the compliance. The testing Lab appointed for Flue gas analysis is being done by GPCB approved (schedule-II) **M/s. Pollucon Laboratories Pvt.Ltd, surat** NABL approved **TC-5945**, issue date-**28/05/2019** and validity till **27/05/2021**. Flue gas emission from the stack meets with the specified standards prescribed in the Environment (protection) Rules1986 as amended from time to time for the report period (April – 2019 to September –2019).

Stack results of last six month period (April-2019 to september-2019):


s	Stack	Stack Ht		Permissibl		Results	
N	Attached To	SIGCK TI	APCM	e Limit	April- 2019	May- 2019	June- 2019
1	FBC boiler E1 (34 TPD)	56 Mt			75.0 98.0 120.0	Not Running	Not Running
2.	FBC Boiler E2 (34 TPH	56 Mt		SPM-100 mg/Nm3	Not Running	Not Running	84 132 150
3.	FBC Boiler E3 (50 TPH)	80 Mt	ESP(4 Field)	SO2-600 mg/Nm3 NOx-600	80.0 128.0 145.0	85 135 152	81 133 148
4.	FBC Boiler W1(45 TPH)	70 Mt		mg/Nm3	65.0 95.0 135.0	70 98 145	68 96 142
5.	Boiler (50 TPH x 2Nos.)	106 Mt		**SPM-50 mg/Nm3 SO2-600 mg/Nm3 NOx-300 mg/Nm3 Hg-0.03 mg/Nm3	45.0 105.0 95.0 ND	48 112 99 ND	47 109 95 ND
6	D.G set (1010 KVA) – stand by only	11 Mt	Adequat e Stack	SPM-150 mg/Nm3 S02-100	39.8 4.4 24.1	30.2 4.9 33.1	19.8 4.6 29.5
7	D.G.Set(1 500 KVA) – Stand by only	11 Mt	Ht	ppm NOx-50 ppm	27.6 4.1 21.7	29.6 3.9 24.8	29.8 4.0 27.9


		By M/s. Atu	<u>II Lta,</u>	<u>Valsad</u>					
-	** F S.O.	3305 (E)	limits	are as pe		fication Date		2015.	
	S N	Stack Attached To	Stack Ht	APCM	Permissible Limit	July-2019	Results Aug-2019	Sept- 2019	
	1	FBC boiler E1 (34 TPD)	56 Mt			87 120 135	65 103 123	60 114 142	
	2.	FBC Boiler E2 (34 TPH	56 Mt	ESP(4 Field)	SPM-100 mg/Nm3	82 127 147	83 108 138	80 107 138	
	3.	FBC Boiler E3 (50 TPH)	80 Mt		4	ESP(S 4 n	SO2-600 mg/Nm3 NOx-600	82 126 138	73 142 147
	4. Boiler W1(45 TPH)	70 Mt	i loldy	mg/Nm3	68 94 132	53 105 120	64 110 127		
	5.	Boilér (50 TPH x 2 Nos.)	106 Mt		**SPM-50 mg/Nm3 SO2-600 mg/Nm ³ NOx-300 mg/Nm ³ Hg-0.03 mg/Nm ³	47 109 95 ND	34 120 84 ND	29 138 98 ND	
	6	D.G set (1010 KVA) – stand by only	11 Mt	Adequat e Stack Ht	SPM-150 mg/Nm3 SO2-100 ppm NOx-50 ppm	42.8 4.9 34.8	27.6 4.8 29.7	30.8 6.4 32.6	
	7	D.G.Set(1 500 KVA) – Stand by only	11 Mt			30.2 4.6 33.5	27.2 3.84 24.8	34.9 4.4 37.8	
		Permissible 3305 (E)	limits	are as pe	er MoEF Noti	fication Date	ed: 7/ 12/ 2	2015.	

19.	Third party monitoring of the functioning of ESP along with efficiency shall be carried out once in a year through a reputed institute / organization.	g of ESP along with efficiency carried out once in a year a reputed institute / Party once in year through a reputed institute. The n					toring has bee % efficiency). gh reputed In es Pvt.Ltd, ty till 27/05 Efficiency (%)	en carried out hstitute GPCB surat NABL /2021. Date of Sampling
		1.	Particulate Matter	Mg/Nm ³	39985	34.86	99.9	17/12/18
		S. N	Parameter	Unit		esult	Efficiency (%)	Date of Sampling
		1.	Particulate Matter	Mg/Nm ³	ESP Inlet 39798	ESP Outlet 33.6	99.9	16/04/19
20.	Lime stone injection technology shall be adopted to control SO2 and it shall be ensured that SO2 levels in the ambient air do not exceed the prescribed standards.	We have adopt lime stone injection technology to control SO2 emission in						
21.	The company shall prepare schedule and carry out regular preventive maintenance of mechanical and electrical parts of ESPS and assign responsibility of preventive maintenance to the senior officer of the company.	Complied . Our company is ISO 14001 certified company and regular preventive maintenance of all the critical equipment is a part of our system. We have standard preventive maintenance schedule / activities (monthly, By monthly, yearly) of mechanical and electrical parts or equipment's of ESPS. We have recorded the percentage completion of preventive maintenance assigned work as per schedule. These scheduled has been prepared and reviewed / approved by senior officer of the company Please find attached herewith preventive maintenance schedule as shown below:						

		ATUL LIMITED ENVIRONMENT MANAGEMENT SYSTEM VALSAD COMPLEX Page of												
BUSINE	55											Page	of	
TITLE		PREVENTIVE		NANCE SCI	HEDULE	4	-		-			-	rage of	
_	IENT NO.	EF/U&S/PH-V			REVISION	NO.	0	0		1	COPY NO	2		1
EFFECTIVE DATE		01/04/2018		-	UTILITY	& SERVIC	CES, POWI	R PLANT	(WEST)	R	EVIEW D/	ATE	31/03/2019	
Sr. No.	Description of equipment / activity	Frequency	Apr	Мау	Jun	Jul	Aug	FY 20. Sept		Nov	Dec	Jan	Feb	1 11
- real			-	1.1 - Annu								1	1.125	
	Annual / Semi annual overhauling of	2 per year			1					V	-	1	1	Г
-	FBC boiler no. 1 (GT - 3266) Annual / Semi annual overhauling of				100					v		-	-	-
1.1.2	FBC boiler no. 2 (GT - 8885) Annual / Semi annual overhauling of	2 per year		٧	-					_	-	-	-	-
	FBC boiler no. 3 (GT - 9047)	2 per year				٧	-						1	
		1.2 - Activit	ies carrie	d out for	Boilers a	s per sche	dule 1.1.1	1, 1.1.2 an	d 1.1.3					
1.2.1	Replacement of all the bed tubes.	Th	is activit	is to be c	:hecked /	carried o	ut as per f	requency	mentione	d agains	t Sr. no. 1	11,11	28,11.3,	1
1.2.2	Checking of hole diameter For fluidizing air nozzles, cleaning / replacement of the same if necessary.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1 This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1						1.1.1.1.1	2 & 1.1.3.					
1.2.3	Check condition of air preheater tubes & Economizer tubes and replacement of the same if necessary.	5					.11,11	2 & 1.1 3,						
-	Cleaning of gas path for air preheaters	-	is activit	is to be d	hecked /	carried o	ut as per f	remienzy	mentione	d agains	t \$7. no. 1	11.11	2 & 1.1.3	-
1.2.4	& Economizer	In	o des ris	CONTRACTORS	39.00.000			requertey	0.000.00	a allanda		as at pas	_	_
1.2.4	Contraction of the second s		a population	/ is to be c	hecked /	- CARL	ut as per f						2 & 1.1.3.	
1.2.4	& Economizer Checking of bearings / drive couplings for BFP, ID, PA,FD & SA fans and motors.		is activit		ATUL LIN	carried or	ut as per f							of
1.2.4 1.2.5 BUSINES	& Economizer Checking of bearings / drive couplings for BFP, ID, PA,FD & SA fans and motors.	Th	is activit EN	VIRONME	ATUL LIN NT MANA	carried of	ut as per f						2 & 1.1.3.	of
1.2.4 1.2.5 BUSINES TITLE DOCUM	& Economizer Checking of bearings / drive couplings for BFP, ID, PA, FD & SA fans and motors. SS	VALSAD COM PREVENTIVE P EF/U&S/PH-W	is activit EN PLEX MAINTEN	ARONMEI	ATUL LIN NT MANA HEDULE REVISION	Carried of ITED GEMENT	ut as per f	requency	mentione	d agains	t Sr. no. 1 COPY NO	LI I, 1.1),	Page	1
1.2.4 1.2.5 BUSINES	& Economizer Checking of bearings / drive couplings for BPP, ID, PA,FD & SA fans and motors. SS ENT NO. VE DATE	VALSAD COM PREVENTIVE I EF/U&S/PH-W 01/04/2018	is activit EN PLEX MAINTEN	ARONMEI	ATUL LIN NT MANA HEDULE REVISION	Carried of ITED GEMENT	ut as per f	requency 0 R PLANT ((WEST)	d agains	t Sr. no. 1	LI I, 1.1),	Page	1
1.2.4 1.2.5 BUSINES TITLE DOCUM Sr. 1.2.6 1.2.6	& Economizer Checking of bearings / drive couplings for BPP, ID, PA, FD & SA fans and motors. B ENT NO. /E DATE Description of equipment / activity Checking condition of Spreader Rotors Pocket Feeders and Replacement of he same if necessary.	Th VALSAD COM PREVENTIVE P EF/UBS/PH-W 01/04/2018 Frequency	ENT ENT PLEX MAINTEN Apr	MRONMEI	ATUL LIN NT MANA HEDULE REVISION UTILITY	Carried on ITED INGEMENT NO. 8 SERVIC	ut as per f	0 R PLANT (FY 20) Sept	(WEST)	id agains RI Nov	COPY NO EV/EW DA), ATE	Page 31/03 Feb	1 /201
USINES UUSINES ITLE OCUM SF. No. 1.2.5 / 1 1.2.7 / 1 3	& Economizer Checking of bearings / drive couplings for BFP, ID, PA, FD & SA fans and motors. SS ENT NO. VE DATE Description of equipment / activity Checking condition of Spreader Rotors (Pocket Feeders and Replacement of he same if necessary. Check of condition of drag chains / PA ines and repair / replacement of the same if necessary.	Th VALSAD COM PREVENTIVE I EF/U8S/PH-W U1/04/2018 Frequency Thi Thi	ENI ENI PLEX MAINTEN MAINTEN MAINTEN MAINTEN Sactivity	MRONMEI	ATUL LIN MT MANA HEDULE REVISION UTILITY Ilun	ITED NO. NO. Jul	vit as per f	0 R PLANT Sept Frequency	mentione (WEST) Oct mentione	Ri Nov	COPY NO COPY NO EVIEW DA),),), 11, 11, 11, 11, 11,	Page 31/03 Feb 2 & 1.1.3.	1 /201
1.2.4 1.2.5 BUSINESS TITLE DOCUM Sr. No. 1.2.5 1 1.2.5 1 1.2.5	& Economizer Checking of bearings / drive couplings for BFP, ID, PA, FD & SA fans and motors.	Th VALSAD COM PREVENTIVE / EF/U85/PH-W 01/04/2018 Frequency Thi Thi	ENN ENN PLEX MAINTEN Apr is activity	MANCE SCH May is to be d	ATUL LIN NT MANA HEDULE REVISION UTILITY Jun hecked /	ITED IGEMENT NO. Jul Jul	ut as per f	0 0 FY 2017 Sept requency	westione (WEST) 0ct mentione	d agains RI Nov d against	t Sr. no. 1 COPY NO VIEW DA Dec t Sr. no. 1	1.1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.	Page 31/03 Feb 2 & 1.1.3.	1 /201
1.2.4 1.2.5 1.2.5 1.1.2.5 1.1.2.5 1.2.5 1.2.5 1.2.5 1.2.8 1.2.8 1.2.8	& Economizer Checking of bearings / drive couplings for BP, ID, PA, FD & SA fans and motors. SS ENT NO. VE DATE Description of equipment / activity Checking condition of Spreader Rotors (Pocket Feeders and Replacement of he same if necessary. Check of condition of drag chains / PA ines and repair / replacement of the same if necessary. Cheaning and checking of all ESPs fields	Th VALSAD COM PREVENTIVE I EF/U8S/PH-W 01/04/2018 Frequency Thi Thi	ENI ENI PLEX MAINTEN V/25/00 Apr is activity s activity	May is to be d	ATUL LIN NT MANA HEDULE REVISION UTILITY Jun hecked / hecked /	ITED IGEMENT NO. Jul Jul carried ou	ut as per f	0 0 FY 201 FY 201 Sept requency requency	mentione (WEST) Oct mentione	d agains RI Nov d against	t Sr. no. 1 COPY NO EVIEW DA EVIEW DA EVIEW DA	1.1.1, 1.1, 1.1,), ATE 1.1.1, 1.1, 1.1, 1.1, 1.1, 1.1,	Page 31/03 2 & 11.3. 2 & 11.3.	1 /201
1.2.4 1.2.5 BUSINES TITLE DOCUM EFFECTIV 1.2.5 1.2.6 1.2.7 1.2.8 1.2.8 1.2.8 1.2.8	& Economizer Checking of bearings / drive couplings for BP, ID, PA, FD & SA fans and motors. IS ENT NO. //E DATE Description of equipment / activity Checking condition of Spreader Rotors Pocket Feeders and Replacement of he same if necessary. Check of condition of drag chains / PA ines and repair / replacement of the same if necessary. Checking of all ESPs fields including internal parts & hoppers). Checking of thickness of all duct plates and replacement of the same if	Th VALSAD COM PREVENTIVE F F/U85/PH-W 01/04/2018 Frequency Thi Thi Thi Thi	ENU ENU PLEX MAINTEN V/25/00 Apr is activity s activity is activity	May is to be d	ATUL LIM MT MANA HEDULE REVISION UTILITY Iun hecked / hecked /	ITED IGEMENT NO. Jul Jul carried ou	ut as per f	0 0 R PLANT (Sept requency requency requency	mentione (WEST) Oct mentione mentione	d agains RI Nov d againsi d againsi d againsi	t Sr. no. 1 COPY NO EVIEW DA EVIEW DA E Sr. no. 1 t Sr. no. 1	1.1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.	Page 31/03 8 1.1.3. 2 & 1.1.3. 2 & 1.1.3.	1
1.2.4 1.2.5 BUSINES TITLE DOCUM EFFECTIV Sr. No. 1.2.5 1.2.8 (1.2.9 1.2.9 1.2.9 1.2.10 (1.2.11 1.2.11	& Economizer Checking of bearings / drive couplings for BP, ID, PA, FD & SA fans and motors. B ENT NO. VE DATE Description of equipment / activity Checking condition of Spreader Rotors (Pocket Feeders and Replacement of he same if necessary. Check of condition of drag chains / PA ness and repair / replacement of the same if necessary. Checking of all ESPs fields including internal parts & hoppers). Checking of thickness of all duct plates and replacement of the same if necessary.	Th VALSAD COM PREVENTIVE P EF/U8S/PH-W 01/04/2018 Frequency Thi Thi Thi Thi	ENT ENT PLEX MAINTEN //25/00 Apr is activity is activity is activity is activity is activity	May May is to be d	ATUL LIN MT MANA HEDULE REVISION UTILITY Jun hecked / hecked / hecked /	ITTED GEMENT NO. Jul Jul carried ou carried ou carried ou carried ou carried ou	ut as per f	0 FY 2011 FY 2011 Sept requency requency requency requency	mentione (WEST) Oct mentione mentione mentione	d agains RI Nov d against d against d against	t Sr. no. 1 COPY NO. EVIEW DA EVIEW DA),), ATE 11, 13, 13, 13, 11, 13, 11, 13, 11, 13, 11, 13, 11, 13,	Page 31/02 8 11.3. 2 & 11.3. 2 & 11.3. 2 & 11.3.	1

	By M/s. Atul Ltd, Valsad						
22.	Diesel to the tune of 300 Lit/hr shall be used as a fuel in stand -by D. G. Set (1500 KVA)	Complied . We have D.G. set of 1010 & 1500 KVA on standby only. Both D.G sets are not started in last six month compliance period (April-19 to Sep-19). So that the diese consumption for the report period is zero.					
23.	The flue gas emission from DG set shall be dispersed through adequate stack height as per CPCB standards. At no time the emissions levels shall go beyond the stipulated standards.	Complied . Adequate stack height of 11 mt of DG set (1500 KVA) and 10 mt of D.G. set (1010 KVA) as per CPCB standards. Both D.G sets are not started in last six month compliance period (April-19 to Sep-19).					
	Acoustic enclosure be provided to DG set to mitigate the noise pollution.	Complied . We have provided Acoustic enclosure to both DG sets to mitigate the noise pollution in day time and night time.					
24.	Online monitoring system shall be installed to monitor the SOx, NOx and SPM in the flue gas stack.	Complied. Online monitoring system for SPM, SOx and NOx is already been made and connected to CPCB server. Photograph of main gate digital display board for ambient air quality.					

25.	Adequate storage facility for the fly ash in terms of closed silos shall be provided at site. No pond shall be constructed.	200 MT and T well enough f	Two silo for our a ox. 250 sh pond sh ation cycled o	of 300 M average of TPD. We Y 7	IT capacit generatio	y of each, n of last s the fly ash	, total 1200 six complia) MT capa nce repor i these sile ty (kg) 8-19 710	d three silo of acity, which is t (April-19 to os so we have
		Unit Sole	d	7	5446059	ToC	o Brick Mar 63092 ement Indus	2190 stry:52615 0	
		% Utiliz Fly ash / bott as shown belo Fly Ash	om ash	generatio : April19	100 % on data fo May 19	or period (1009 April-2019 July 19		mber – 2019) Sept 19
		-		-			-	-	-
		Generation Disposal	MT MT	3677 3677	4420 4420	5432 5432	5472 5472	5170 5170	4765 4765
26		Photograph of	of Closed	a silos fo	r Fly ash	/ Bottom	ash stora	ge:	
26.	Handlingoftheflyashshallbethrougha closed pneumaticsystem.	Complied . We are handlin	ng of fly a	ashthrou	gh a close	dpneumat	tic system w	hich is sho	own below:

By M/s. Atul Ltd, Valsad

			Dense p	phase p	pneuma	ttic ash	handling	g system	n
27.	Ash shall be handled only in dry state.	Complied. We are handl	ing ash	only in d	ry state.	Sold to ce	ment and t	orick mar	ufacturer.
28.	The unit shall strictly comply with the fly ash Notification under the EPA and it shall ensure that there is 100% utilization of fly ash to be generated from the unit.	as shown belo Fly Ash Generation Disposal We have do supply of Dated.21.09	riy ash to eriod. cycled o ithin om ash ow table Unit MT MT MT	Tota Year 7453 r 9122 7544 7544 100 generatio : April19 3677 3677 3677	erated fro T Quantity r 17-18 33859 200 46059 46059 500 46059 46059 4420 4420 4420 500 500 500 500 500 500 500 5	om the uni (kg) (kg) Yea 683 Nil To 630 To 0 To 100 0 5432 5432 5432 5432 5432 5432	it during las ar 18-19 353710 Brick Manuf 092190 Cement Indu al: 683537 9% April-2019 July 19 5472 5472 5472 cement L ed, Atul,	facturer: istry: 5261 10 to Septe Aug 19 5170 5170 td. And	nth 520 520 mber – 2019) Sept 19 4765 4765 Atul Ltd. For
29	The fugitive emission in the work zone environment shall be monitored. The emission shall confirm to the standards prescribed by the concerned authorities from time to time (e.g. Directors of Industrial Safety & Health) Following Indicative guidelines shall be also be followed to reduce the fugitive emission.	environment time to time. emission. Measures add • All proces • More weig leakage/s	to confir And inco opted to s pumps optiage opillage.	m the st licative <u>c</u> control f shall be on selecti	andard p guidelines ugitive en providec ion of Mo	rescribed I are strict mission: I trays to o C of piping	by the cond ly followed collect prob g shall be g	cerned au I to reduc bable leak iven to a	

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER

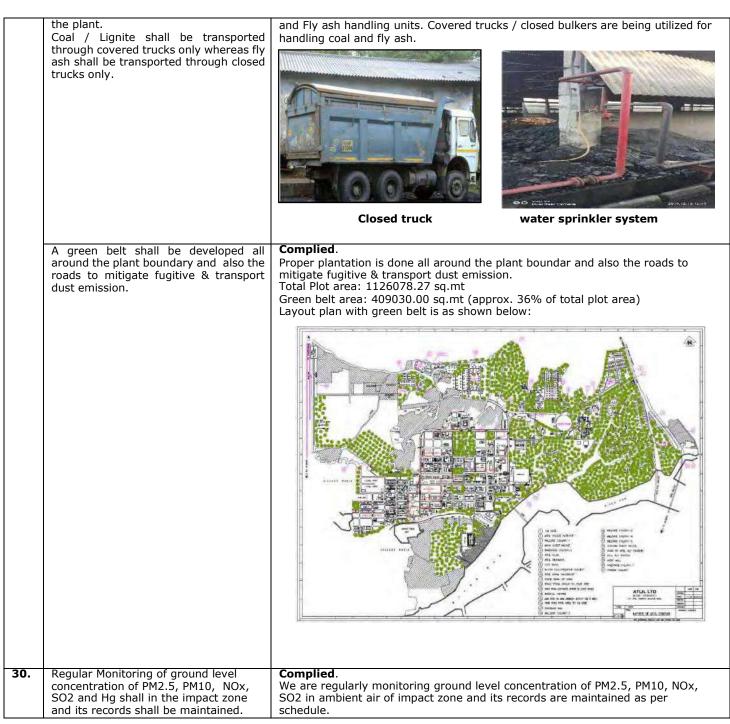
<u>NO.:F. No. SEIAA/GUJ/EC/1(d)/340/2016, DATED: 20/05/20</u>) <u>16</u>
Period – APRIL 2019 TO SEPTEMBER 2019	

By M/s. Atul Ltd, Valsad be provided to prevent hazardous material overflow. De-dusting system is provided at coal storage area, closed silo system available to collect fly ash. Covered conveyer belt system is available for transf of coal. water sprinkle system is available to control dust fugitive emission. Proper system is provided for decontamination and effective cleaning of drum All transfer points are fully enclosed. All roads are RCC & paved on which movement of raw materials or products a take place. Maintenance of air pollution control equipments are to be done regularly. All the workers are working with proper PPE's. i.e boiler shuit, dust mask, safe goggles, face shield, safety shoes etc. Adequate Green belt is developed around the plant to arrest the fugitive
 De-dusting system is provided at coal storage area, closed silo system available to collect fly ash. Covered conveyer belt system is available for transf of coal. water sprinkle system is available to control dust fugitive emission. Proper system is provided for decontamination and effective cleaning of drum All transfer points are fully enclosed. All roads are RCC & paved on which movement of raw materials or products a take place. Maintenance of air pollution control equipments are to be done regularly. All the workers are working with proper PPE's. i.e boiler shuit, dust mask, safe goggles, face shield, safety shoes etc. Adequate Green belt is developed around the plant to arrest the fugitive
emissions. Analysis reports of work zone area is shown below table: Location of Sampling: Boiler Plant Sampling by: M/s. Pollucon Laboratory Pvt.Ltd (NABL approved)

S.N	Test Paramete r	Unit	Sampling Location	Date of Monitori ng	Result	Permissible limit
	SPM SO2		FBC Boiler 1		Closed Closed	100 600
1	NOX	mg/Nm ³		closed	Closed	600
_	SPM		FBC Boiler 2		75.6	100
2.	S02	mg/Nm ³	FBC Doller Z		510	600
	NOX SPM	ing/inin-		_	306 94	600 100
	502		FBC Boiler 3		532	600
3.	NOX	mg/Nm ³			298	600
ŀ.	Noise	Db(A)	Control room		51.8	90
	ust	mg/Nm ³	south / west cornerofFBC/3 control room	- 16/07/201	3.10	10
5.	Dust	mg/Nm ³	East site DM plant (on road)	9	3.85	10
7.	Dust	mg/Nm3	North /west	-	2.40	10
		-	corner of DG set room			
3.	Dust	mg/Nm3	Near crusher	-	9.00	10
		0	area			
S.N	Test Parameter	Unit	Sampling Location	Date of	Resul	Permissible
	SPM		Location	Monitoring	t 66.1	limit 100
	502	1.		F	540	600
1	NOx	mg /	FBC Boiler 1	+	391	600
		Nm ³				
	SPM	+ · · · · ·		1	/5.1	100
2	502	mg /		1	560	600
2.	NOX	Nm ³	FBC Boiler 2	Ē	410	600
	SPM	1111-		ŀ	52	100
		1		L L	02	600
_					510	
3.	NOx	mg /	FBC Boiler 3	-	510 471	600
	NOx	Nm ³		16/09/2019	471	600
4.	NOX NOISE	Nm ³ Db(A)	Control room	16/09/2019	471 56.1	600 90
<u>4.</u> 5.	NOx Noise Dust	Nm ³ Db(A) mg/ Nm ³	Control room south/west corner of FBC / 3 control room	16/09/2019	471 56.1 3.4	600 90 10
1 . 5.	NOISE Dust	Nm ³ Db(A) mg/ Nm ³ mg/ Nm ³	Control room south/west corner of FBC / 3 control room East site DM plant (on road)	16/09/2019	471 56.1 3.4 2.9	600 90 10 10
4.	NOx Noise Dust	Nm ³ Db(A) mg/ Nm ³	Control room south/west corner of FBC / 3 control room East site DM	16/09/2019	471 56.1 3.4	600 90 10

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER

<u>NO.:F. No. SEIAA/GUJ/EC/1(d)/340/2016, DATED: 20/05/2016</u> <u>Period – APRIL 2019 TO SEPTEMBER 2019</u>


	<u>By M/s. Atul Ltd, Valsad</u>
All handing & transport of coal & Lignite shall be exercised through covered coal conveyors only.	Complied . All handing & transport of coal & Lignite is done through covered coal conveyors only.
Enclosure shall be provided at coal /	Noted and Complied.
Lignite loading and uploading operations.	Enclosure is provided at coal / Lignite loading and uploading operations.

By M/s. Atul Ltd, Valsad

Water shall be sprinkled on coal / Lignite stock piles periodically to retain some moisture in top layer and also while compacting to reduce the fugitive emission.	<text><text><image/><image/></text></text>
All transfer points shall be fully	Noted and Complied.
enclosed.	We have on road coal conveying system through covered coal trucks and in plant coal transferring system through closed conveying system. All transfer points are fullyenclosed.flyashintermsofclosedsilosshallbeprovidedatsite.Handling of the fly ash shall be through a closed pneumatic system.
Adequate dust suppression / extraction system at crusher house as well as for the coal/ Lignite stock yard and other vulnerable areas shall be provided to abate dust nuisance.	Complied . We have provided Adequate dust extraction system (Dust collector) at crushe house is provided While dust suppression system (water sprinkler system) the coal, Lignite unloading areas to abate dust nuisance.
Accumulated coal dust / fly ash on the ground and surfaces shall be removed / swept regularly and water the area after sweeping.	Complied . We have adopt practice for Coal dust / Fly ash is being cleaned regular basis as poschedule that we have set. We are also ensuring that Coal dust and fine particles are being loaded to coal handling plant after spraying water on it.
Internal roads shall be either concreted or asphalted or paved properly to reduce the fugitive emission during vehicular movement.	Complied . Paver blocks have been provided in the ESP and some internal area of power plant Concrete Road have been built in the surrounding area of Power Plant to reduce fugitive emissions during vehicle movement.
	Concrete read at Captive Power Plant
	Concrete road at Captive Power Plant

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. SEIAA/GUJ/EC/1(d)/340/2016, DATED: 20/05/2016

P<u>eriod – APRIL 2019 TO SEPTEMBER 2019</u>

Ambient air quality levels shall not exceed the standards stipulated by GPCB.	Complied . The Location of consultation with downwind direction anticipated. This a been shown to aut	GPCB so that at I on as well as wh ilso covers the im thority like SPCB,	east one station ere maximum gr pact, if any, of th CPCB &MoEF dur	is installe ound lev e project ing their y	ed in the el conce plant. Th visit to ou	upwind and ntration are le same had urfactory.	
	The maximum va emission level we given below:	nt beyond the stip	oulated standards	confirms 5. Parame	that at ter wise	no time the summary is	
	Summary of Am Station	bient Air Quality Parameter	/ results: Limit micro gm/NM ³	Values for the period May 19- Oct 19			
			ginzia	Min.	Max.	Avg.	
	66 KV	RSPM (PM2.5)	60	21.3	45	32.2	
	(Up wind)	PM10	100	37.6	58	45.7	
		SO2	80	7.5	9.8	8.95	
		NOx	80	7.9	16.4	10.4	
		Ammonia	850	ND	ND	ND	
		HCI	200	ND	ND	ND	
	Opposite Shed D	RSPM (PM2.5)	60	27	56	41.7	
	(Up wind)	PM10	100	34	60	46.8	
		SO2	80	7.9	13.5	10.4	
		NOx	80	8.3	11.3	9.6	
		Ammonia	850	ND	ND	ND	
		HCI	200	ND	ND	ND	
	Near West site	RSPM (PM2.5)	60	24	42	34	
	ETP (Up Wind)	PM10	100	37	62	51.7	
		SO2	80	8.3	11.2	9.9	
		NOx	80	7.2	10.2	9.1	
		Ammonia	850	ND	ND	ND	
		HCI	200	ND	ND	ND	
	Near North ETP	RSPM (PM2.5)	60	27	40	34.2	
	(Up wind)	PM10	100	38	68	50.5	
		SO2	80	6.4	10.6	8.97	
		NOx	80	5.8	9.8	8.6	
		Ammonia	850	ND	9.0 ND	ND	
		HCI	200	ND	ND	ND	
	TSDF (Down wind)	RSPM (PM2.5)	60	26	58	43	
		PM10	100	7.8	59	44.97	
		SO2	80	7.4	10.8	9.2	
		NOx	80	6.3	9.5	7.9	
		Ammonia	850	ND	ND	ND	
		HCI	200	ND	ND	ND	
	Main Guest	RSPM (PM2.5)	60	12	38	23.2	

		House (Down	PM10	100	25	53	39.8		
		wind)	SO2	80	4.5	10.5	7.5		
			NOx	80	5.1	17.5	10.6		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
		Wyeth Colony	RSPM (PM2.5)	60	10	32	19.5		
		(Down wind)	PM10	100	26	50	38		
			SO2	80	4.1	9.5	6.7		
			NOx	80	4.1	14.2	9.4		
				850	ND	ND	9.4 ND		
			Ammonia						
			HCI	200	ND	ND	ND		
		Gram panchayat hall (Cross wind)	RSPM (PM2.5)	60	12	45	25		
			PM10	100	29	47	38.8		
			SO2	80	5.8	9.2	7.6		
			NOx	80	5.7	14.2	10.0		
			Ammonia	850	0	0	ND		
			HCI	200	0	0	ND		
		Main office,	RSPM (PM2.5)	60	18	35	27.3		
		North site (Cross wind)	PM10	100	35	58	46.7		
			SO2	80	7.2	9.5	8.5		
			NOx	80	7.3	14.2	11.3		
			Ammonia	850	ND	ND	ND		
			НСІ	200	ND	ND	ND		
		Haria water tank	RSPM (PM2.5)	60	16.3	39	26.8		
		(Cross wind)	PM10	100	22.2	41.1	34.7		
			SO2	80	6.7	9.5	8.4		
			NOx	80	5.8	15.8	9.5		
			Ammonia	850	ND	ND	ND		
			HCI	200	ND	ND	ND		
	If at any stage these levels are found to	Complied.							
	If at any stage these levels are found to exceed the prescribed limits necessary additional control measures shall be taken be decided in consultation with the GPCB.	No such case four designed and inter not efficiently or emission go bey (protection) Rules occurrence we wi decrease the load	No such case found till date. Still if these type of situation is come than We have designed and integrated in Plant DCS in such a way that in event of ESP in workin not efficiently or something found fault or operation issue due to which flue g emission go beyond the specified standard prescribed in the Environme (protection) Rules 1986 as amended from time to time than in such cases occurrence we will intimate to board & authority to stop the operation plant decrease the load of power plant. We will not restart or increase the load until the control measures are rectified to achieve the 100 percent efficiency.						
31.	A.4 SOLID/ HAZARDOUS WASTE :	Not Applicable							
51.	The company shall strictly comply with the rules and regulations with regards to handling and disposal of Hazardous waste in accordance from time to time.	There is no Haza	ardous waste ge	neration in Capt	tive Pow	er Plant			
	Authorization from the GPCB shall be obtained for collection / treatment/storage disposal of hazardous	Complied . We have CCA Ame waste is generated				16. No h	azardous		

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S LETTER NO.:F. No. SEIAA/GUJ/EC/1(d)/340/2016, DATED: 20/05/2016 Period – APRIL 2019 TO SEPTEMBER 2019

waste. 32. Not Applicable. Hazardous waste sludge shall be packed stored in separate designated There is no Haz. waste generation in this project. hazardous waste storage facility with impervious bottom and leachate collection facility, before its disposal 33. Complied. The used oil shall be sold to only to the Used oil is being sold to GPCB authorized vendor namely ABC Organics & registered recyclers / refiners. Chemicals. NHEFTING AND SERVICES (CEM) alul ATTAL LITE Alts, ALEC Organities do 6 Technical Phot 560%, Paraoli Inchastruct Estate OTEC, Tech Antifectures: 146. DISPOSAL OF OLDER SED OFL. Plance refers to your letter started 25.9,2019 and indusquent personal downworms you had with the wideringeed, it Artil, for the atross solgiest, we agree to take Old/Gaud OlLS on AS 19 WHERE 15 and as per following memory and availations: Sr. No Item LION Halan Ohia 2 Interference and the second statistic day a construction of the second s ull payment is advance by RTC/S, The Hans durarts for HTC/S is as under Name State Back of backs of balls And (maryo) Branch ATT/L, IESC Code SBIN0001157. Back Assessmi No. 3077317237 GST INTERCOS. (CS. 175 outra. Delivery 17x our works And Tackey NORTH size 20 arrange to lift the off to your DROMTANKER, positively on achievers 10,2010 RUMARKS: Plone arrange to future in the copy of the valid CPUD / CPUB linesce along with PASS BOOK for the phone. 8 et actions: Abul Thurse, G.T.Paul Mang, Alumandond MODI-4, Chearer, Friday 34. The discarded containers / barrels Complied. /bags/ liners shall be sold only to the No bags / liners are being utilized for Power Plant. registered recycler. 35. Complied. For storage of fly ash closed silos of adequate capacity shall be provided. We are not constructed ash pond to the CPP unit. We have closed three silo of 200 MT and Two silo of 300 MT capacity of each, total 1200 MT capacity, which is well enough for our average generation of approx. 250 TPD. We dispatch the fly ash daily from these silo so we have not prepare ash pound. Fly ash Total Quantity (kg) Year 17-18 Year 18-19 74533859 68353710 Generation Quantity recycled or re-utilized within the 912200 Nil unit To Brick Manufacturer: 63092190 Sold 75446059 To Cement Industry: 5261520 Total: 68353710 % Utilization 100 % 100% Fly ash / bottom ash generation data for period (April-2019 to September - 2019) as shown below table:

36.

	•							
	Fly Ash	Unit	April	19 May 19	June19	July 19	Aug 19	Sept 1
	Generation	МТ	367	7 4420	5432	5472	5170	4765
	Disposal	MT	367	7 4420	5432	5472	5170	4765
No ash pond shall be construed in the project.	Complied. No ash pond	is const	rued i	n the project				
The fly ash shall be supplied to the manufacturers of fly ash based products	Complied . Fl being used fo						nufacture	rs and also
such as cement, concrete blocks, bricks, panels, etc.	Fly ash			Total Quant	ity (kg)			
parlets, etc.				Year 17-18		Year 18-19		
	Generation			74533859		68353710		
	Quantity recycled or re-utilized within the unit				912200 Nil			
	Sold			75446059 To Brick Manu 63092190 To Cement Inc Total: 683537		Industry: 5261520		
	% Utilization			100 %		100%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
The unit shall strictly comply with the Fly Ash Notification under EPA and it shall be ensured that there is 100%	We have do supply of dr Complied. We are strictl that is 100 %	y ash f	rom /	Atul Limited	,Valsad,	Gujarat.Da	we are e	9.2019.
utilization of fly ash to be generated from theunit.	Fly ash		T	otal Quantity	(kg)			
				ear 17-18		ar 18-19		
	Generation			4533859		353710		
	Quantity rec re-utilized wit the unit			12200	Nil			
	Cold		71					7

		63092190 ToCementIndustry:5261520 Total: 68353710	
% Utilization	100 %	100%	
Fly ash / bottom ash ge	eneration data for pe	eriod (April-2019 to Septembe	er – 2019)

75446059

Fly Ash	Unit	April19	May 19	June19	July 19	Aug 19	Sept 19
Generation	MT	3677	4420	5432	5472	5170	4765
Disposal	MT	3677	4420	5432	5472	5170	4765

To Brick Manufacturer:

We have done Agreement between Ambuja cement Ltd. And Atul Ltd. For supply of dry ash from Atul Limited, Atul, Valsad, Gujarat. Dated. 21.09.2019. Refer Annexure-XII.

		21.09.2019. Refer Annexure-XII.
37.	All possible efforts shall be made for co- processing of the Hazardous waste prior to disposal into TSDF/CHWIF.	
	A.5 SAFETY:	
38.	The project management shall strictly comply with the provisions made in the Factories Act, 1948 as well as manufacturer, storage and Impact of Hazardous chemicals Rules 1989	We are complying all the rules and regulation led by MSIHC, 1989. We are

Sold

	as amended in 2000 for handling of hazardous chemicals.	& Disposal to authorized Facility/TSDF. We have obtained valid authorization from GPCB towards handling of above mention waste vide CC&A Amendment No. AWH – 82241dated.20/09/2016. Since there is no hazardous waste generated in Captive Power Plant.
39.	Necessary precautions like continuous monitoring of hot spot (ignite lignite) using temperature detection systems water sprinklers, avoiding stacking of lignite near stream pipeline etc shall be made for storing lignite to prevent fire hazard.	Complied . Lignite is usually used on the same day of its receiving at site as far as possible. Lignite is not being stored for not more than 3-4 Days. However, Water spray and fire hydrant system is available for the fuel storage sheds.
40.	All the risk mitigation measures, general & specific recommendations mentioned in risk Assessments Report shall be implemented.	Complied . We will implement All the risk mitigation measures, general & specific recommendations mentioned in risk assessments report.
41.	A well designed fire hydrants system shall be installed as per the prevailing standards.	Complied. A well designed Fire hydrant system is adequate and as per standards. Fire hydrant Network details: Single Hydrant point: 192Nos. Double hydrant point: 07 Nos. Fixed monitor: 11Nos. Hose boxes: 30 Nos. Central hose station: 10 Nos. Hose pipe: 15 mts. 250 Nos. Branch pipes (jet type): 50 Nos. Foam making branch pipe: 03 Nos. Foam compound: 200 litre Foam generator with high expansion foam: 2 Nos.
42.	Personal protective Equipment shall be provided to worker and its usage shall be ensured and supervised.	Complied . PPEs like nose masks, safety goggles, chemical resistive aprons, fire proof apron, Hand gloves, safety helmet, welding goggles, ear mugs, safety shoes etc are providedtotheworkersandutilizationofthePPEsisfollowedstrictlyinPowerPlant.

	РНС	DTOGRAPHS OF ONSITE MOCK DRILL	
		Onsile mock drill	
			1
ATUL Stores	Accounts/Indentor	ATUL LIMITED INFRA PC OU	
1.170		STORES REQUISITION SLIP	
	humbar		
Org Co	Aumber : 15192745 ode : 813	Date Chargable	: 24-JUL-19 2C : 51P01
	ime : Infra En		: STEAM PLANT
	rawing CC. : 01P43	CC Name	an a
Withda	waing cc : Mechanic	al Power House Ca	
name	e i safety g		
No.	ttem Code Descript 2902904104 HONEYWELL MODEL- A70 TH_GANDHI	SAFETY GOGGLE (ANTI-FOG), N	
RAISE) BY	AUTHORISED BY	ISSUED BY
	Accounts/Indentor	ATUL LIMITED INFRA PC OU STORES REQUISITION SLIP	13-DEC-19 15:12:39 Page 1 of 1 STR/PM/05/00
Stores/	umber : 15043812	INPEA PC OU STORES REQUISITION SLIP Date	Page 1 of 1 STR/PM/05/00 : 26-MAR-19
Stores/	umber : 15043812 de : 813 me : Infra Eng	INFRA PC OU STORES REQUISITION SLIP Date Chargable C incering (PC chargeable	Page 1 of 1 STR/PM/05/00 : 26-MAR-19
Req. N Org Co Org Na Withdr	umber : 15043812 de : 813 me : Infra Eng awing CC. : 01F43	INFRA PC OU STORES REQUISITION SLIP Date Chargable C incering (PC Chargeable CC Hame	Page 1 of 1 STR/FM/05/00 : 26-MAR-19
Stores/ Req. N Drg Co Org Na Withdr	umber : 15043812 de : 813 me : Infra Eng awing CC. : 01F43 waing cc : Mechanica	INFRA PC OU STORES REQUISITION SLIP Date Chargable C incering (PC Chargable CC Hame 1 Power House Ca	Page 1 of 1 STR/FM/05/00 : 26-MAR-19
Stores/ Beg. N Drg Co Org Na Withdr Withdr name Purpos	umber : 15043812 de : 813 me : Infra Eng awing CC : 01F43 waing cc : Mechanica " : Hand Glov	INFRA PC OU STORES REQUISITION SLIP Date Chargable C ineering (PC Chargeable CC Name 1 Power House Ca es for Power House	Page 1 of 1 STR/PM/05/00 : 25-MAR-19 : SIDOI : STRAM FLANT
Req. N Drg Co Org Na Withdr Withdr Purpos	umber : 15043812 de : 813 me : Infra Eng awing CC : 01F43 waing cc : Mechanica " : Hand Glov	INFRA PC OU STORES REQUISITION SLIP Date Chargable C ineering (PC Chargeable CC Name 1 Power House Ca es for Power House	Page 1 of 1 STR/PM/05/D0 : 25-MAR-19 2 : 51D01 : STRAM FLANT
Req. N Org Co Org Na Withdr Withdr Purpos Sr. I No.	umber : 19043812 de : 813 me : Infra Eng awing CC : 01943 waing cc : Mechanica e : Hand Glov tem Code Descript	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C CC Name - 1 Power House ca for Power House Iou Uo	Page 1 of 1 STR/PM/05/00 : ZE-MAR-19 : SID01 : STRAM PLANT 1 Item Qty Default Require Locator
Req. N Drg Co Org Na Withdr Withdr Purpos Sr. I NO.	umber : 15043812 de : 813 me : Infra Eng awing CC : 01F43 waing cc : Mechanica e : Hand Glov tem Code Descript. 902901029 14 IN RUBE	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C Chargable C C Name - 1 Power House ce for Power House Iou Uo	Page 1 of 1 STR/PM/05/D0 : 25-MAR-19 2 : SIDDI ; STRAM PLANT : STRAM PLANT DEfault Oty Locator EGEN40.039.04 30
Req. N Org Co Org Na Withdr name Purpos Sr. 1 NO. 1 2 2 2	umber : 15043812 de : 813 me : InTra Eng awing CC. : 01F43 waing cc : Mechanica f : Hand Glov Lem Code Descript: 902901029 14 IN RUBEN 902901029 14 IN RUBEN 902905014 DUST MASK, 902905014 DUST MASK,	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C Chargable C C Chame CC Hame 1 Power House ca for Power House Iou Uor SR HAND GLOVES PR	Page 1 of 1 STR/PM/05/D0 : 25-MAR-19 : SIPDI : STRAM PLANT 1 DETault Qty Locator Require BGEN40.039.04 30 COENG05.X.203 100
Req. N Drg Co Org Na Withdr Withdr Burpos Sr. I No. 1 2 2 2 2 2 3 2	umber : 15043812 de : 813 me : InTra Eng awing CC : 01F43 waing cc : Mechanica F : Hand Glov Lem Code Descript. 902901029 14 IN RUBE 902905014 DUST MASK. 902905014 DUST MASK. 902905014 DUST MASK.	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C Chargable C C Hame 1 Power House cc Hame Ion Uop ER HAND GLOVES PR GRAY, WITH ADJUSTABLE BOSE NO	Page 1 of 1 STR/FM/05/00 : 25-MAR-19 : SID01 : STRAM PLANT Default Require Locator Require EGEN40.039.04 30 COEN605.X.203 100 EGEN40.010.19 100
Stores/ Beg. N Drg Cc Org Na Withdr Burpos Sr. I No. 1 2 2 2 3 2 4 2	umber : 15043812 de : 813 me : Inira Eng waing CC : 01943 waing CC : Mechanica e : Hand Glov tem Code Descript. 902901029 14 IN RUPE 902905014 DUST MASK. PIECE 902905014 DUST MASK. PIECE	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C CC Name 1 Power House ca for Power House data Con UCA ER HAND GLOVES GRAY, WITH ADJUSTABLE NOSE NO	Page 1 of 1 STR/PM/05/D0 : 25-MAR-19 2 : SID01 : STRAM FLANT 1 Default Qty Locator Require EGEN40.039.04 30 COENG05.X.203 100 EGEN40.010.19 100 EGEN40.010.19 100
Stores/ Req. N Org Co Org Na Withdr hame Purpos Sr. 1 2 2 3 2 3 2 4 2 3 2 4 2 3 3	umber : 15043812 de : 813 me : Inira Eng waing CC : 01943 waing CC : Mechanica " Hand Glov tem Code Descript. 902901029 14 IN RUPE 902905014 DUST MASK. 918FC 902905014 DUST MASK. 918FC	INFRA PC OU STORES REQUISITION SLIP Date Chargable C Chargable C Chargeable CC Name 1 Power House ca for Power House dat UCM ER HAND GLOVES PR GRAY, WITH ADJUSTABLE NOSE NO GRAY, WITH ADJUSTABLE NOSE NO	Page 1 of 1 STR/PM/05/D0 : 25-MAR-19 2 : SID01 : STRAM FLANT 1 Default Qty Locator Require EGEN40.039.04 30 COENG05.X.203 100 EGEN40.010.19 100 EGEN40.010.19 100

43.	First Aid Box and required antidotes for the chemical used in the unit shall be readily available in adequate quantity at all the times.	Complied. First aid box are kept in each plant and at strategic locations whereas antidotes are kept in the medical Centre.
44.	Occupational health surveillance of the workers shall be done its records shall be maintained. Pre - employment and periodical medical examination for all the worker shall be undertaken as per the Factories Act &rules.	Complied. Being done on regular basis as per the Factories Act & rules. Occupational health surveillance of the workers is carried out on a regular basis as per section-41 C of the factories act and ruke-68T of Gujarat Factories Rules and records are maintained. Regular Medical Checkup of all employees are done by inhouse Dr. Vishal Mehta (M.B.B.S), Dr. Suman Patel (M.D. Physician) & Dr. Sandip Bhandare (M.B.B.S, AFIH) in following manner; The following medical checkup has been completed; Pre-Employment Check-Up (In-house): FY April-18 to March-19 SN Employee Qty Check-Up 1 Staff 2 Operators 530
		3 Workers 300
		Annual Medical Check-Up: FY April-18 to March-19
		SN Employee Qty Check-Up 1 Staff Annual Checkup
		2 Operators 3391
		Various types of tests being performed are as below; A.Pre- employment Check up: 1. Vision 2. Colour blindness 3. 3.CBC 4. Urine 5. Height

By M/s. Atul Ltd, Valsad

 6.Weight 7.B/P 8.Pulse 9.Habit 10.Personal History 11.Family History 12.Identification Mark B. Annual Checkup: Physical checkup Vision Blood Urine PFT ECG Our occupational health centre & Pathology Lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons. Medical Facilities: First Aid boxes in all plants Central Ambulance Room in the middle of the factory Two Ambulance Vans. Out of which one is equipped with ICU facilities. Medical Center Three full time AFIH certified doctors. Equipped with 3Beds Full equipped Pathological lab with advanced diagnostic equipment ECG Equipment Cardiac monitor Defibrillator Finger pulse Oxy meter Pulmonary Function Test Apparatus 02Administration Antidotes with routine Important and Vital life saving Drugs Tie-up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms. away from Atul

	Remark	c: All e	e 164 - R2622-3	oy fo		lically f	it to wo	rk, no	сог	ntiguc	ous dise	eases wer
		annord No. 1999 T	etter RONAL	DOT/2 (Denot) Eng	n - Jane Heinensteinen auf s							
	- 2	Agama	Alex Trevero	VARIABILITY OF	wat Hale: Juga		Devict Benarm Indirect Banatas		4.36.9 9.24		Normal User 0.7 Normal Liste II II	
					1	& cores	Bilindian (Benun) Specimen Santer Can (D Hor LADRODIN) T/Au Ballions		654		mmed.5. 18	erstan Todas 1200-10 A 10 ANA Tisa Todas 1200-10 J2 Grand
	Harmitology And	inne (* Cristenii) me Ayster (Byserer AC) AD Ayster (Caban Cri) () y	6 (14) distant	and Square labored in	ge, MrCrossel Traje, Peterson Longebol (Television)	Lafs Textforman Mits Dirth Denait	BOPT) ALT		е щ	Janma.	Alexandria 5 U State & alexandria ensistence research annual of the mag sheet by take loss	en Afspoologium Houses Intelessio (Sudimoletrae ang
	MCNO Benochi DO Enimophi Ca BASO - Benefiti C	un Surt	4.80 ° 2.40 0.00		Normal II A - TV Normal II A - TV Normal II 2 - T 2		discovery literate Late (D Fee LADIONIS)					ang arran Date Grecti & H Abi Teat Date: 424718 (214) PM
	P-LOB-PET Large PET - Phalasaerit NEUT - Natarspla LYMPH - Lynamor	Course yao Coleyr	17.36 8.25 54.56 70.79		Normal 34 8 - 67 5 Normal 21 8 - 53 1		LID ID NO LADDIDIDI SGOT (AST		at 10	(amil)	Normal 5 H - 40 D (Centerioris etilarilaria Centerioriaria et Sal	Teal Date: (29/19 (2/8) Phi cé: Physiological Plantis Indianes) (548epptose
	BDW C2 - RWC IX Confluent Variation PDW - PL7 Dates MPC - Mass. Poten	utersauluur (NAPE) n alam Victoria 19 Victoria	12180 5-20 9-65		Northan (11)) - Tal-A		100-HOI Homi TICHOX Romai		1317		Akamul Lipke 3 II Akamul Lipke 3 II Akamul II	ampei Dete 1217/1311, FL 481
	PLF - Passer Dec PLF - Passer Dec RtsVisD - Rtic De Decelert Decessor	ul eti dadicari (Nadhi	2015.04	10-244	Normal 12:3 - 36:6 Normal 10:5 - 837 Normal 26:1 - 4378		Timpyeonitation MIDE Condectment ADA Conservation		96.291 19625 1982 2	1973. 1974. 1974.	Name 10,0 - 101 Name 10,- 35 0 Name 50,0, 110,0	
	HCT - Harrison Coll MCP - Mean Cell MCP - Mean Cell MCHC - Mean Cell	(FCV) VAINA Assessments	51.40 20.40 30.75 54.70	2 - 2	Normal 40 4 - 619 Normal 7912 - 9212 Normal 26 7 - 9212		Spectron Series Lan ID Ex LABBOSSY Total Charlestanti HDx Charlestanti		129001	raid.		orspie Date: 12/0/10 E 10: A01 Init.Date: 12/0/10 12 Da PO1
	CBC = 10FF - Coo MRC - Minis films HBC - Hari Provid ISO2 - Powerspills	Allel Gove Sel Doves	1.07 5.08 15.00	(Sprint)	Naemaa 4 23 - 1407 Naemaa 4 03 - 1400 Naemaa (3.7 - 17 5		Lieb ID No. LADGODSKI Dioso Singer - Pathio Lieb Profile		н.	ngiti	Marrié Ti d - (10 d	Test Date: 120-130-05 AW
	Tani Reservan		Ha	inim to logy	Debraics Harge		Test Description FDS - Fasting Dicod So Systems Slout		Netwood P	Caylina	Reference Range	angle (144): 12:10 TU PL 16 AM
	Direttor Total Data Nampto Data	Voltat Malera Die 12 2010 00 5 Die 12 2010 00 1			Lupi ID No. Spectmen	LASSIGMA- Marid		101210 - 2020	Bic	ochemistry		
	Hanne Agentionates Vieta 10	Mr Danstal V (Sr 32 YM Carsozzai		ratory Repo	T Jagone Sau Mit No.	*1.40000000+ 06-12.2019 MR071604	AgerGender	NY Deentral V Davis R2 V 84 OP(02710 Velton Mental		ratory Rep	Report WE No	De lo 200 Grantinal
			Dep	atul Ltd		atul			Depa	tul Ltd	salth	atur

<u>By M/s. Atul Ltd, Valsad</u>

46.	Adequate firefighting facilities shall be provided at the proposed power plant.	Complied. Firefighting facilities are adequate. The risk to people after a fire has started shall largely depends on the adequacy and maintenance of means to escape, the alarm system, training of the workforce in fire routine and evacuation procedures at Atul Ltd. management has proposed to employ well-resourced and adequate fire fighting network. Details regarding the firefighting capacity of the unit are given below:
		 Four full fledged fire hydrant system in the company Water Storage Capacity - 50 million Liters Total hydrant post/ monitors -780 Total length of hydrant line - 15km Fire Fighting Equipment DCP 1350 CO2 776 Foam : 05Trolly Fire Tenders One fire tender having 1800 Lit water capacity Second multipurpose fire tenders having 5000 Lit water & 500 Foam Third Multipurpose tender having facility of DCP- 500 Kg, Foam 500 lit and Water - 4500Lit. SCBA sets - 35nos. Emergency alarm system - 532 nos. points spread across the company Fire station manned round the clock with Siren and Annunciation System. Regular Testing on every Monday
		 Regular resting on every Monday Smoke detectors in the office and labs Auto water deluging system at critical reactors Auto water sprinkler system at tank farms Onsite mock drill and fire fighting Training:
		ZUUT 2008

		Emergency Preparedness:
47.	Proper ventilation shall be provide in the work area.	Complied.
48.	Work area. All transporting routes within the factory premise shall have paved roads to minimize splashes and spillages.	<text><text><text></text></text></text>

49. The project management shall prepare a Complied. details Disaster management plan (DMP) Detailed disaster management plan is already prepared. Please find attached herewith for the project as the guidelines from detail disaster management plan as **Annexure-XIII** for the project as the guidelines Directors of Industrial safety and Health. from Directors of Industrial safety and health. Atul Ltd., Atul, Dist: Valuad REFACE PREPACE Our First Emergency Plan was propared in 1000 and then after it has been regularly updated as & when required based on learning from various. Mock drills and on account of expansion in the faelity. Updating of the On sile emergency plan was done to incorporate various elements of risks, fazards and consequences that are relevant to our Plants which were taken either from bubinshed data or derived from our own experience. Mock drills were conducted to test the plan and improve our emergency preparedness. Also, we had teviewed the potential hazards and assessment of all cledible scenarios, survey of various Rules, Regulations and standards were taken as basis for modifying the On Site Emergency Plan-ciessification of Emergencies as well as keeping in view the requirements of implementation of ESCI 14001 2015 and OHISAS 180012015. As intragranding at test 1400 (2015) and OHSAS 18001(2015). As intragrandices attes addedny the necessarily to remain advance and the advance of the addedny with augporting facilities to face them is of paramount importance. This document can be said to be the complete said to be exercise and most duils into preparedises with improve which with fally us to minimize the consequences of emergencies as an when they arise. ert and ready with is as and All the key personnel are requested to study the document and become famili the contents and deserminate information to those working with them, Shri. B. N. Mohanan Whole-Time Director A.6 NOISE: 50. To minimize the noise pollution the Complied. following noise control measures shall We are regularly implemented noise control measures to minimize the noise be implemented. pollution. Selection of any new plant equipment shall Complied. be made with specifications of low levels. All steam vents have attached with Silencers. Low noise level is considered as one of the prime specifications while selecting new machines in Power plant. For Example, Replacement of reciprocating type noisy air compressors by low noise emitting screw air compressors. Manufacturer / supplier of major noise Complied. generating machines / equipment like air We are always acknowledge or take care when purchasing of major noise generating machines / equipment like air compressor, feeder pumps, turbine generators, etc, compressor. Feeder pumps, turbine generators, etc shall be instructed to strictly instructed or emphasized to supplier to give less noise generating equipment's make required design modifications as much as possible to regulatory norms with respect to noise generation for individual units. wherever possible regulatory norms with respect to noise generation for individual units. Regular maintenance of machinery and Complied. We have routine and preventive maintenance schedule of machinery / equipment's vehicles shall be undertaken to reduce the noise impact. and vehicles to be undertaken to reduce the noise impact Noise suppression measures such as Complied. enclosures, buffers and / or protective Acoustic enclosures are provided on DG sets. Silencers have been provided on main measures shall be provided. steam vent valves of Boilers. Employees shall be provided with ear Complied. protection measures like earplugs or We have provided ear protection measures like earplugs or ear muffs to all employees on regular basis. earmuffs. Complied. Proper oiling lubrication and preventive Proper oiling lubrication and preventive maintenance is carried out of the maintenance shall be carried out of the machineries and equipment to reduce noise generation. machineries and equipment to reduce noise generation. Construction equipment generating Noted &Complied. minimum noise vibration shall be We are always use minimum noise vibration generation construction equipment. chosen. Ear plugs and / muffs shall be made Complied. compulsory for the construction workers OurcompanyhaswelllaiddownOHSpolicytouseProperPPE'sbyallemployeesin working near the noise generating plant area. Ear plugs and / muffs are compulsory for the construction workers activities / machines / equipment. working near the noise generating activities / machines / equipment. Vehicles and construction equipment Noted &Complied. with internal combustion engines We are permitted those vehicles and construction equipment with internal without proper silencer shall not be combustion engines with proper silencer and spark arrestor.

By M/s. Atul Ltd, Valsad

	allowed to operate.											
	Construction equipment meeting the norms specified by EP Act, 1986 shall	Noted &Complied. We are only using construction equipment meeting the norms specified by EP Act,										
	only be used.	1986.	1986.									
	Noise control equipment and baffling	Noted &Complied.										
	shall be employed on generators especially when they are operated near	We are taken care of Noise control equipment and baffling will be employed on										
	the residential and sensitive areas.	generators especially when they are operated near the residential and sensitive areas.										
	Noise levels shall be reduced by the use	Noted	&Complied.									
	of adequate mufflers on all motorized equipment The overall noise level in and around the	We are using mufflers on all motorized equipment to reduce noise levels. Complied.										
51.	plant area shall be kept well within the		verall noise level in and arou	nd the plant ar	ea to be	kept we	ll within the					
	prescribed standard by providing noise											
	control measures including acoustic insulation, hoods, silencers, enclosures,		tion, hoods, silencers, enclosure	es, vibration, dan	ipers etc.	on all sou	rces of noise					
	vibration, dampers etc. on all sources of noise generation.	Berrere										
	The ambient noise levels shall confirm to	Compl										
	the standards prescribed under the Environment (protection) Act and Rules.		nbient and workplace noise lev		e standar	d prescri	bed under					
	Workplace noise levels for workers shall	LIA. I	EPA. The same is being regularly monitored.									
	be as per the factories Act and Rules.		aximum values during the com									
		noise e	emission level went beyond the	stipulated stand	lards. Sur	nmary is	given below:					
			level monitoring data (Day Ti									
		Sr. No.	Location	Permissible Limits, dBA		Values for the period April 19- Sept19						
				75	Min.	Max.	Avg.					
		1	Near Main guest house	75	52.6	65.3	58.8					
		2	Near TSDF	75	58.2	65.9	62.7					
		3	At Wyeth Colony	75	40.2	62.1	55.6					
		4	Gram Panchayat Hall	75	60.1	70.2	64.4					
		5	Near Main Office North site	75	60.2	69.2	64.7					
		6	ETP North site	75	59.3	70.6	65.4					
		7	Opposite shed D	75	57.6	68.9	63.0					
		8	ETP West site	75	64.3	69.3	67.5					
		9	Water tank Haria road	75	45.3	67.2	58.9					
		10	Near 66KVA substation	75	62.4	68.1	64.9					
		Noise	level monitoring data (Night '	Time)								
		Sr. No.	Location	Permissible Limits, dBA								
				70	Min.	Max.	Avg.					
		1	Near Main guest house	70	49.2	55.5	51.5					
		2	Near TSDF	70	52.8	61.3	58.3					
		3	At Wyeth Colony	70	35.4	53.2	46.9					
		4	Gram Panchayat Hall	70	52.7	58.6	55.7					
		5	Near Main Office North site	70	54.5	64.2	58.5					
		6	ETP North site	70	52.8	60.6	56.6					
		7	Opposite shed D	70	52.1	60.2	55.6					
		8	ETP West site	70	55.4	60.3	57.7					

COMPLIANCE OF ENVIRONMENTAL CLEARANCE MINISTRY'S

LETTER NO.:F. No. SEIAA/GUJ/EC/1(d)/340/2016, DATED:

20/05/2016

Period – APRIL 2019 TO SEPTEMBER 2019

		9	Water tank Haria road	70	38.4	57.1	52.4				
		10	Near 66KVA substation	70	54.8	58.3	56.9				
		-					·				
	A.7 GREEN BELT AND OTHER PLANTATION.										
52.	The unit shall develop green belt in at least 68000 sq.m area within the premises. Green belt shall comprises of rows of varying height tall native trees with thick foliage in the periphery of the factory premises.	is comp trees is plantati & trans Total Pl Total G	Green belt is developed and we planted more than 50000 plants every year. Green belt is comprised of at least minimum 3 to 4 raw plantation with minimum height of native trees is 5 to 6 mtr with thick foliage in the periphery of the factory premises. Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive & transport dust emission. Total Plot area: 1126078.27 sq.mt Total Green belt area: 409030.00 sq.mt (approx. 36% of total plot area) Green belt area for Captive power plant: 17920.0 sq.mt								
			Layout plan with green belt is as shown below:								

53.	The unit shall also take up adequate plantation at suitable open Land on road sides and other open areas in nearby	areas i	in nearby vi	llages or school	0000 plants every s s in consultation w	vith the Gram p				
	villages or schools in consultation with	Sr. N	o.	. Year		No. of plants planted				
	the Gram panchayat / GPCB and submit an action plan for the same for next three	1.	:	2010-11	59,200					
years to the GPCB.	2.	:	2011-12	68,700						
		3.	:	2012-13	63,300					
		4.	:	2013-14	75,600					
		5.	:	2014-15	81,500					
		6.	:	2015-16	72,900					
		Tota	1		4,21,200)				
4.	B.OTHER CONDITIONS: In the event of failure of any pollution	Comp	12 - 4							
-	control system adopted by the unit, the unit shall be safely closed down and shall not be restarted until the desired efficiency of the control equipment has been achieved.	No suc close c	ch case durin lown the un		iod. However, if su	ch case happen	s we ensure to			
5.	All the recommendation , mitigation measures ,environments protection	Compl		environmental pr	otection measures	and safeguards r	proposed in			
	measures and safeguard proposed in the	Compliance to all environmental protection measures and safeguards proposed in the project report submitted to ministry is complied as below:-								
	EIA report of the project prepared by M/s	S.N	Potential	Action to be	Parameters for	Frequency	Status of			
; Eco chem Sales &Service ,surat& submitted vide letter no NIL dated	0	Impact	followed	monitoring	of monitoring	Compliance				
	03/11/2015 and commitments made					monitoring				
	during presentation before SEAC, proposed in the EIA report shall be	1.	Air	Adequate	SPM, RSPM,	Monthly	Stack and			
	strictly adhered to in letter and spirit.		emission	stack height	SO2 and NOx,	through	APCM			
				APCM-Multi	Vehicle logs to be maintained.	external agency	Details are provided in			
				Cyclone&	be mantameu.	NABL	EC			
				Scrubber is		Approved.	Compliance			
				provided as APCM			Point No.2 of specific Conditions.			
				AAQ within			contritions.			
				the project			Quality of			
				premises			gaseous			
				and nearby habitations			emission and AAQ is			
				to be			and AAQ is as per			
				monitored.			Annexure-			
				All vehicles			IV.			
				to be PUC						
				certificate.						
		2.	Noise	Noise	Spot noise level	Monthly	Carried out			
				generating	Recording.	through	at the			
				from		external	periphery of			
				operation of boiler,		agency NABL	whole plant			
				cooling		Approved.	premises as Annexure-			
				towers &		nppioveu.	VIII.			
				plant & M/c						
		1	1	area to be	1	1				

		monitored.			
3.	Waste water discharg e	Compliance to the wastewater discharge standards complete effluent treatment Plant- Primary+ Secondary & MEE, ZLD is achieved.	pH,TSS,TDS,CO D,BOD, oil & Grease	Monthly through external agency NABL Approved.	Discharge effluent is analyzed on daily basis.
4.	Solid/ Haz Waste	Check compliance of HWM rules.	Quantity and quality monitoring	Periodically	Details are provided in EC Compliance Point No.10 of specific Conditions.
5.	Non routine events and accident al release.	Plant drawn, considering likely emergencies and steps required to prevent/limi t consequence s.	Mock drills and records of the same.	Periodic during process activities.	Every year 4 nos. mock drills carried out in the premise on rotational basis covering all plants.
6.	Green Belts	Vegetation, green belt development	More than 50000 no. of plants & species.	Once a year	Green belt area is about 33% land area. Total area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt

56.	All the recommendation of CREP guidelines as may be applicable from time to time shall be following		CREP guidelines is being followed. Company is following strictly recommendations mentioned in CREP guidelines as follows:-							
	vigorously.	Activity code No.	Action point (Brief)	Compliance Status as on today	Remarks					
		1	Implementation of Environmental Standards	Complied	APCM are already in place and maintained. We ensured that at no time the emission level will go beyond the stipulated standards and or prescribed limits by MOEF&CC vide S.O. 3305(E) dated 07/12/2015.					
		2	Particulate matter emission reduction	Complied	We have installed high efficiency electro static precipitator (4 field) with 99.9% efficiency to control of flue gas emission (particulate matter emission) within the permissible limit from the proposed boilers. Last six month (April-2019 to September- 2019) monitoring reports shows that Avg. SPM emission is identify 39 mg/Nm3 which is below permissible limit of 50 mg/Nm3.					
		3	New / expansion power projects to be accorded Environment Clearance	Complied	EC awarded for setting up an additional power plant of 22 MW, Dated20/05/2016 EC No. SEIAA/GUJ/EC/1(d)/340/2016					
		4	Development of SO2 & NOx emission standards.	NA	Action by CPCB					
			Development standards for of guide mercury lines / & other	NA	Action by CPCB					
			Review of stack height requirement	NA	Action by CPCB					
		5	Install / activate meters / continuous monitoring systems with calibration system.	Complied	All the stacks are equipped with online opacity meter for continuous monitoring and also kept in CC TV camera surveillance. Also Online results are displayed on company main gate.					
			Use of beneficiated coal	As soon as it is viable option with respect to its limited availability and proximity of source, will be used.	Currently not available.					
		6	Use of abandoned coal mines for Ash disposal	NA	Not Applicable					

			1
	Provide dry ash to the users	Complied. Ongoing process	Being given to local brick manufacturers and Cement industries. We have done Agreement between Ambuja cement Ltd. And Atul Ltd. For supply of dry ash from Atul Limited, Atul, Valsad, Gujarat. Dated.21.09.2019.
	Provide dry ash free of cost	Complied	-
	Adhere to schedule by State Dept.	NA	Action by State Dept.
	Environment Clearance Existing plants shall adopt any of systems mentioned in 13(1)	Complied	-
	Fly ash Mission shall prepare guideline	NA	Action by GOI
	New plants shall promote adoption of clean coal & clean power	NA	-
7	CC&A status	Complied	Provisional consent no. AWH no. 105110 valid up to 30/9/2025 .
8	Compliance with respect to norms prescribed in CC&A for last one year	Complied	Being checked & verified by Regional Office of GPCB time to time.
9	Overall compliance with respect to charter (Yes/No)	Yes	Fully complied with all the condition stipulated in EC as well as CC&A.
			·

By M/s. Atul Ltd, Valsad

	A separate environment management cell with qualified staff shall be set up for implementation of stipulated environmental safeguards.	Compar	entation of stipulated environmeny's SHE department. Organogram of Chairman Who Preside	
58.	The project authorities must strictly adhere to stipulations made by the Gujarat Pollution Control Board (GPCB),	We are	&Complied strictly adhere to stipulations 1 , state government and statutor	nade by the Gujarat Pollution Control Board
	state government and statutory authority.		. C	
59.	state government and statutory	Compl No furt	ied . ther expansion or modification in carried out without obtaining p	the plant likely to cause environmental impacts rior Environment Clearance from the concerned
59. 60.	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced,	Compl No furt shall be	ied . ther expansion or modification in carried out without obtaining p	the plant likely to cause environmental impacts prior Environment Clearance from the concerned
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water	Compl No furt shall be authori Noted.	ied. ther expansion or modification in e carried out without obtaining p ty. CTE	the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention &Control or pollution) Act,	Compl No furt shall be authori Noted.	ied. cher expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment	the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water	Compl No furt shall be authori Noted.	ied. ther expansion or modification in e carried out without obtaining p ty. CTE	the plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention &Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. cher expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment	the plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention &Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and	Compl No furt shall be authori Noted. 1 2. 3.	ied. her expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance	the plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No.
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention &Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. there expansion or modification in e carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GH/15/92(9704)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil	whether plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene	the plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4.	ied. her expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS	whether plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 1204003619330000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. her expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. her expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for	whether plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 1204003619330000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. there expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act, 1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen,	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene.	when the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor	No.77793 dated: 17/05/2016 No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5. 6.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine	when the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine License under Arms and	when the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5. 6.	ied. ther expansion or modification in carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine	when the plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5. 6.	ied. there expansion or modification in e carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine License under Arms and Explosive Act 1959 1. Sodium chlorate/Potassium	with e plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953) G/WC/GJ/06/811 (G13932)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5. 6.	ied. her expansion or modification in e carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine License under Arms and Explosive Act 1959 1. Sodium chlorate/Potassium 2. Sulphur yard (storageof	a the plant likely to cause environmental impacts rior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953) G/WC/GJ/06/811 (G13932)
	state government and statutory authority. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority. The above conditions will be enforced, inter-alla under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991	Compl No furt shall be authori Noted. 1 2. 3. 4. 5. 6.	ied. there expansion or modification in e carried out without obtaining p ty. CTE CC&A Amendment Public Liability Insurance Factory License License under Petroleum act,1934 1. Furnace oil 2. Ethanol 3. Kerosene 4. Benzene 5. Methanol PRESSURE VESSEL/GAS CYLINDER STORAGES 1. Cylinder storage room for Oxygen, Nitrogen, Acytelene. 2. Cylinder storagefor chlorine License under Arms and Explosive Act 1959 1. Sodium chlorate/Potassium	with e plant likely to cause environmental impacts prior Environment Clearance from the concerned No.77793 dated: 17/05/2016 No.AWH-82241 dated: 08/11/2016 Policy No. 12040036193300000002 Validity: 01/04/19 to 31/03/20 Sum assured: 15.0 Cr No. 11192 dated: 31/12/2021 License No. P/HQ/GJ/15/136(P9747) P/HQ/GJ/15/2348(P167317) P/HQ/GJ/15/138(P9749) P/HQ/GJ/15/1473(P11115) G/WC/GJ/06/826 (G13953) G/WC/GJ/06/811 (G13932)

			l. Special Denatur 2. Methyl Alcohol		89/90 DS-V 89/90 MA-1		
61.	The project proponent shall comply all the conditions mentioned in ' The Companies (Corporate Social Responsibility Policy)Rules, 2014 and its amendments from time to time in a letter and spirit.	to Septem for CSR ad Responsi and spirit	has embarked Bu ber 2019 for CSR ctivities as per con bility Policy) Rule	activities. Till dat iditions mention es, 2014 and its a	e company has e ed in the compar mendments fro	expenditure nies CSR (Co	of 216.88 lacs rporate Social
		S.N	Description	Location	Final Implementing Agency	Budget from April `19 to September `19	Expenditure
		1	Enhancement of education practices in Kalyani Shala	Atul, Valsad (Gujarat)	AFT Atul Kelavani Mandal	37.50	26.92
		2	Imparting training to women to become skilled elementary school teachers (Adhyapika) to improve ruraleducation	Valsad (Gujarat)	AFT ARDF	30.00	28.97
		3	Promoting socio cultural and extracurricular activities for school children	Atul, Valsad (Gujarat)	AFT ARDF	15.00	11.30
		4	Providing science and maths training to rural teachers	Ahmedabad (Gujarat)	AFT Vikram A Sarabhai Community Science centre	3.00	3.00
		5	Women empowerment initiatives	Atul, Valsad (Gujarat)	AFT ARDF	6.00	5.37
		6	Beekeeping training to farmers to earn livelihood	Dhrampur Kaparad,Valsad(Gujarat)	AFT Unde r the Mango Tree	5.50	1.40
		7	Providing health services through health camps	Villages of Valsad (Gujarat)	AFT ARDF	3.00	3.06
		8	Support to build city scan centrein a hospital	Atul, Valsad (Gujarat)	AFT Kasturba Hospital	10.00	10.00
		9	Contribution for advance treatment of Cancer patients	Karamsad(G ujarat)	AFT Charuatar Arogya Mandal	5.00	5.00

	Ву	<u>M/S. Atul Ltd, va</u>	lisad			
	10	Assistance to Needy People	Villages of Valsad (Gujarat)	ARDF	3.00	2.53
	11	Up liftment of salt pan worker	Kharaghoda, Surendranagar (Gujarat)	AFT ARDF Gantar	5.00	3.60
	12	Promotion of Sports	Villages of Valsad (Gujarat)	ARDF	12.00	11.40
	13	Enhancement of rural infrastructure	Villages of Valsad (Gujarat)	AFT ARDF	10.00	6.10
	14	Tribal Home stay project	Kevadiya (Gujarat)	AFT	100.00	58.05
	15	Initiative to celebrate 125 th birth anniversary of Sri Kasturbhai Lalbhai (Founder)	Valsad (Gujarat)	AFT	120.00	30.18
	16	Administrative expense			10.00	10.00
		Total			375.00	216.88
The project proponent shall ensure that unit complies with all the environment protection measures, risk mitigation measures and safeguards recommended in the EMP report and Risk .Assessments study repot as well as proposed by project proponent. The project authorities shall earmark	repot as	ecommendations s well as proposed b			Risk assessn	nents study
The project authorities shall earmark adequate funds to implement the conditions stipulated by SEIAA as GPCB along with the implementation scheduled for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.	Complied. EMP measures are implemented. A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB &MoEF apart from upkeep of pollution control systems and facilities. Total expenditure is given in below table including EMS implementation:					
	Adequa S.N	te fund embarked Parameter		16-2017: pital Cost per	Recur	ring Cost
				um (Re in lace		num/Re

62.

63.

	annum (Rs. in lacs) 2016-17	per annum(Rs. in lacs)2016-17
Air Pollution Control	199.01	-
Liquid Pollution Control	389.70	2573
Environmental Monitoring and Management	-	37
Solid waste Disposal	-	283
Occupational health	-	15
Green belt	-	9
	588.71	2917
	Liquid Pollution Control Environmental Monitoring and Management Solid waste Disposal Occupational health	2016-17Air Pollution Control199.01Liquid Pollution Control389.70Environmental Monitoring and Management-Solid waste Disposal-Occupational health-Green belt-

Adequate fund embarked for EMP, Fy.2017-2018:

	S.N	Parameter	Capital Cost per	Recurring Cost
	9.IN	Farameter	annum (Rs. in lacs)	per annum (Rs.
			2017-18	in lacs) 2017-18
	1	Air Pollution Control	12.15	-
	2	Liquid Pollution Control	203.98	1802
	3	Environmental Monitoring	-	93
	5	and Management	_	23
	4	Solid waste Disposal	-	485
	5	Occupational health	-	20
	6	Green belt	-	10
	Total		216.13	2410
	Iotai		210.10	2410
	Adequa	ate fund embarked for EMP,	Fv. 2018-2019:	
	S.N.	Parameter	Capital Cost per	Recurring Cost
	5.11.		annum (Rs. in lacs) 2018-19	per annum (Rs. in lacs) 2018-19
	1	Air Pollution Control	42.93	-
	2	Liquid Pollution Control	134.21	3439.35
	3	Environmental Monitoring	-	60.9
		and Management		
	4	Solid waste Disposal	-	426.1
	5	Occupational health	-	25
	6	Green belt	5.44	4.56
	Total		182.58	3955.91
the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and May also be	cleara	ve informed the public that (ncebytheSEIAAandthattheco and also be seen at website o	piesoftheclearanceletter of SEIAA/SEAC/GPCB.	areavailablewith the
seen at website of SEIAA / SEAC/ GPCB.	Ref (Att Bet (Fo Bet (Fo Support)) To, Support Att Bar, (F Bar, (F Bar, (F) Bar, (F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	<text></text>	<text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	emeet sola 9 es. J (1011) (100/0019-64-th) (Borossenines, Revert and Channe, Change for engencian of oberitoria emeritorization . et la bare in terminal language advertisement of all June for terminal language advertisement of all JUn Filtman's 2019. Copy of many in an JUn Filtman's 2019. Copy of many in ur revend playate.
This shall be advertised within seven days from the date of the clearance letter, in at least two local newspapers that are widely circulated in the region, one of which shall be in the	widely	l ied. ve given advertisement dated ted in the region, one of whic		

	language and the other in English.			
	A copy each of the same shall be forwarded to the concerned Regional office of the Ministry.	ministry.	ch of the same forwarded to the con	cerned Regional office of the
65.	The project proponent shall also comply with additional conditions that may be imposed by the SEAC or the SEIAA or any other competent authority for the purpose of the environmental protection and management.		onal conditions so far imposed by the authority for the purpose of	ne SEAC or the SEIAA or any other the environmental protection and
66.	It shall be mandatory for the project			a rapart
	management to submit half-yearly compliance report in respect of the stipulated prior environmental clearance terms and condition in hard and soft copies to the regulatory authority concerned on 1st June and 1st	The imple monitored compliand	by the authority time to time. We have	th environmental actions plans are ave already submitted the 6 monthly x monthly periods between 2016 to
	December of each calendar year.	SN	EC Compliance Report Period	Submission Date
		1	June-16 to November-16	27/01/2017
		2	Dec-16 to May-17	17/07/2017
		3	May-17 to October-18	30/11/2017
		4	Nov-17 to April-18	30/07/2018
		5	May -18 to October-18	31/12/2018
		6	Nov -18 to April -19	23/07/2019
		7	April – 19 to September	19/12/2019
67.	Concealing factual data or submission of false / fabricated data and failure to	Noted.		
	comply with any of conditions			
	mentioned above may result in withdrawal of this clearance and attract			
	action under the provisions of			
68.	Environment (Protection) Act, 1986. The project authorities shall also adhere	Complied	1.	
	to the stipulations made by the Gujarat Pollution Control Board.	20		

Bv M/s. Atul Ltd, Valsad

		<u>By M/s. Atul Ltd, Valsad</u>
69.	The SEIAA may revoke or suspend the clearance. If implementation of any of the above conditions is not found satisfactory.	Noted.
70.	The company in a time bound manner shall implement these conditions. The SEIAA reserves the stipulate additional conditions, if the same is found necessary.	Noted.
71.	The project authorities shall inform the GPCB, Regional Office of MoEF and SEIAA about the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	Complied. We have communicated with the regional officer of MoEF&CC towards the status of work and financial closure time to time. We have also submitted six monthly EC Compliance report periodically in which said information were updated time to time. Consent to Establish obtained from GPCB vide letter no. GPCB/CCA-VSD- 313(12)/ID:23158/306616 Dated: 17/05/2016.
72.	This environmental clearance is valid for seven years from the date of issue.	Noted.
73.	Any appeal against this environmental clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 day as prescribed under section 16 of the National Green Tribunal Act, 2010.	Noted.

LIST OF ANNEXURE

Г

1

ANNEXURES	PARTICULARS				
ANNEXURES-I	COPY OF CTE/NOC				
ANNEXURES-II	COPY OF CC&A/CTO				
ANNEXURES-III	FINAL EFFLUENT DISCHARGED REPORT				
ANNEXURES-IV	AMBIENT AIR MONITORING REPORT				
ANNEXURES-V	STACK MONITORING REPORT				
ANNEXURES-VI	WATER PERMISSION LETTER				
ANNEXURES-VII	MEDICAL CHECKUP REPORT				
ANNEXURES-VIII	NOISE MONITORING REPORT				
ANNEXURES-IX	TRAINING REPORT				
ANNEXURES-X	GROUND WATER & SOIL QUALITY REPORT				
ANNEXURES-XI	ESP SPECIFICATION				
ANNEXURES-XII	AGREEMENT COPY BETWEEN AMBUJA CEMENT LTD. & ATUL LTD FOR SUPPLY OF DRY ASH FROM ATUL LIMITED.				
ANNEXURES-XIII	DISASTER MANAGEMENT PLAN				
ANNEXURES-XIV	PREVENTIVE MAINTENANCE SCHEDULE & RECORDS				

ANNEXURE-I

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, **Gardhinagar**-382 010 Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in

BY.RPAD

<u>"Consent to Establish" (NOC)</u> <u>CTE-80394</u>

NO: GPCB/CCA-VSD-313(12)/ID:23158/

TO,

L MRs. ATUL LIMITED, PLOT NO.5,6,29,30,33,34,35,37,38,80,81,84,85,91 AT & P.O-ATUL, PIN-396020, DIST: VALSAD.

- Sub: Consent to Establish (amendment) under Section 25 of Water Act 1974 and Section 21 of Air Act 1981.
- Ref: Your application inward no: 106516 dated 27/04/2016 and subsequently correspondences,

Sir,

Without prejudice to the powers of this Board under the Water (Prevention and Control of Pollution) Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board grants **Consent to Establish (amendment)** for expansion of production quantity at an existing industrial plant/activities located at Plot No.5,6,29,30,33,4,35,37,38,80,81,84,85,91, At & P.O.-Atul, Pin-396020 Dist. Valsed for manufacturing of the following products:

Sr. No.	Product	Existing Capacity (TPM)	Proposed Capacity (TPM)	Total Capacity (TPM)
1.	Dyes	1,300.80	583.33	1,884.13
2.	Chloro - Alkałi Industry	3,400.00	4,100.00	7,500.00
3.	Pesticide Technical	2,644.07	261.64	2,905 71
4	Bulk Drugs & Pharmaceuticals	350 60	0.00	350.60
5.	Resin	2,990.90	441.67	3,432.57
6.	Other Chemicals	20,551.60	651.00	21,202.60
7.	Flavors & Fragrances	0.00	733.32	733.32
	Total	31,237.96	6,770.95	38,008.91
	050			
8.	Phosgene	2844 MT/Year	2156 MT/Year	5000 MT/Year

The Validity period of the order will be seven years from date of issue. i.e. up to 17/07/2023

SUBJECT TO THE FOLLOWING CONDITIONS:-

The unit shall not install plant and machinery and shall not start any activities without
obtaining Environment Clearance from the MOEFCC, New Delhi, Government of India.

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

SPCCIFIC CONDITIONS:-

- (i) The unit shall manufacture the Phosgene gas in fully automated plant having multi levels of safety provisions.
- Unit will utilize the Phosgene gas immediately after its generation for their captive purpose only.
- (iii) Unit shall provide all sensor for detection of a leakage of Phosgene gas.
- (Iv) Unit shall establish and maintain onsite emergency plan and carry out mock drill as per period decided.
- (v) Unit shall liable to obtain all other necessary permission from concerned agencies/organization prior commencement of Production.
- (vI) Unit shall dismantle old Phosgene Plant after commencement of new Plant.
- (vii) Unit shall submit production data of Phosgene every month to this office.
- (viii) Unit shall install online monitoring system on process stack for PM and CO.
- (ix) Unit shall install continuous Ambient Air Quality monitoring Station in their premises.
- (x) Unit shall install new 4 Kms length HDPE pipeline parallel to existing pipeline for disposal of treated waste water in the estury of Par River at the identified point by NIO.
- (xi) Unit shall use pipeline in case of emergency like breakdown, preventive maintenance only when old pipeline is under maintenance and unit shall get prior permission from Regional Office, Vapi before use of new pipeline.
- (xii) Unit shall comply undertaking dated: 08/07/2016 given to the board.

CONDITIONS UNDER WATER ACT 1974:

- There shall be 23392.84 KLD wasta water generation after proposed expansion. Out of this 23,021.51 KLD treated in ETP and 17812.84 KLD evaporated in MEE.
- 2. The quantity of the domestic waste water (sewage) shall not exceed 939 KLD.
- Unit shall explore possibility of Sewage Treatment Plant (STP) for domestic waste water and its reuse after due treatment.

CONDITIONS UNDER AIR ACT 1981:

- There shall be no use of fuel hence there shall be no flue gas emission, from proposed production.
- The process emission through various proposed stacks, in addition to existing stacks shall confirm to the following standards:

Stack No.	Stack attached to	Stack height in Meter	Air Pollution Control system	Parameter	Permissible Limit
1.	MPP Plant	21	Water & Alkali Scrubber	HCI	20 mg/NM3
2.	PHIN – I & II	21	Water scrubber followed by two stage caustic scrubber with ammonia/steam injection at stack	HCI COCI2	20 mg/NM3 0.1 ppm

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website : www.apcb.gov.in

3.	Flavors Fragrances Plant	21	Water scrubber followed by caustic scrubber	HCI	20 mg/NM3
4.	Phosgene Plant	15	Alkali & water scrubber	COCI2	0.1 ppm

6. The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in ug/M ³
1.	Sulphur Dioxide (SO ₂)	Annual 24 Hours	50 80
2.	Nitrogen Dioxide (NO ₂)	Annual 24 Hours	40 80
3.	Particulate Matter (Size less than 10 µm) OR PM ₁₀	Annual 24 Hours	60 100
4.	Particulate Matter (Size less than 2.5 µm) OR PM _{2.5}	Annual 24 Hours	40 60

 All measures for the control of environmental pollution shall be provided before commencing proposed production activities.

CONDITIONS UNDER HAZ. WASTE:

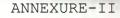
- Applicant shall have to comply with provisions of H.W. (M.H. & T.M) rules 2008 and amendment thereof.
 - a. Industry shall provide adequate collection, storage, treatment & transportation system in accordance with the nature, quantity & compatibility of hazardous waste and shall offer their hazardous waste only to authorized operator of the ultimate disposal facility.
 - b. Applicant shall comply all the directives issued by Honorable Courts, notifications issued by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
 - c Applicant shall comply all the guidelines published by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
 - Industry shall also comply following directives issued by the Supreme Court of India dated 14.10 2003.
 - i. Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 deted 14th October 2003
 - ii. Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

GENERAL CONDITION:

- Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 05 meters width is developed
- The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.
- In case of change of ownership/management the name and address of the new owners/partners/directors/proprietor should immediately be intimated to the Board.
- 12. The applicant shall however, not without the prior consent of the Board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to this Board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986.
- The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels: Between 6 A M. and 10 P M.: 75 dB (A) Between 10 P.M. and 6 A M.: 70 dB (A)
- Applicant is required to comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 15 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property .in that case they are obliged to pay the compensation as determined by the competent authority


For and on behalf of Gujarat Pollution Control Board

DPhan

1

(Smt.D. P. SHAH) Environmental Engineer

Outwa Ao.3695875. Unitable

Received on dt-	10/08/2019
Received by:	
	wastment

GUJARAT POLLUTION CONTROL BOARD PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425

(079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

NO: GPCB/CCA-VSD-313(16) /ID: 23158/ 513897

Dute. 1710712014

R.P.A.D.

TO, M/S. ATUL LIMITED, PLOT NO.5,6,29,30,33,34,35,37,38,80,81,84,85,91 AT & P.O ATUL-396020, TAL: VALSAD, DIST: VALSAD.

- SUB: Amendment (AH- 102080) to Consolidated Consent & Authorization (CC & A) under various Environmental Acts/ Rules.
- REF: 1) Your Application inward No.156104 dated: 26/04/2019.

Sir,

2) CTE issued vide this office letter dated: 25/07/2016.

The Gujarat Pollution Control Board had granted Consolidated Consents & Authorization Order No. AWH- 67717dated 04/11/2014, Which is valid up to 03/11/2019. This order was served vide letter No. GPCB/CCA-VSD-313/ID-23158/306616 dated: 10/03/2015 is further amended with respect of following conditions.

Sr. No.	Product	Existing Capacity (TPM)	Proposed Capacity (TPM)	Total Capacity (TPM)
1.	Dyes	1,300.80	583.33	1,884.13
2.	Chloro – Alkali Industry	3,400.00	4,100.00	7,500.00
3.	Pesticide Technical	2,644.07	261.64	2,905.71
4.	Bulk Drugs & Pharmaceuticals	350.60	0.00	350.60
5.	Resin	2,990.90	441.67	3,432.57
6.	Other Chemicals	20,551.60	651.00	21,202.60
7.	Flavors & Fragrances	0.00	733.32	733.32
	Total	31,237.96	6,770.95	38,008.91
-	and the second	(and the state of the	and the second	
8.	Phosgene	2844 MT/Year	2156 MT/Year	5000 MT/Year

SPCCIFIC CONDITIONS:-

- (i) The unit shall manufacture the Phosgene gas in fully automated plant having multilevels of safety provisions.
- (ii) Unit will utilize the Phosgene gas immediately after its generation for their captive purpose only.
- (iii) Unit shall submit production data of Phosgene every month to this office.
- (iv) Unit shall use pipeline in case of emergency like breakdown, preventive maintenance only when old pipeline is under maintenance and unit shall get prior permission from Regional Office, Vapi before use of new pipeline.
- (v) Unit shall comply undertaking dated: 08/07/2016 given to the board.

M/s. Atul Limited (PCB ID-23158)

CONDITIONS UNDER THE WATER (PREVENTION AND CONTROL OF POLLUTION) ACT 1.

- The quantity of total fresh water consumption shall not exceed 28358 KLD (21950 KLD Fresh + 1.1 3073 KLD Rain water + 3335 KLD recycled water) as per break up mentioned in form D submitted for consent application under the Water (Prevention and Control of Pollution) Act-1974. Source of fresh water shall only from local body.
 - Industrial: 27419 KLD a)
 - b) Domestic: 402 KLD
 - Gardening: 537 KLD c)
- Total quantity of effluent generated from manufacturing process and other ancillary operation 1.2 shall not exceed 24096 KLD.
- 20514 KLD waste water shall be treated in ETP and then discharged into Par river through 4 km 1.3
- 1.4 1000 KLD waste water shall be sent to RO/MEE.
- 1.5 800 KLD RO permeates shall be recycled into cooling tower.
- 1.6 200 KLD RO reject shall be sent to MEE.
- 1.7 190 KLD recovered MEE water shall be recycled into cooling tower.
- 1.8 10 MT MEE salt shall be sent to TSDF.
- 2500 KLD waste water shall be sent to RO/MEE. 1.9
- 2000 KLD RO permeates shall be recycled into cooling tower. 1.10
- 150 KLD RO reject water shall be utilized for Quenching/Ash cooling.
- 350 KLD RO reject shall be sent to MEE. 1.12
- 1.13 345 KLD recovered MEE water shall be recycled into Boiler.
- 5 MT MEE salt shall be sent to TSDF. 1.14
- 82 KLD high COD waste water shall be sent to incinerator. 1.15
- 1.16 The quantity of the domestic waste water (sewage) shall not exceed 322 KLD.

3.17 TRADE EFFLUENT

1.11

The treated effluent from the industrial unit shall conform to the GPCB norms mentioned in below 3.17.1

PARAMETERS	GPCB NORMS
pH	5.5 TO 9
Temperature	40° C

M/s. Atul Limited (PCB ID-23158)

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, **Gandhinagar** 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

Suspended Solids	100 mg/l
Oil and Grease	10 mg/l
Phenolic Compounds	5 mg/l
Cyanides	0.2 mg/l
Fluorides	2 mg/l
Sulphides	2 mg/l
Ammonical Nitrogen	50 mg/l
Arsenic	0.2 mg/l
Total Chromium	2 mg/l
Hexavelent Chromium	1 mg/l
Copper	3 mg/l
Lead	2 mg/l
Mercury	0.01 mg/l
Nickel	5 mg/l
Zinc	15 mg/l
Cadmium	2 mg/l
Phosphates as P	5 mg/l
BOD (3 days at 27°C)	100 mg/l
COD	250 mg/l
Insecticieds/Pesticides	Absent
Sodium Absorption ratio	26
Phosphate	5 mg/l
Manganese	2 mg/l
Tin	0.1 mg/l
Bio-assay test	90% Survival of fish after 96 hour in 100% effluent.

All efforts shall be made to remove colour & unpleasant odor as far as practicable.

- 3.17.2 The final treated effluent from central ETP confirming to the above standards shall be collected in the guard pond and then discharged through closed pipeline to estuary zone of river Par via diffuser.
- 3.17.3 Domestic effluent shall be disposed off through septic tank/soak pit system, in case of overflow shall be sent to ETP.

2. CONDITIONS UNDER THE AIR (PREVENTION AND CONTROL OF POLLUTION) ACT 1981:

- 2.1 There shall be no use of fuel hence there shall be no flue gas emission, from proposed production.
- 2.2 The process emission through various proposed stacks, in addition to existing stacks shall confirm to the following standards:

Stack No.	Stack attached to		Air Pollution Control system	Parameter	Permissible Limit
1.	MPP Plant	21	Water & Alkali Scrubber	HCI	20 mg/NM3

M/s. Atul Limited (PCB ID-23158)

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

2.	PHIN – I & II	21	Water scrubber followed by two stage caustic scrubber with ammonia/steam injection at stack	HCI COCI ₂	20 mg/NM3 0.1 ppm
3.	Flavors Fragrances Plant	21	Water scrubber followed by caustic scrubber	HCI	20 mg/NM3
4.	Phosgene Plant	15	Alkali & water scrubber	COCI ₂	0.1 ppm

2.3 The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in µg/M ³
1.	Sulphur Dioxide (SO ₂)	Annual	50
-		24 Hours	80
2.	Nitrogen Dioxide (NO ₂)	Annual	40
		24 Hours	80
3.	Particulate Matter	Annual	60
	(Size less than 10 µm) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 µm) OR PM25	24 Hours	60
5.	Carbon Monoxide (CO) mg/m ³	8 Hours	02
		1 Hour	04

 M/S. ATUL LIMITED, is hereby granted an authorization based on the enclosed signed inspection report for generation, collection, reception, storage, transport, reuse, recycling, recovery, pre-processing, co-processing, utilization, treatment, disposal or any other use of hazardous or other wastes or both on the premises situated PLOT NO: 5,6,29,30,33,34,35,37,38,80,81,84,85,91, AT & P.O-ATUL, PIN-396020, DIST: VALSAD. Details of Authorization:

Sr. No.	Category of Hazard as per the Schedul III of these rules		Authorized mode of disposal or recycling or utilization or co- processing, etc.	Quantity MT/Month
1.	Brine purification sludge	16.3	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL	242.50
2.	Still / Other residue	29.1	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL	63.66

M/s. Atul Limited (PCB ID-23158)

GUJARAT POLLUTION CONTROL BOARD PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

	3	Salt from MEE	37.1	Collection, storage, Transportation, disposal at OWN TSDF OR selling to actual reuser OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL	1,678.71
	4.	OCBC/OCT	20.3	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL	154.042
	5.	Waste from Pharma intermediates	28.1	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL	28.97
-	6.	HCI (30%)	B15	Collection, Storage, In house treatment within premises.	417

- 3. All measures for the control of environmental pollution shall be provided before commencing production.
- All other conditions of CCA order AWH- 67717dated 04/11/2014 issued vide No. GPCB/CCA-VSD-313/ID-23158/306616 dated: 10/03/2015 shall remain unchanged.

For and on behalf of Gujarat Pollution Control Board

(Sushil V da) Senior Environmental Engineer

M/s. Atul Limited (PCB ID-23158)

Clean Gujarat Green Gujarat ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation ANNEXURE-III

POLLUCON LABORATORIES PVT. LTD.

Customer's Name and Address : M/S. ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD. Description of Sample : Final Date of Sampling : 27/0 Sampling by : Polluc Sample Receipt Date : 28/0 Packing/ Seal : Seale Date of Starting of Test : 28/0

CON 12

LICON POLLU

CON POLLICON POLLICON FOLLICON POLLICON POLLICON POLLI

Sr. Scientist

TROTT	ODDITIO
TO BUSINESS DA	CERTIFICATE
LUI	CENTRICALE

PLIERON POLICION POLICION

Customer's Name and Address : OLLICON FOLLICON FOLLON FOLLICON FOL

M/S. ATUL LIMITED POLLUCON POL	Test Report No. : PL/AT 0210
	Issue Date OLUCO: 04/05/2019 OLUCON
OLLUCON POLLUCON POL	Customer's Ref. C : Email

Description of Sample :	Final Discharge	Quantity/No. of Samples	Poll	10 Lit/One policion
Date of Sampling :	01 27/04/2019 OLUCON FOLUC	Sampling Procedure	ON NO	IS:3025
Sampling by	Pollucon Laboratories Pvt. Ltd.	Protocol (purpose)	CN PC	Env. Monitoring
Sample Receipt Date :	28/04/2019	Lab ID.	9 POL	AT/1904/02
Packing/ Seal :	Sealed	Test Parameters	0.000	As per table
Date of Starting of Test :	28/04/2019	Date of Completion of Test	Exc TO	04/05/2019

RESULT TABLE

SR.	TEST PARAMETERS	UNIT	UNIT RESULT P Final Discharge	PERMISSEBLE	TEST METHOD
NO. POLLICON POLLICON TOLL	N POLILICON POLLUCON POLLUCON	Contraction of the second		LIMIT**	
	PH DICON POLLICON POLLICON	FOLLUTON POL	1000 P7.450N	5.5 to 9.0	IS: 3025 (Part – 11) (Electrometric Method)
2.0	Temperature control of	TOLL [®] C IN R	LUCON P31.90N	to TOLI40 AN POLL	IS: 3025 (Part - 9)
3	Colour on Politicon Politicon	Co-pt	LLUCON PC130 ON PO	CON TILLIFON FOLL	IS: 3025 (Part - 4)
4	Suspended Solids	mg/L	HILCON TO 86 CON POLIC	ON PO 100 N POLL	IS:3025 (Part - 17)
5	Oil & Grease Look av Llook	mg/L	LUCON TO 3.6CON POLL	CON POLIOON POLL	APHA(22 nd Edition) 5520 E
6	Phenolic Compound	mg/L	ILLICON FO.45 ON POLL	CON POLS.O N POLL	IS3025(P43)
7	Cyanides as CN	mg/L	BDL*ON POLL	CON POLO.2	APHA (22 nd Edition) 4500-CN- EColorimetric Method
800	Fluorides as F	mg/L	ULLICON POLLICON POLLIC	N POLL 2.0 POLL	APHA (22 nd Edition) 4500 F D SPANDS
9	Sulphide as S	mg/L	UCON POLICON POLIC	2.0	APHA (22 nd Edition) 4500-S
10	Ammonical Nitrogen as NH ₃	mg/L	40 40	N POLLSON POLL	IS3025(P34)88Cla.2.3
11	Arsenic as AS	mg/L	BDL* POLL	0.2	AAS-APHA (22 nd Edition) 3114
12	Total Chromium as Cr ⁺³	mg/L	LUCON POBDL*N POLLUC	POLLIZ.ON POLLI	AAS- APHA (22 nd Edition) 3111
13	Hexavalent Chromium as Cr ⁺⁶	mg/L	NUCCON POLITICON POLITIC	IN POLLID. TOLU	APHA (22 nd Edition) – 3500 – Cr B : Colorimetric method
14	Copper as Cu	mg/L	LUCON PO0.41N POUL	3.0 000	AAS- APHA (22nd Edition) 3111
15	Lead as Pb LICON POLICON P	on mg/Loo	LUCON POBDL*N POLLUC	DN POLL 2.0 V POLLU	AAS- APHA (22 nd Edition)3111
16	Mercury as Hgow routicow r	oumg/L o	LUCON POBDL*N TOLLUC	ON POLO.01 POLLU	AAS-APHA (22 nd Edition) 3112

Macky Suraliwala CON FOLLICON FOLLICON

Dr. Arun Bajpai Lab Manager (Q)

QR/5.10/14

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 GPCB approved
 ISO 14001
 OHSAS 18001
 ISO 9001
 Sec. 12 MoterophisterDidistoubject to terms & donditionity mentioned overleaf.

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :

M/S. ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.

 Test Report No.
 :
 PL/AT 0210

 Issue Date
 :
 04/05/2019

 Customer's Ref.
 :
 Email

QR/5.10/14

Page: 2 of 2

N POLLICON POLLICON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON POLLUCON

RESULT TABLE ON POLLICON POL

SR. NO.	TEST PARAMETERS	UNIT	RESULT Final Discharge	PERMISSEBLE LIMIT**	TEST METHOD
17	Nickel as Ni ucon Poulucon	mg/L	0.075	5.0	AAS- APHA (22 nd Edition) 3111 B
18	Zinc as Zn Lucon POLICION	mg/L	0.96	15	AAS- APHA (22 nd Edition) 3111 B
19	Cadmium as Cd	mg/L	BDL*	2.0	APHA (22 nd Edition) 3500 Cd Dithizone Method
20	Phosphates as P POLLUCON	mg/L	1.48	5.0	APHA (22 nd Edition) 4500 C
21	BOD (5 Days @ 20 °C)	mg/L	65 LON POL	CON PO100 ON POEL	IS 3025 (P44)
22	CODICON POLLUCON POLLUCON POLLUCON	mg/L	DILLICON 210 CON POLI	250 000	APHA (22 nd Edition) 5520-B Ope Reflux
23	Sodium Absorption Ratio	COLUCIAN TO	8.35	Lice to 26 on roll	CON POLL By Calculation N POLL
24	Manganese as Mn	mg/L	0.25 CON		AAS- APHA (22 nd Edition) 3111B
25	Tin as Sn Collicon Politico	mg/L	BDL*con P	CON 0.1 ON POL	AAS- APHA (22 nd Edition) 3111B
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	90 % survival of fish after 96 hour in 100% effluent	OECD 203 B/IS: 6582-1971
OLIVED	N POLLICON POLLICON OLLICON	POLLICON PO	LUCON POLICON POL OLIDEON POLICON POL LICON POLICEON POLIC	LICON POLLUC N POLL	SOP/INS/WW/01 on EPA 525.2 and 8141 A
27	Pesticides/Insecticides**	mg/L	OLLICON POLLICON POL	CONTRADUCTOR OF	SOP/INS/WW/05 based on EPA 508
OLLICON	N POLLICON POLL CON POLLICON P	POLILICON PO	POLLICON POLLICON POL LLICON POLLICON POLLI	CON POLICION POL	SOP/INS/WW/04 Based on EPA 8141 A

**Details provided by customer. **attached pesticides list.

BDL*: Below Detection Limit, Minimum Detection Limit, Oil & Grease: 2.0 mg/L, Phenolic Compound : 0.005 mg/L ,Cyanides : 0.0001 mg/L, Sulphides:0.025 mg/L, Arsenic: 0.001 mg/L, Mercury : 0.005 mg/L, Cadmium: 0.002 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Hexavalent Chromium:0.05 mg/L, Nickel :0.02 mg/L, Manganese: 0.01 mg/L, Lead: 0.005 mg/L.

Macky Suraliwala Sr. Scientist Dr. Arun Bajpai Lab Manager (Q)

FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under
 GPCB approved
 ISO 14001
 OHSAS 18001
 ISO
 Sec. 12
 GPCB-approved
 Sec. 12
 GPCB-approved

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :	Test Report No. : PL/AT 0261
M/S. ATUL LIMITED P.O ATUL-396 020,	Issue Date : 01/06/2019
DIST: VALSAD.	Customer's Ref. : Email

Comple	-	Final Discharge	Quantity/No. of Samples	N PC	10 Lit/One	T
Description of Sample	PC6	Tillar Diocital 9-	Sampling Procedure	NO	IS:3025	P
Date of Sampling	POI	Pollucon Laboratories Pvt. Ltd.		ALC: N	Env. Monitoring	6
Sampling by			Lab ID.		AT/1905/02	1
Sample Receipt Date	05IIF	25/05/2019	Test Parameters		As per table	
Packing/ Seal		Sealed	Date of Completion of Test	CON	01/06/2019	9
Date of Starting of Test	in.	25/05/2019	Putte of Service Service	1200 020	and the second real of	201

RESULT TABLE

TEST PARAMETERS	UNIT	RESULT	PERMISSEBLE	TEST METHOD
N POLLOON POLLOCON POLLUCON	SELUCON T	Final Discharge	CLUB COLLEGE COLLEGE	IS: 3025 (Part - 11)
DHILLIKON TOLITICON POLICION	POLICE	8.25	5.5 to 9.0	(Electrometric Method)
Temperature	°C °C	32.4	100 00140 011 10U	IS: 3025 (Part - 9)
POPPER DIS PLATER OF PLATER	Co-pt	150	CISAL A LULICON POLI	IS: 3025 (Part - 4)
POLICIÓN POLITICON POLITICOS P	mg/L	144CON 1 84	100	IS:3025 (Part - 17)
REPAIRED AND DELATED AND DELETION	mg/L	4.4 CON 104.4	10 10	APHA(22 nd Edition) 5520 B
POLLICEN POLLEON RUBICLES	mg/L	0.35	5.0	IS3025(P43)
TRALLALON POLITICON PRINCIPLICA	ma/L	BDL*	0.2	APHA (22 nd Edition) 4500-CN- EColorimetric Method
NUMBER OF THE OWNER OF THE OWNER	DOM DUCON 1	0.75	2.0	APHA (22 nd Edition) 4500 F D SPANDS
TO BE THE OWNER CHOICE AND THE CON	PERCEPSICION I	1.7	2.0	APHA (22 nd Edition) 4500-S
THE REPORT OF TH	STORE OF STREET	THE OWNER AND A DESCRIPTION OF	50	IS3025(P34)88Cla.2.3
Contraction of the second second	CONTRACTS.	HETH CONFICTION PLAT	0.2	AAS-APHA (22 nd Edition) 3114
Arsenic as AS	mg/L	UCON POBDLEN POLL		CONTRACTOR DE LA CONTRACT
Total Chromium as Cr ⁺³	mg/L	BDL* BDL*	ICON POLLIZIO POLLI	AAS- APHA (22 nd Edition) 3111
A TOTAL CONTRACT TOTAL	mg/L	BDL*	CONTROLLING PORT	APHA (22 nd Edition) – 3500 – Cr B : Colorimetric method
ON DOLLINGS TOLLAR DOLLARS	mg/L	UCON 1010.29N POLU	3.0	AAS- APHA (22 nd Edition) 3111
TALE DOUGLOUP TO A THE DESIGN OF THE PARTY AND A THE PARTY AND	mg/L	BDL*	CONFOLL 2.0 FOLL	AAS- APHA (22 nd Edition)3111
Thi POLITICINA PERITUTIAN ASIATIAN	AN PRAKE KITCHING	BDL* TOL	ICC N POL 0.01 POLL	AAS-APHA (22 nd Edition) 3112
	TEST PARAMETERS pH Temperature Colour Suspended Solids Oil & Grease Phenolic Compound Cyanides as CN Fluorides as F Sulphide as S Ammonical Nitrogen as NH3 Arsenic as AS Total Chromium as Cr ⁺³ Hexavalent Chromium as Cr ⁺⁶ Copper as Cu Lead as Pb Mercury as Hg	PHTemperature°CColourCo-ptSuspended Solidsmg/LOil & Greasemg/LPhenolic Compoundmg/LCyanides as CNmg/LFluorides as Fmg/LSulphide as Smg/LAmmonical Nitrogen as NH3mg/LArsenic as ASmg/LHexavalent Chromium as Cr ⁺³ mg/LCopper as Cumg/LLead as Pbmg/L	TEST PARAMETERSUNITFinal DischargepH8.25Temperature°C32.4ColourCo-pt150Suspended Solidsmg/L84Oil & Greasemg/L4.4Phenolic Compoundmg/L0.35Cyanides as CNmg/LBDL*Fluorides as Fmg/L0.75Sulphide as Smg/L1.7Ammonical Nitrogen as NH3mg/LBDL*Total Chromium as Cr ⁺³ mg/LBDL*Hexavalent Chromium as Cr ⁺⁵ mg/LBDL*Copper as Cumg/LBDL*Lead as Pbmg/LBDL*Total SPmg/LBDL*Copper as Cumg/LBDL*Dent *mg/LBDL*Copper as Cumg/LBDL*Dent *mg/LBDL*Dent *mg/LBDL*	TEST PARAMETERS UNIT Final Discharge LIMIT** pH 8.25 5.5 to 9.0 Temperature °C 32.4 40 Colour Co-pt 150 Suspended Solids mg/L 84 100 Oil & Grease mg/L 4.4 10 Phenolic Compound mg/L 0.35 5.0 Cyanides as CN mg/L BDL^* 0.2 Fluorides as F mg/L 0.75 2.0 Sulphide as S mg/L 1.7 2.0 Arsenic as AS mg/L BDL^* 0.2 Total Chromium as Cr ⁺³ mg/L BDL^* 2.0 Hexavalent Chromium as Cr ⁺⁵ mg/L BDL^* 1.0 Copper as Cu mg/L BDL^* 2.0

Macky Suraliwala Sr. Scientist

2011100

Dr. Arun Bajpai Lab Manager (Q)

QF/7.8/24-WT

OLDUCON TRACE

Sr. Scientist
 Sec. 12 of Control of the point is subject to terms added difficients mentioned overleaf.

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

TEST	CERTIFICATI
	and the second se

RESULT TABLE

Customer's Name and Address :

ILLICON POLLUCON POLLUCON POLL	
M/S. ATUL LIMITED	LUCON POLLICON POLLICON
P.O ATUL-396 020,	THEOR PULLICON NOLLICON
DIST: VALSAD.	

Test Report No.	CON LUCO	PL/AT 0261
Issue Date	CON	01/06/2019
Customer's Ref.	CON	Email

QF/7.8/24-WT Page: 2 of 2

SR.	TEST PARAMETERS	UNIT	RESULT Final Discharge	PERMISSEBLE LIMIT**	TEST METHOD
NO.	NOLLIGON POLLIGON POLLIGON	mall	0.11	5.0 ON TOL	AAS- APHA (22nd Edition) 3111 B
17	Nickel as Ni Lucon Polluco	mg/L	CALL OF THE PARTY	CON POLLISON POLLU	AAS- APHA (22nd Edition) 3111 B
18	Zinc as Zn	mg/L	1.2	DOW POTICON NOL	APHA (22 nd Edition) 3500 Cd
19	Cadmium as Cd	mg/L	BDL*	2.0	Dithizone Method
OLLUG	Phosphates as P	mg/L	1.65 01.000	LON POLIS.ON POLLU	APHA (22 nd Edition) 4500 C
20		mg/L	70	100	IS 3025 (P44)
21 22	BOD (5 Days @ 20 °C) COD	mg/L	240	250	APHA (22 nd Edition) 5520-B Oper Reflux
		N PLUCON	24	26	By Calculation
23	Sodium Absorption Ratio	CONTRACTOR 13	0.35	2.0 00 00	AAS- APHA (22nd Edition) 3111
24	Manganese as Mn	mg/L	CONTRACTOR DE LA CONTRACTOR	0.1	AAS- APHA (22 nd Edition) 3111
25	Tin as Sn Poctucos Poctuci	mg/L	BDL*	90 % survival of	ON POLLUCON POLLUCON POLLUR
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	a contrary	OECD 203 B/IS: 6582-1971
POLLU	NET OF THE REAL POLICY POLICY POLICY POLICY	N POLLUKON NOLULION N POLLUCON	COLUCIE POLUCON TOU	LUCEN FOLLS ON POLIS	SOP/INS/WW/01 on EPA 525.2 and 8141 A
POLICICN FOLLICON FOLLICON FOL ACON	mg/L	BDL*	Absent	SOP/INS/WW/05 based on EPA 508	
27 POLLO	27 Pesticides/Insecticides	PULLICON DU POLLICON	CITICON LOTICON LOT CITICON LOTICON LO CITICON LOTICON LOT	LUCON POLLUCON POLLUCON POL	SOP/INS/WW/04 Based on EPA 8141 A

**Details provided by customer. **attached pesticides list. BDL*: Below Detection Limit, Minimum Detection Limit, Oil & Grease: 2.0 mg/L, Phenolic Compound : 0.005 mg/L, Cyanides : 0.001 mg/L, Sulphides:0.025 mg/L, Arsenic: 0.001 mg/L, Mercury : 0.005 mg/L, Cadmium: 0.002 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Hexavalent Chromium:0.05 mg/L, Nickel :0.02 mg/L, Manganese: 0.01 mg/L, Lead: 0.005 mg/L.

Macky Suraliwala Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

Sr. Scientist
 Sr. Scientist
 Sec. 12 of Note: This Point South Sec. 12 of Note: This Point Sec. 12 of

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

QF/7.8/24-WT

Page: 1 of 2

M/S.	ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.	UCON POLLUC ON POLLUCON UCON POLLUCON UCON POLLUCON UCON POLLUCON	I POLLICON POLLICON M IN POLLICON POLLICON M POLLICON POLLICON M	Test Report No. Issue Date Customer's Ref.	: PL/AT 0312A : 04/07/2019 : Email
Date o Samp Samp Packir	of Sampling : 26/0 ling by : Pollud le Receipt Date : 27/0 ng/ Seal : Seal	6/2019	ries Pvt. Ltd. Protoc Lab II Test P	ity/No. of Samples ling Procedure col (purpose) D. Parameters f Completion of Test	: 10 Lit/One : IS:3025 : Env. Monitoring : AT/1906/02 : As per table : 04/07/2019
SR.	UCON POLLUCON POLLUCON POLLUC	ON POLLUG	RESULT	PERMISSEBLE	LUCON POLLUCON POLLUCON POL CULOCON POLLUCON POLLUCON POL
NO.	TEST PARAMETERS	UNIT	Final Discharge	LIMIT**	TEST METHOD
N 10LL	pH POLLICON POLLICON POLLIC	ON POTEL ON	8.20	5.5 to 9.0	IS 3025 (Part–11) 2017Electrometric Method
2	Temperature	°C	POLLICON 30 LUCON P	40	IS 3025 (Part-9) 2017
3	Colour	Co-pt	110	OLUCCI POLLUCON PC	IS 3025 (Part-4) 2017
4	Suspended Solids	mg/L	92	100	IS 3025 (Part – 17) 2017
5	Oil & Grease	mg/L	3.6	10	APHA (23 rd Edition 2017) 5520 B
6	Phenolic Compound	mg/L	0.28	5.0	IS 3025 (PART-43) 2019 Aminoantipyrine Method
7	Cyanides as CN	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 4500 CN E Colorimetric Method
8	Fluorides as F	mg/L	0.70	2.0	APHA (23 rd Edition 2017) 4500 F D SPANDS Method
9	Sulphide as S	mg/L	1.2	2.0	APHA (23 rd Edition 2017) 4500 S2 F Iodometric method
10	Ammonical Nitrogen as NH ₃	mg/L	42	50 JCON 1 50 JCON 14	IS 3025 (Part-34) 2019 Nesslerization Method
11	Arsenic as AS	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 3114 B
12	Total Chromium as Cr ⁺³	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 E
13	Hexavalent Chromium as Cr ⁺⁶	mg/L	BDL*	1.0	APHA (23 rd Edition 2017) 3500 C BColorimetric method
14	Copper as Cu	mg/L	0.24	3.0	APHA (23 rd Edition 2017) 3111 B
15	Lead as Pb	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 E
16	Mercury as Hg	mg/L	BDL*	0.01	IS 3025 (Part-48) 2019

Maely **Macky Suraliwala** Sr. Scientist

Customer's Name and Address :

Dr. Arun Bajpai Lab Manager (Q)

ISO

• ISO 14001 : 2004 • OHSAS 18001 : 2007

Note: This report is subject to terms & conditions mentioned overleaf.

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :

QF/7.8/24-WT

Page: 2 of 2

M/S. ATUL LIMITED	Test Report No.	POLU	PL/AT 0312A
P.O ATUL-396 020,	Issue Date	POLL	04/07/2019
DIST: VALSAD.	Customer's Ref.		Email

RESULT TABLE

SR.	TECT DADAMETERS	LINITT	RESULT	PERMISSEBLE	TECT METHOD
NO.	TEST PARAMETERS	UNIT	Final Discharge	LIMIT**	TEST METHOD
17	Nickel as Ni	mg/L	0.16	5.0 S.O	APHA (23rd Edition2017) 3111 B
18	Zinc as Zn realing of the	mg/L	1.48	a 15 N K	APHA (23 rd Edition2017) 3111 B
19	Cadmium as Cd	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B
20	Phosphates as P	mg/L	1.70	5.0	APHA (23 rd Edition 2017) 4500 C
21	BOD (5 Days @ 20 °C)	mg/L	ON POLLUC57 POLLUCON	N LUCO100 LUCON	IS 3025 (PART-44) 2019
22	COD	mg/L	230	250	APHA (23 rd Edition 2017) 5220 B Open Reflux Method
23	Sodium Absorption Ratio	UCON TO / IN	ON POINT 22	26 CON	By Calculation
24	Manganese as Mn	mg/L	0.30	2.0	APHA (23 rd Edition 2017) 3111 B
25	Tin as Sn	mg/L	BDL*	0.1	APHA (23 rd Edition 2017) 3111 B
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	90 % survival of fish after 96 hour in 100% effluent	OECD 203 B/IS: 6582-2001
77	Posticidos/Insosticidos**	mall		Absent	USEPA 508 1995
27	Pesticides/Insecticides**	mg/L	BDL*	ADSEIL	USEPA 525.2 1995

**Details provided by customer. **attached pesticides list.

BDL*: Below Detection Limit, Minimum Detection Limit, Cyanides : 0.01 mg/L, Sulphides:0.1 mg/, Arsenic: 0.001 mg/L, Chromium : 0.05 mg/L, Hexavalent Chromium:0.5 mg/L, Copper as Cu:0.04 mg/L, Lead: 0.02 mg/L. Mercury : 0.001 mg/L, Cadmium: 0.004 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Manganese: 0.03 mg/L

Maely

Macky Suraliwala Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

ISO 9001

form

Note: This report is subject to terms & conditions mentioned overleaf.

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

QF/7.8/24-WT

N POLL	ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.	UCON POLLUC ON POLLUCON DON POLLUCON TON POLLUCON UCON POLLUCON TON POLLUCON	POLLICON POLLICON POLLICON IN POLLICON POLLICON POLLICON POLLICON PO	Test Report No. Issue Date Customer's Ref.	: PL/AT 0263A : 07/08/2019 : Email
Date o Samp Samp Packir	of Sampling : 27/0 ling by : Pollud le Receipt Date : 28/0 ng/ Seal : Seal	7/2019	ries Pvt. Ltd. Protoc Lab ID Test P Date of	ity/No. of Samples ing Procedure col (purpose)). arameters f Completion of Test	: 10 Lit/One : IS:3025 : Env. Monitoring : AT/1907/02 : As per table : 06/08/2019
N POLL	UCON POLLICON POLLUCON POLLUC	ON POLLUC	RESULT TABLE	DU LICON POLLUCON PO	LLUCON POLLUCON POLLUCON POL
SR. NO.	TEST PARAMETERS	UNIT	RESULT Final Discharge	PERMISSEBLE LIMIT**	TEST METHOD
	pH rotucon rotucon rotuc	ON POTEL OF	7.95	5.5 to 9.0	IS 3025 (Part–11) 2017Electrometric Method
2	Temperature	°C	TOLLUCO 31.6 UCON PO	40	IS 3025 (Part-9) 2017
3	Colour	Co-pt	125	DULUCO POLLUCON PO	IS 3025 (Part-4) 2017
4	Suspended Solids	mg/L	86	100	IS 3025 (Part – 17) 2017
5	Oil & Grease	mg/L	7.2	10	APHA (23 rd Edition 2017) 5520 B
6	Phenolic Compound	mg/L	0.55	5.0	IS 3025 (PART-43) 2019 Aminoantipyrine Method
7	Cyanides as CN	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 4500 CN E Colorimetric Method
8	Fluorides as F	mg/L	0.55	2.0	APHA (23 rd Edition 2017) 4500 F D SPANDS Method
9	Sulphide as S	mg/L	1.8	2.0	APHA (23 rd Edition 2017) 4500 SZ F Iodometric method
10	Ammonical Nitrogen as NH ₃	mg/L	39	50	IS 3025 (Part-34) 2019 Nesslerization Method
11	Arsenic as AS	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 3114 B
12	Total Chromium as Cr ⁺³	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B
13	Hexavalent Chromium as Cr ⁺⁶	mg/L	BDL*	1.0	APHA (23 rd Edition 2017) 3500 Cl BColorimetric method
14	Copper as Cu	mg/L	0.16	3.0	APHA (23 rd Edition 2017) 3111 B
15	Lead as Pb	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B
100 TO 100	Mercury as Hg	mg/L	BDL*	0.01	IS 3025 (Part-48) 2019

Maely **Macky Suraliwala** Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

ISO

Note: This report is subject to terms & conditions mentioned overleaf.

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 : 2007 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :

QF/7.8/24-WT Page: 2 of 2

M/S. ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.

R FOLLUCON POLLUCON	POLL	Faye. 2 01 2
Test Report No.	POLL	PL/AT 0263A
Issue Date	POLL	07/08/2019
Customer's Ref.	POL	Email

RESULT TABLE

SR.	TECT DAD AMETERC	UNITT	RESULT	PERMISSEBLE	TECT METHOD
NO.	TEST PARAMETERS	UNIT	Final Discharge	LIMIT**	TEST METHOD
17	Nickel as Ni	mg/L	0.11	5.0	APHA (23rd Edition2017) 3111 B
18	Zinc as Zn	mg/L	1.75	15	APHA (23 rd Edition2017) 3111 B
19	Cadmium as Cd	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B
20	Phosphates as P	mg/L	ON POLI 2.10 CLUCON	5.0 Lucov	APHA (23 rd Edition 2017) 4500 C
21	BOD (5 Days @ 20 °C)	mg/L	64	100	IS 3025 (PART-44) 2019
22	COD	mg/L	210	250	APHA (23 rd Edition 2017) 5220 B Open Reflux Method
23	Sodium Absorption Ratio	CONT LUI	20	26	By Calculation
24	Manganese as Mn	mg/L	0.45	2.0	APHA (23rd Edition 2017) 3111 B
25	Tin as Sn	mg/L	BDL*	0.1.000 0	APHA (23rd Edition 2017) 3111 B
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	90 % survival of fish after 96 hour in 100% effluent	OECD 203 B/IS: 6582-2001
N POLL	Pesticides/Insecticides**	N POLITICO		Absent	USEPA 508 1995
27	resucides/insecticides	mg/L	BDL*	ADSEIIL	USEPA 525.2 1995

**Details provided by customer. **attached pesticides list.

BDL*: Below Detection Limit, Minimum Detection Limit, Cyanides : 0.01 mg/L, Sulphides:0.1 mg/, Arsenic: 0.001 mg/L, Chromium : 0.05 mg/L, Hexavalent Chromium:0.5 mg/L, Copper as Cu:0.04 mg/L, Lead: 0.02 mg/L. Mercury : 0.001 mg/L, Cadmium: 0.004 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Manganese: 0.03 mg/L

Maely

Macky Suraliwala Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

form

Note: This report is subject to terms & conditions mentioned overleaf.

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 : 2008 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

QF/7.8/24-WT

CON PO	ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.	UCON POLLUC ON POLLUCON DON POLLUCON TON POLLUCON UCON POLLUCON TON POLLUCON	I POLLUCON POLLUCON IN ON POLLUCON POLLUCON IN POLLUCON POLLUCON IN	Test Report No. Issue Date Customer's Ref.	: PL/AT 0314A : 06/09/2019 : Email	
Date of Sampling:29/0Sampling by:PollucSample Receipt Date:30/0Packing/ Seal:Seale		escription of Sample : Final Discharge Quantity/No. of Sample ate of Sampling : 29/08/2019 Sampling Procedure ampling by : Pollucon Laboratories Pvt. Ltd. Protocol (purpose) ample Receipt Date : 30/08/2019 Lab ID. acking/ Seal : Sealed Test Parameters		ity/No. of Samples ing Procedure col (purpose)). arameters	: 10 Lit/One : IS:3025 : Env. Monitoring : AT/1908/02 : As per table : 06/09/2019	
N POLL	UCON POLLICON POLLUCON POLLUC	ON POLLUC	RESULT TABLE	DU LICON POLLUCON PO	LLUCON POLLUCON POLLUCON POL	
SR. NO.	TEST PARAMETERS	UNIT	RESULT Final Discharge	PERMISSEBLE LIMIT**	TEST METHOD	
N 10LL	рН	DN ROTEL DR	8.10	5.5 to 9.0	IS 3025 (Part–11) 2017Electrometric Method	
2	Temperature	°C	32.6	40	IS 3025 (Part-9) 2017	
3	Colour	Co-pt	90	LUCA POLLUCON PO	IS 3025 (Part-4) 2017	
4	Suspended Solids	mg/L	92	100	IS 3025 (Part – 17) 2017	
5	Oil & Grease	mg/L	5.8	10	APHA (23 rd Edition 2017) 5520 B	
6	Phenolic Compound	mg/L	0.14	5.0	IS 3025 (Part–43) 2019 Aminoantipyrine Method	
7	Cyanides as CN	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 4500 CN E Colorimetric Method	
8	Fluorides as F	mg/L	0.60	2.0	APHA (23 rd Edition 2017) 4500 F D SPANDS Method	
9	Sulphide as S	mg/L	1.6	2.0	APHA (23 rd Edition 2017) 4500 S F Iodometric method	
10	Ammonical Nitrogen as NH ₃	mg/L	46	50	IS 3025 (Part-34) 2019 Nesslerization Method	
11	Arsenic as AS	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 3114 B	
12	Total Chromium as Cr ⁺³	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 E	
13	Hexavalent Chromium as Cr ⁺⁶	mg/L	BDL*	1.0	APHA (23 rd Edition 2017) 3500 Cr B Colorimetric method	
14	Copper as Cu	mg/L	0.12	3.0	APHA (23rd Edition 2017) 3111 E	
15	Lead as Pb	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 E	
16	Mercury as Hg	mg/L	BDL*	0.01	IS 3025 (Part-48) 2019	

Maely **Macky Suraliwala** Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

ISO

• ISO 14001 : 2004 • OHSAS 18001 : 2007

Note: This report is subject to terms & conditions mentioned overleaf.

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :

QF/7.8/24-WT Page: 2 of 2

M/S. ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.

LUCON P	
	LUCON POL LUCON POL LUCON POL LUCON POL

RESULT TABLE

SR.		UNITT	RESULT	PERMISSEBLE	TECT METHOD
NO.	TEST PARAMETERS	UNIT	Final Discharge	LIMIT**	TEST METHOD
17	Nickel as Ni	mg/L	0.075	5.0	APHA (23rd Edition2017) 3111 B
18	Zinc as Zn	mg/L	2.10	15	APHA (23 rd Edition2017) 3111 B
19	Cadmium as Cd	mg/L	BDL*	2.0	APHA (23rd Edition 2017) 3111 B
20	Phosphates as P	mg/L	on point 1.75 of the second	5.0	APHA (23 rd Edition 2017) 4500 C
21	BOD (5 Days @ 20 °C)	mg/L	75	100	IS 3025 (Part-44) 2019
22	COD	mg/L	240	250	APHA (23 rd Edition 2017) 5220 B Open Reflux Method
23	Sodium Absorption Ratio	CONT LU	22	26	By Calculation
24	Manganese as Mn	mg/L	0.35	2.0	APHA (23rd Edition 2017) 3111 B
25	Tin as Sn	mg/L	BDL*	0.1	APHA (23rd Edition 2017) 3111 B
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	90 % survival of fish after 96 hour in 100% effluent	OECD 203 B/IS: 6582-2001
N POLLI	Pesticides/Insecticides**			Absent	USEPA 508 1995
27	resucides/insecticides	mg/L	BDL*	ADSENI	USEPA 525.2 1995

**Details provided by customer. **attached pesticides list.

BDL*: Below Detection Limit, Minimum Detection Limit, Cyanides : 0.01 mg/L, Sulphides:0.1 mg/, Arsenic: 0.001 mg/L, Chromium : 0.05 mg/L, Hexavalent Chromium:0.5 mg/L, Copper as Cu:0.04 mg/L, Lead: 0.02 mg/L. Mercury : 0.001 mg/L, Cadmium: 0.004 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Manganese: 0.03 mg/L

Maely

Macky Suraliwala Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

• ISO 9001 : 2008

form

Note: This report is subject to terms & conditions mentioned overleaf.

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

QF/7.8/24-WT

ION PO	ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.	UCON POLLUC ON POLLUCON DON POLLUCON DON POLLUCON DON POLLUCON DON POLLUCON	I POLLUCON POLLUCON IN ON POLLUCON POLLUCON IN POLLUCON POLLUCON IN	Test Report No. Issue Date Customer's Ref.	: PL/AT 0363A : 07/10/2019 : Email	
Date of Sampling:28/09Sampling by:PolluceSample Receipt Date:30/09Packing/ Seal:Seale		Scription of Sample:Final DischargeQuantity/No. of Samplete of Sampling:28/09/2019Sampling Procedurempling by:Pollucon Laboratories Pvt. Ltd.Protocol (purpose)mple Receipt Date:30/09/2019Lab ID.cking/ Seal:SealedTest Parameters		ity/No. of Samples ing Procedure ol (purpose)). arameters	: 10 Lit/One : IS:3025 : Env. Monitoring : AT/1909/02 : As per table : 07/10/2019	
N POLL	LITER POLICE POLICE POLICE	ON POLLUS	RESULT TABLE	DI JEON POLICIÓN PO	ELUCON POLLICON POLLICON POL	
SR. NO.	TEST PARAMETERS	UNIT	RESULT Final Discharge	PERMISSEBLE LIMIT**	TEST METHOD	
N 1011	pH rotuces rotuces rotuc	DN POTEL DR	8.30	5.5 to 9.0	IS 3025 (Part–11) 2017 Electrometric Method	
2	Temperature	°C	31.9	40	IS 3025 (Part-9) 2017	
3	Colour	Co-pt	80	80 0		
4	Suspended Solids	mg/L	78 100		IS 3025 (Part – 17) 2017	
5	Oil & Grease	mg/L	3.4	10	APHA (23 rd Edition 2017) 5520 E	
6	Phenolic Compound	mg/L	0.098	5.0	IS 3025 (Part–43) 2019 Aminoantipyrine Method	
7	Cyanides as CN	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 4500 CM E Colorimetric Method	
8	Fluorides as F	mg/L	0.75	2.0	APHA (23 rd Edition 2017) 4500 F D SPANDS Method	
9	Sulphide as S	mg/L	1.8	2.0	APHA (23 rd Edition 2017) 4500 S F Iodometric method	
10	Ammonical Nitrogen as NH ₃	mg/L	POLLICON 44 DICON PC	50	IS 3025 (Part-34) 2019 Nesslerization Method	
11	Arsenic as AS	mg/L	BDL*	0.2	APHA (23 rd Edition 2017) 3114 B	
12	Total Chromium as Cr ⁺³	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 E	
13	Hexavalent Chromium as Cr ⁺⁶	mg/L	BDL*	1.0	APHA (23 rd Edition 2017) 3500 Cr B Colorimetric method	
14	Copper as Cu	mg/L	0.075	3.0	APHA (23 rd Edition 2017) 3111 B	
15	Lead as Pb	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B	
TE	Mercury as Hg	mg/L	BDL*	0.01	IS 3025 (Part-48) 2019	

Maely **Macky Suraliwala** Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

ISO

Note: This report is subject to terms & conditions mentioned overleaf.

• FSSAI Approved Lab • Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

 GPCB apprved • ISO 14001 : 2004 • OHSAS 18001 : 2007 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Customer's Name and Address :

QF/7.8/24-WT Page: 2 of 2

M/S. ATUL LIMITED P.O ATUL-396 020, DIST: VALSAD.

IN POLLUCON POLLUCON	POLL	Page: 2 01 /
Test Report No.	POLL	PL/AT 0363A
Issue Date	POLL	07/10/2019
Customer's Ref.	rou	Email

RESULT TABLE

SR.	TEST PARAMETERS	LINITT	RESULT	PERMISSEBLE		
NO.		UNIT	Final Discharge	LIMIT**	TEST METHOD	
17	Nickel as Ni	mg/L	0.075	5.0	APHA (23rd Edition2017) 3111 B	
18	Zinc as Zn	mg/L	3.40	15	APHA (23rd Edition2017) 3111 B	
19	Cadmium as Cd	mg/L	BDL*	2.0	APHA (23 rd Edition 2017) 3111 B	
20	Phosphates as P	mg/L	2.10	5.0	APHA (23 rd Edition 2017) 4500 C	
21	BOD (5 Days @ 20 °C)	mg/L	82	100	IS 3025 (Part-44) 2019	
22	COD	mg/L	244	250	APHA (23 rd Edition 2017) 5220 B Open Reflux Method	
23	Sodium Absorption Ratio	CONT LU	24	26	By Calculation	
24	Manganese as Mn	mg/L	0.15	2.0	APHA (23rd Edition 2017) 3111 B	
25	Tin as Sn	mg/L	BDL*	0.1	APHA (23 rd Edition 2017) 3111 B	
26	Bio Assay test	%	100 % survival of fish after 96 hour in 100% effluent	90 % survival of fish after 96 hour in 100% effluent	OECD 203 B/IS: 6582-2001	
NIPOLL	Pesticides/Insecticides**	DN POLITICO	N POLLUCON POLLUCON P	Absent	USEPA 508 1995	
27	resucides/insecticides	mg/L	BDL*	ADSENI	USEPA 525.2 1995	

**Details provided by customer. **attached pesticides list.

BDL*: Below Detection Limit, Minimum Detection Limit, Cyanides : 0.01 mg/L, Sulphides:0.1 mg/, Arsenic: 0.001 mg/L, Chromium : 0.05 mg/L, Hexavalent Chromium:0.5 mg/L, Copper as Cu:0.04 mg/L, Lead: 0.02 mg/L. Mercury : 0.001 mg/L, Cadmium: 0.004 mg/L, Insecticides/Pesticides: 0.1 mg/L, Tin: 0.005 mg/L, Manganese: 0.03 mg/L

Maely

Macky Suraliwala Sr. Scientist

Dr. Arun Bajpai Lab Manager (Q)

form

Note: This report is subject to terms & conditions mentioned overleaf.

 FSSAI Approved Lab
 Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

● GPCB apprved ● ISO 14001 : 2004 ● OHSAS 18001 : 2007 ● ISO 9001 : 2008 schedule II auditor

"Pollucon House", Plot No.5/6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

ANNEXURE-IV

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date: 30/04/2019

Ref. No.: 2314/04/2019-20

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

	Particulars		Results					
Sr. No.		Unit	Nr.Main Guest house	Nr. Main Office North Site	At Wyeth Colony	Gram Panchayat Hal		
01.	Date of sampling	-	12/04/2019	18/04/2019	12/04/2019	12/04/2019		
02.	Time of sampling	-	8.10	9.40	8.50	8.25		
03.	Duration of sampling	Minutes	1440	1440	1440	1440		
04.	Average flow rate during sampling	m ³ /Hr	1.0	1.0	1.0	1.0		
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2		
06.	Permissible Limits of PM2.5	µg/m ³	60	60	60	60		
07	Measured Concentration of PM2.5	µg/m ³	35	30	30	40		
08.	Permissible Limits of PM10	µg/m ³	100	100	100	100		
09.	Measured Concentration of PM10	µg/m ³	50	55	45	45		
10.	Permissible Limits of SO2	µg/m³	80	80	80	80		
11.	Measured Concentration of SO2	µg/m ³	9.8	9.1	9.3	9.0		
12.	Permissible Limits of NOx	µg/m³	80	80	80	80		
13.	Measured Concentration of NOx	µg/m ³	16.5	13.1	13.5	12.8		
14.	Prescribed Limits of Ammonia	µg/m ³	850	850	850	850		
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND		
16.	Prescribed Limits of HCI	µg/m ³	200	200	200	200		
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND		

Instrument used : Ecotech make 2 Nos. of (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech make 2 Nos. of PM 2.5 sampler AAS 127 Calibration due on 1) 05/05/2019, 2)06/05/2019

Consultancy Service Royal Environ

Analyst

Ref. No.: 2315/04/2019-20

Date:30/04/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

			Results					
Sr. No.	Particulars	Unit	Opposite Shed D	Near ETP (West Site)	ETP Plant (North Site)	Near TSDF		
01.	Date of sampling	-	19/04/2019	18/04/2019	19/04/2019	19/04/2019		
02.	Time of sampling	-	9.40	10.00	9.20	9.20		
03.	Duration of sampling	Minutes	1440	1440	1440	1440		
04.	Average flow rate during sampling	m ³ /Hr	1.0	1.0	1.0	1.0		
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2		
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60		
07	Measured Concentration of PM2.5	µg/m ³	45	35	38	55		
08.	Permissible Limits of PM10	µg/m³	100	100	100	100		
09.	Measured Concentration of PM10	µg/m ³	50	50	60	55		
10.	Permissible Limits of SO2	µg/m³	80	80	80	80		
11.	Measured Concentration of SO2	µg/m ³	12.1	10.1	10.3	9.9		
12.	Permissible Limits of NOx	µg/m³	80	80	80	80		
13.	Measured Concentration of NOx	µg/m ³	10.1	9.5	9.8	9.1		
14.	Prescribed Limits of Ammonia	µg/m ³	850	850	850	850		
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND		
16.	Prescribed Limits of HCI	µg/m ³	200	200	200	200		
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND		

Instrument used : Ecotech make 2 Nos. of (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech make 2 Nos. of PM 2.5 sampler AAS 127 Calibration due on. 1) 05/05/2019, 2) 06/05/2019

P Royal Environment Auditing & Consultancy Service

auditing Rajkot

Analyst

Ref. No.: 2514/06/2019-20

Date:29/06/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

	and in the second	Unit	Results						
Sr. No.	Particulars		Nr.Main Guest house	Nr. Main Office North Site	At Wyeth Colony	Gram Panchayat Hal			
01.	Date of sampling	-	08/06/2019	28/06/2019	08/06/2019	26/06/2019			
02.	Time of sampling	-	8.30	10.05	8.50	8.40			
03.	Duration of sampling	Minutes	1440	1440	1440	1440			
04.	Average flow rate during sampling	m³/Hr	1.0	1.0	1.0	1.0			
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2			
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60			
07	Measured Concentration of PM2.5	µg/m ³	36	34	30	41			
08.	Permissible Limits of PM10	µg/m³	100	100	100	100			
09.	Measured Concentration of PM10	µg/m ³	52	56	50	47			
10.	Permissible Limits of SO2	µg/m ³	80	80	80	80			
11.	Measured Concentration of SO2	µg/m ³	10.5	9.5	9.2	9.1			
12.	Permissible Limits of NOx	µg/m ³	80	80	80	80			
13.	Measured Concentration of NOx	µg/m ³	17.5	12.8	14.2	14.2			
14.	Prescribed Limits of Ammonia	µg/m³	850	850	850	850			
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND			
16.	Prescribed Limits of HCI	µg/m ³	200	200	200	200			
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND			

Instrument used : Ecotech make 2 Nos. of (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech make 2 Nos. of PM 2.5 sampler AAS 127 Calibration due on.1) 05/05/2020, 2)06/05/2020

madera. Royal Environment Auditing & Consultancy Service

Ref. No.: 2515/06/2019-20

Date:29/06/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Sr. No.	Particulars	Unit		Res	sults	
		Onic	Opposite Shed D	Near ETP (West Site)	ETP Plant (North Site)	Near TSDF
01.	Date of sampling		13/06/2019	13/06/2019	28/06/2019	26/06/2019
02.	Time of sampling	-	9.15	9.30	10.15	9.05
03.	Duration of sampling	Minutes	1440	1440	1440	1440
04.	Average flow rate during sampling	m³/Hr	1.0	1.0	1.0	1.0
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	
06.	Permissible Limits of PM2.5	µg/m ³	60	60	60	0.2 60
07	Measured Concentration of PM2.5	µg/m ³	56	41	38	56
08.	Permissible Limits of PM10	µg/m³	100	100	100	100
09.	Measured Concentration of PM10	µg/m ³	58	60	64	57
10.	Permissible Limits of SO2	µg/m ³	80	80	80	80
11.	Measured Concentration of SO2	µg/m ³	12.8	11.0	10.2	
12.	Permissible Limits of NOx	µg/m ³	80	80	80	10.3
13.	Measured Concentration of NOx	µg/m ³	10.9	9.7	9.6	80
14.	Prescribed Limits of Ammonia	µg/m ³	850	850	850	9.2
15. 0	Concentration of Ammonia	µg/m ³	ND	ND		850
16. F	Prescribed Limits of HCI	µg/m ³	200	200	ND	ND
17. 0	Concentration of HCI	µg/m ³	ND	ND	200 ND	200 ND

Instrument used : Ecotech make 2 Nos. of (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech make 2 Nos. of PM 2.5 sampler AAS 127 Calibration due on.1) 05/05/2020, 2) 06/05/2020

Royal Environment Auditing & Consultancy Service

Col . Analyst

Ref. No.: 2614/07/2019-20

Date:31/07/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Sr. No	Particulars	Unit		Res	ults	
		Unit	Nr.Main Guest house	Nr. Main Office North Site	At Wyeth Colony	Gram Panchayat Hal
01.	Date of sampling	-	04/07/2019	11/07/2019	04/07/2019	19/07/2019
02.	Time of sampling		8.45	9.55	9.05	8.45
03.	Duration of sampling	Minutes	1440	1440	1440	1440
04.	Average flow rate during sampling	m ³ /Hr	1.0	1.0	1.0	
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	1.0 0.2
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60
07	Measured Concentration of PM2.5	µg/m ³	25	35	24	22
08.	Permissible Limits of PM10	µg/m³	100	100	100	100
09.	Measured Concentration of PM10	µg/m ³	48	51	42	
10.	Permissible Limits of SO2	µg/m ³	80	80	80	40
11.	Measured Concentration of SO2	µg/m ³	8.1	9.1	7.9	80 8.6
12.	Permissible Limits of NOx	µg/m ³	80	80	80	80
13.	Measured Concentration of NOx	µg/m ³	12.5	14.2	11.3	10.5
4.	Prescribed Limits of Ammonia	µg/m ³	850	850	850	
5.	Concentration of Ammonia	µg/m ³	ND	ND	ND	850
6. 1	Prescribed Limits of HCI	µg/m ³	200	200	200	ND
	Concentration of HCI used : Ecotech make (RDS), Model No. AAS	µg/m ³	ND	ND	ND	200 ND

BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127 Calibration done on .: 05/05/2019

rade 19 Royal Environment Auditing & Consultancy Service

In

Ref. No.: 2615/07/2019-20

Date:31/07/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Sr. No	Particulars	Unit		Res	ults	
01.	Data		Opposite Shed D	Near ETP (West Site)	ETP Plant (North Site)	Near TSDF
01.	Date of sampling		11/07/2019	18/07/2019	26/07/2019	
02.	Time of sampling		8.40	8.55	8.45	19/07/2019
03.	Duration of sampling	Minutes	1440	1440	1440	8.50
04.	Average flow rate during sampling	m ³ /Hr	1.0	1.0		1440
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	1.0	1.0
06.	Permissible Limits of PM2.5	µg/m ³	60	60	0.2	0.2
07	Measured Concentration of PM2.5	µg/m ³	46	37	60	60
08.	Permissible Limits of PM10	µg/m ³	100	100	39	40
09.	Measured Concentration of PM10	µg/m ³	48	52	100	100
10.	Permissible Limits of SO2	µg/m³	80		45	49
11.	Measured Concentration of SO2			80	80	80
	and share the second	µg/m ³	10.3	11.2	9.8	10.8
	Permissible Limits of NOx	µg/m³	80	80	80	80
13.	Measured Concentration of NOx	µg/m ³	9.1	8.4	8.5	8.2
14.	Prescribed Limits of Ammonia	µg/m³	850	850	850	
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	850
16. 1	Prescribed Limits of HCI	µg/m ³	200	200	200	ND
	Concentration of HCI used : Ecotech make (RDS), Model No. AAS	µg/m ³	ND	ND	ND	200 ND

Instrument used : Ecotech make (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127 Calibration done on.: 05/05/2019

G do O -D Royal Environment Auditing & Consultancy Service

Ref. No.: 2714/08/2019-20

Date:31/08/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, : District : Valsad - 396 020. Address

		1000	Results						
Sr. No.	Particulars	Unit	Nr.Main Guest house	Nr. Main Office North Site	At Wyeth Colony	Gram Panchayat Hal			
01.	Date of sampling		01/08/2019	08/08/2019	22/08/2019	03/08/2019			
02.	Time of sampling		9.05	8.50	8.45	9.35			
03.	Duration of sampling	Minutes	1440	1440	1440	1440			
04.	Average flow rate during sampling	m ³ /Hr	1.0	1,0	1.0	1.0			
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2			
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60			
07	Measured Concentration of PM2.5	µg/m ³	12	23	10	15			
08.	Permissible Limits of PM10	µg/m³	100	100	100	100			
09.	Measured Concentration of PM10	µg/m³	32	42	30	38			
10.	Permissible Limits of SO2	µg/m ³	80	80	80	80			
11.	Measured Concentration of SO2	µg/m ³	6.4	8.4	5.2	6.4			
12.	Permissible Limits of NOx	µg/m³	80	80	80	80			
13.	Measured Concentration of NOx	µg/m ³	5.1	11.2	6.2	9.4			
14.	Prescribed Limits of Ammonia	µg/m³	850	850	850	850			
15.	Concentration of Ammonia	µg/m³	ND	ND	ND	ND			
16.	Prescribed Limits of HCI	µg/m³	200	200	200	200			
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND			

Instrument used : Ecotech make (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127

Calibration done on .: 05/05/2019

ada fer d Royal Environment Auditing & Consultancy Service

nalyst

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email - royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2715/08/2019-20

Date:31/08/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, : District : Valsad - 396 020. Address

			Results						
Sr. No.	Particulars	Unit	Opposite Shed D	Near ETP (West Site)	ETP Plant (North Site)	Near TSDF			
01.	Date of sampling		22/08/2019	28/08/2019	30/08/2019	10/08/2019			
02.	Time of sampling	-	9.55	8.55	8.45	9.35			
03.	Duration of sampling	Minutes	1440	1440	1440	1440			
04.	Average flow rate during sampling	m ³ /Hr	1.0	1.0	1.0	1.0			
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2			
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60			
07	Measured Concentration of PM2.5	µg/m ³	38	35	32	36			
08.	Permissible Limits of PM10	µg/m³	100	100	100	100			
09.	Measured Concentration of PM10	µg/m ³	46	60	48	51			
10.	Permissible Limits of SO2	µg/m³	80	80	80	80			
11.	Measured Concentration of SO2	µg/m ³	9.4	8.3	6.4	8.2			
12.	Permissible Limits of NOx	µg/m³	80	80	80	80			
13.	Measured Concentration of NOx	µg/m ³	8.5	7.2	5.8	6.3			
14.	Prescribed Limits of Ammonia	µg/m ³	850	850	850	850			
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND			
16.	Prescribed Limits of HCI	µg/m³	200	200	200	200			
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND			

Instrument used : Ecotech make (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127 Calibration done on.: 05/05/2019

Royal Environment Auditing & Consultancy Service

Analyst

Ref. No.: 2814/09/2019-20

Date : 30/09/2019

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

				Resu	ults	
Sr. No.	Particulars	Unit	Nr.Main Guest house	Nr. Main Office North Site	At Wyeth Colony	Gram Panchayat Hall
01.	Date of sampling		05/09/2019	25/09/2019	26/09/2019	18/09/2019
02.	Time of sampling		8.50	9.05	9.25	9.15
03.	Duration of sampling	Minutes	1440	1440	1440	1440
04.	Average flow rate during sampling	m³/Hr	1.0	1.0	1.0	1.0
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2
06.	Permissible Limits of PM2.5	µg/m³	60	60	60	60
07	Measured Concentration of PM2.5	µg/m ³	13	18	11	15
08.	Permissible Limits of PM10	µg/m³	100	100	100	100
09.	Measured Concentration of PM10	µg/m ³	29	38	31	34
10.	Permissible Limits of SO2	µg/m³	80	80	80	80
11.	Measured Concentration of SO2	µg/m ³	5.2	7.6	4.3	5.8
12.	Permissible Limits of NOx	µg/m ³	80	80	80	80
13.	Measured Concentration of NOx	µg/m ³	6.2	8.6	5.7	7.1
14.	Prescribed Limits of Ammonia	µg/m³	850	850	850	850
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND
16.	Prescribed Limits of HCI	µg/m ³	200	200	200	200
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND

Instrument used : Ecotech make (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127

Calibration done on :: 05/05/2019

ade 50 Royal Environmen Consultancy Service uditing &

Analyst

Date : 30/09/2019

Ref. No.: 2815/09/2019-20

REPORT OF AMBIENT AIR QUALITY MONITORING

Name of company : Atul Limited, Address : District : Valsad - 396 020.

				Res	ults	
Sr. No.	Particulars	Unit	Opposite Shed D	Near ETP (West Site)	ETP Plant (North Site)	Near TSDF
01.	Date of sampling		11/09/2019	19/09/2019	12/09/2019	06/09/2019
02.	Time of sampling		9.45	9.55	9.10	9.35
03.	Duration of sampling	Minutes	1440	1440	1440	1440
04.	Average flow rate during sampling	m³/Hr	1.0	1.0	1.0	1.0
05.	Average flow rate for Gas sampling	LPM	0.2	0.2	0.2	0.2
06.	Permissible Limits of PM2.5	µg/m ³	60	60	60	60
07	Measured Concentration of PM2.5	µg/m³	27	25	29	28
08.	Permissible Limits of PM10	µg/m³	100	100	100	100
09.	Measured Concentration of PM10	µg/m³	34	37	38	42
10.	Permissible Limits of SO2	µg/m³	80	80	80	80
11.	Measured Concentration of SO2	µg/m ³	8.7	9.1	8.5	7.8
12.	Permissible Limits of NOx	µg/m ³	80	80	80	80
13.	Measured Concentration of NOx	µg/m³	9.6	10.2	9.2	8.6
14.	Prescribed Limits of Ammonia	µg/m³	850	850	850	850
15.	Concentration of Ammonia	µg/m ³	ND	ND	ND	ND
16.	Prescribed Limits of HCI	µg/m³	200	200	200	200
17.	Concentration of HCI	µg/m ³	ND	ND	ND	ND

Instrument used : Ecotech make (RDS), Model No. AAS - 217 BL, Gaseous Sampling Kit & Ecotech PM 2.5 sampler AAS 127 Calibration done on .: 05/05/2019

as Royal Environment Auditing Consultancy Service

Rajkot

nalvst

Ref. No.: 2318/04/2019-20

Date:30/04/2019

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : APRIL' 2019

Name of company : Atul Limited,

Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit	Location No 1: 66 KVA GEB Sub Station									
01.	No. of Week	-		01	02		C)3	0	04		
02.	Date & Time Starting of Monitoring	-	03/04/2019 8.20	04/04/2019 8.25	10/04/2019 8.30	11/04/2019 8.35	17/04/2019 8.10	18/04/2019 8.15	24/04/2019 8.35	25/04/2011		
03.	Date & Time - Ending of Monitoring	-	04/04/2019 8.20	05/04/2019 8.25	11/04/2019 8.30	12/04/2019 8.35	18/04/2019 8.10	19/04/2019 8.15	25/04/2019 8.35	26/04/2019 8.40		
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1441	1442		
05.	Dominant Wind Direction (From)	-	SE	SE	SE	SE	SE	SE	SE	SE		
06.	Wind Speed Velocity	Km/Hr.	2 to 8	2 to 6	4 to 8	2 to 6	2 to 8	2 to 6	4 to 8	4 to 8		
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m³/Min,	1.12	1.14	1.16	1.15	1.11	1.20	1.22	1.15		
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
10.	Permissible Limits of PM _{2.5} *	µg/m ³	60	60	60	60	60	60	60	60		
11.	Measured Concentration of PM ₂₅	µg/m ³	48.0	39.0	45.0	42.0	38.0	47.0	35.0	40.0		
12.	Permissible Limits of PM10 *	µg/m ³	100	100	100	100	100	100	100	100		
13.	Measured Concentration of PM ₁₀	µg/m ³	55.0	50.0	40.5	39.7	44.8	45.9	40.0	50.0		
14.	Permissible Limits of SO2 *	µg/m ³	80	80	80	80	80	80	80	80		
15.	Measured Concentration of SO2	µg/m ³	9.8	9.9	9.5	10.2	10.5	9.8	9.4	9.2		
16.	Permissible Limits of NO ₂ *	µg/m ³	80	80	80	80	80	80	80	80		
17. 1	Measured Concentration of NO2	µg/m ³	9.9	10.5	9.7	10.3	9.9	11.1	9.1	8.8		
18. 1	Permissible Limits of NH ₃ **	µg/m ³	850	850	850	850	850	850	850	850		
19. 1	Measured Concentration of NH ₃	µg/m ³	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D		
20. F	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200		
21. N	Measured Concentration of HCL **	µg/m ³	N.D	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.		

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration due on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

adel 61 Royal Environment Auditing & Consultancy Service, Rajkot

Analysi

Date:30/04/2019

Ref. No.: 2319/04/2019-20

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : APRIL' 2019

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			Locati	on No 2: H	ariya Wate	r Tank		
01.	No. of Week	-	(01	C	02		03	0	4
02.	Date & Time Starting of Monitoring	-	03/04/2019 8.35	04/04/2019 8.40	10/04/2019 8.45	11/04/2019 8.50	17/04/2019 8.25	18/04/2019 8.30	24/04/2019 8.50	25/04/2019 8.55
03.	Date & Time - Ending of Monitoring	1	04/04/2019 8.35	05/04/2019 8.40	11/04/2019 8.45	12/04/2019 8.50	18/04/2019 8.25	19/04/2019 8.30	25/04/2019 8.50	26/04/2019 8.55
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1441	1442
05.	Dominant Wind Direction (From)	-	SE							
06.	Wind Speed Velocity	Km/Hr.	4 to 8	2 to 8	4 to 6	4 to 8	3 to 9	2 to 6	2 to 5	4 to 8
07.	Average Flow Rate For Dust Monitoring PM ₂₅	m ³ /Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m ³ /Min.	1.12	1.14	1.22	1.22	1.25	1.35	1.26	1.20
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM25*	µg/m³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m ³	55.0	45.0	50.0	45.0	40.0	45.0	40.0	35.0
12.	Permissible Limits of PM ₁₀ *	µg/m³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	µg/m³	46.0	50.0	45.0	45.8	46.8	50.2	39.5	40.5
14.	Permissible Limits of SO ₂ *	µg/m³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m³	10.2	9.9	9.5	9.9	8.9	8.5	8.2	8.5
16.	Permissible Limits of NO2 *	µg/m³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m³	10.3	9.9	10.2	10.1	11.8	11.2	8.8	9.5
18.	Permissible Limits of NH ₃ **	µg/m³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m³	N.D.							
20.	Permissible Limits of HCL **	µg/m³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL	µg/m ³	N.D.							

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Pollutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration due on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

do D Royal Environment Auditing & Consultancy Service, Rajkot

Rajkol

Pradit Analyst

Ref. No.: 2320/04/2019-20

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date: 30/04/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - APRIL - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : 66 KVA GEB Sub Station

Sr. No	. Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			04/04/2019	18/04/2019
02.	Time of sampling	Hr		8.25	8.15
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		2 to 6	2 to 6
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.1	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	50	45.9
10.	Measured Concentration of PM 2.5	µg/m ³	60	39	47
11.	Measured Concentration of SO ₂	µg/m ³	80	9.9	9.8
12.	Measured Concentration of NO ₂	µg/m ³	80	10.5	11.1
13.	Measured Concentration of O ₃	µg/m ³	100	7.5**	8.9**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D	N.D
15.	Measured Concentration of CO	mg/m ³	2.00	0.90**	0.90**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.22**	1.18**
17.	Measured Concentration of Pb	µg/m ³	1	0.80	0.79
18.	Measured Concentration of Ni	ng/m ³	20	0.9	1.5
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

*Permissible Limits are as per NAAQM Standard 2009.,

All Calibration due on : 05/05/2019

** 8:00 Hours monitoring value

spadeja Royal Environment Audiling & Consultancy Service

Rajkot

Pradip Analyst

Ref. No.: 2321/04/2019-20

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date: 30/04/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - APRIL - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : Hariya Water Tank

	. Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time	
01.	Date of sampling			04/04/2019	18/04/2019	
02.	Time of sampling	Hr		8.40	8.30	
03.	Duration of sampling	Min.		1440.00	1440.00	
04.	Dominant Wind Direction (From)			SE	1440.00 SE	
05.	Wind Speed	Km/Hr		2 to 8	2 to 6	
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.1	1.4	
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0		
08.	Avg. flow rate for Gas sampling	LPM		0.2	1.0	
09.	Measured Concentration of PM 10	µg/m ³	100	50	0.2	
10.	Measured Concentration of PM 2.5	µg/m ³	60	45	50.2	
11.	Measured Concentration of SO ₂	µg/m ³	80	9.9	45	
12.	Measured Concentration of NO ₂	µg/m ³	80	9.9	8.5	
13.	Measured Concentration of O ₃	µg/m ³	100	8.5**	11.2	
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D.	8.8**	
15.	Measured Concentration of CO	mg/m ³	2.00	0.75**	N.D.	
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5		0.88**	
	Measured Concentration of Pb	µg/m ³	1	1.35**	1.30**	
	Measured Concentration of Ni	ng/m ³	20	0.09	0.10	
	Measured Concentration of As	ng/m ³	6	1.8	1.7	
	Measured Concentration of B(a)P	ng/m ³	0	ND ND	ND ND	

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

*Permissible Limits are as per NAAQM Standard 2009.,

All Calibration due on : 05/05/2019

** 8:00 Hours monitoring value

padeja D Royal Environment uditing & **Consultancy Service**

Analyst

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2518/06/2019-20

Date:29/06/2019

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : JUNE' 2019

Name of company : Atul Limited,

Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars No. of Week	Unit	Location No 1: 66 KVA GEB Sub Station							
01.			01		02		03		04	
02.	Date & Time Starting of Monitoring	-	06/06/2019 8.25	07/06/2019 8.30	13/06/2019 8.20	14/06/2019 8.25	20/06/2019 8.35	21/06/2019 8.40	27/06/2019 8.45	28/06/2019 8.50
03.	Date & Time - Ending of Monitoring	-	07/06/2019 8.25	08/06/2019 8.30	14/06/2019 8.20	15/06/2019 8.25	21/06/2019 8.35	22/06/2019 8.40	28/06/2019 8.45	29/06/2011 8.50
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1441	1442
05.	Dominant Wind Direction (From)	-	SE	SE	SE	SE	SE	SE	SE	SE
06.	Wind Speed Velocity	Km/Hr.	3 to 8	4 to 8	4 to 6	2 to 6	2 to 6	4 to 8	2 to 6	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m ³ /Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM10	m ³ /Min.	1.14	1.12	1.18	1.15	1.14	1.12	1.26	1.28
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM25 *	µg/m ³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m ³	45.0	41.0	46.0	41.0	36.0	12.0	36.0	41.0
12.	Permissible Limits of PM ₁₀ *	µg/m ³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM10	µg/m ³	56.0	52.0	42.0	40.0	41.5	44.8	42.6	50.7
14.	Permissible Limits of SO2 *	µg/m ³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m ³	9.8	9.6	9.6	10.1	10.3	9.8	9.4	9.2
16.	Permissible Limits of NO2*	µg/m ³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m ³	9.8	10.1	9.8	10.2	8.6	11.5	9.4	9.1
18.	Permissible Limits of NH3**	µg/m ³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D	N.D	N.D	N.D	N.D	N.D	N.D	N.D
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL **	µg/m ³	N.D	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration due on. : 06/05/2020

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

Plader Royal Environment Auditing & Consultancy Service, Rajkot

Rajkot

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2519/06/2019-20

Date:29/06/2019

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : JUNE' 2019

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars No. of Week	Unit	Location No 2: Hariya Water Tank							
01.			01		02		03		04	
02.	Date & Time Starting of Monitoring	-	06/06/2019 8.40	07/06/2019 8.45	13/06/2019 8.35	14/06/2019 8.40	20/06/2019 8.50	21/06/2019 8.55	27/06/2019 9.00	28/06/2019 9.05
03.	Date & Time - Ending of Monitoring	-	07/06/2019 8.40	08/06/2019 8.45	14/06/2019 8.35	15/06/2019 8.40	21/06/2019 8.50	22/06/2019 8.55	28/06/2019 9.00	29/06/2019 9.05
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440
05.	Dominant Wind Direction (From)	-	SE	SE	SE	SE	SE	SE	SE	SE
06.	Wind Speed Velocity	Km/Hr.	2 to 6	4 to 8	2 to 8	4 to 8	3 to 8	4 to 8	2 to 6	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m ³ /Min.	1.17	1.15	1.12	1.28	1.18	1.23	1.22	1.20
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM _{2.5} *	µg/m³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM ₂₅	µg/m³	56.0	42.0	48.0	46.0	40.0	45.0	40.0	35.0
12.	Permissible Limits of PM ₁₀ *	µg/m³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	µg/m ³	45.0	50.0	47.6	46.8	44.0	49.2	38.6	40.0
14.	Permissible Limits of SO ₂ *	µg/m³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m ³	9.9	9.8	9.4	9.2	8.9	8.1	7.9	8.2
16.	Permissible Limits of NO2*	µg/m³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO2	µg/m³	10.1	10.3	9.6	9.7	10.8	10.7	9	9.6
18.	Permissible Limits of NH ₃ **	µg/m³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m³	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
20.	Permissible Limits of HCL **	µg/m³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL	µg/m ³	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration due on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

padela 53 Royal Environment Auditing & Consultancy Service, Rajkot

diting Railcot

nalvs

Ref. No.: 2520/06/2019-20

Environment Auditing & Consultancy Service 303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

OG

Date: 29/06/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - JUNE - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : 66 KVA GEB Sub Station

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time	
01.	Date of sampling			07/06/2019	21/06/2019	
02.	Time of sampling	Hr		8.30	8.40	
03.	Duration of sampling	Min.	-	1440.00	1440.00	
04.	Dominant Wind Direction (From)			SE	SE	
05.	Wind Speed	Km/Hr		4 to 8	4 to 8	
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.1	1.1	
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0	
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2	
09.	Measured Concentration of PM 10	µg/m ³	100	52	44.8	
10.	Measured Concentration of PM 2.5	µg/m ³	60	41	12	
11.	Measured Concentration of SO ₂	µg/m ³	80	9.6	9.8	
12.	Measured Concentration of NO ₂	µg/m ³	80	10.1	11.5	
13.	Measured Concentration of O ₃	µg/m ³	100	7.2**	8.6**	
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D	N.D	
15.	Measured Concentration of CO	mg/m ³	2.00	0.91**	0.92**	
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.10**	1.20**	
17.	Measured Concentration of Pb	µg/m ³	1	0.81	0.83	
18.	Measured Concentration of Ni	ng/m ³	20	0.4	1.6	
19.	Measured Concentration of As	ng/m ³	6	ND	ND	
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND	

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

All Calibration due on : 05/05/2020

*Permissible Limits are as per NAAQM Standard 2009.,

** 8:00 Hours monitoring value

Spade 19 Royal Environment Auditing & Consultancy Service

Rajkot

Analyst

Ref. No.: 2521/06/2019-20

Environment Auditing & Consultancy Service

Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date: 29/06/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - JUNE - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : Hariya Water Tank

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			07/06/2019	21/06/2019
02.	Time of sampling	Hr	-	8.45	8.55
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr	-	4 to 8	4 to 8
06.	Avg. flow rate during sampling PM 10	m ³ /min	_	1.2	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr	-	1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	50	49.2
10.	Measured Concentration of PM 2.5	µg/m ³	60	42	45
11.	Measured Concentration of SO ₂	µg/m ³	80	9.8	8.1
12.	Measured Concentration of NO ₂	µg/m ³	80	10.3	10.7
13.	Measured Concentration of O ₃	µg/m ³	100	8.9**	8.4**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D.	N.D.
15.	Measured Concentration of CO	mg/m ³	2.00	0.82**	0.85**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.31**	1.36**
17.	Measured Concentration of Pb	µg/m ³	1	0.10	0.09
18.	Measured Concentration of Ni	ng/m ³	20	1.8	1.5
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

*Permissible Limits are as per NAAQM Standard 2009.,

All Calibration due on : 05/05/2020

** 8:00 Hours monitoring value

Djadeja Royal Environment Auditing & Consultancy Service

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2618/07/2019-20

Date:31/07/2019

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : JULY' 2019

Name of company : Atul Limited,

Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			Location	No 1: 66 K	VA GEB Su	b Station		
01.	No. of Week		c)1	C)2	C	3	0	14
			04/07/2019	05/07/2019	11/07/2019	12/07/2019	18/07/2019	19/07/2019	25/07/2019	26/07/2019
02.	Date & Time Starting of Monitoring	-	8.20	8.25	8.25	8.30	8.15	8.25	8.35	8.40
			05/07/2019	06/07/2019	12/07/2019	13/07/2019	19/07/2019	20/06/2019	26/07/2019	27/07/2019
03.	Date & Time - Ending of Monitoring	-	8.20	8.25	8.25	8.30	8.15	8.25	8.35	8.40
04.	Duration of Sampling	Min,	1440	1440	1440	1440	1440	1440	1441	1442
05.	Dominant Wind Direction (From)		SE							
06.	Wind Speed Velocity	Km/Hr.	3 to 8	4 to 8	4 to 6	2 to 6	2 to 6	4 to 8	2 to 6	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM10	m ³ /Min.	1.14	1.12	1.18	1.15	1.14	1.12	1.26	1.28
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM25*	µg/m ³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM ₂₅	µg/m ³	28.5	29.3	25.5	30.3	36.2	37.3	39.2	34.5
12.	Permissible Limits of PM10 *	µg/m ³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM10	µg/m³	41.2	39.2	44.0	40.2	45.5	42.3	45.5	43.3
14.	Permissible Limits of SO2 *	µg/m ³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m ³	9.2	9.8	10.2	9.3	9.8	9.7	8.8	9.2
16.	Permissible Limits of NO2*	µg/m ³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO2	µg/m ³	10.2	10.1	9.3	10.7	11.2	9.8	10.5	11.5
18.	Permissible Limits of NH ₃ **	µg/m ³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D							
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL **	µg/m ³	N.D	N.D	N.D	N.D	N.D,	N.D.	N.D.	N.D.

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polllutants Sampler Model No. AAS-109, (3) Ecotech. PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

adepa 19 Royal Environment Auditing & Consultancy Service, Rajkot

Rajkot

Ref. No.: 2620/07/2019-20

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - JULY - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : 66 KVA GEB Sub Station

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			05/07/2019	19/07/2019
02.	Time of sampling	Hr		8.25	8.25
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		4 to 8	4 to 8
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.1	1.1
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	39.2	42.3
10.	Measured Concentration of PM 2.5	µg/m ³	60	29.3	37.3
11.	Measured Concentration of SO ₂	µg/m ³	80	9.8	9.7
12.	Measured Concentration of NO ₂	µg/m ³	80	10.1	9.8
13.	Measured Concentration of O ₃	µg/m ³	100	6.9**	7.9**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D	N.D
15.	Measured Concentration of CO	mg/m ³	2.00	0.89**	0.94**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.15**	1.25**
17.	Measured Concentration of Pb	µg/m ³	1	0.72	0.80
18.	Measured Concentration of Ni	ng/m ³	20	1.8	1.2
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler *Permissible Limits are as per NAAQM Standard 2009., All Calibration done on : 05/05/2019

** 8:00 Hours monitoring value

Raikot

halvst

Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2619/07/2019-20

Date:31/07/2019

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : JULY' 2019

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			Locati	on No 2: H	ariya Wate	r Tank		
01.	No. of Week	-	()1	0)2	(03	0	14
02.	Date & Time Starting of Monitoring	-	04/07/2019 8.35	05/07/2019 8.40	11/07/2019 8.40	12/07/2019 8.45	18/07/2019 8.30	19/07/2019 8.35	25/07/2019 8.50	26/07/2019 9.00
03.	Date & Time - Ending of Monitoring		05/07/2019 8.35	06/07/2019 8.40	12/07/2019 8.40	13/07/2019 8.45	19/07/2019 8.30	20/06/2019 8.35	26/07/2019 8.50	27/07/201 9.00
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440
05.	Dominant Wind Direction (From)	-	SE							
06.	Wind Speed Velocity	Km/Hr.	6 to 8	3 to 6	6 to 8	4 to 6	4 to 8	2 to 6	6 to 8	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m ³ /Min.	1.22	1.18	1.20	1.28	1.26	1.25	1.26	1.22
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM25*	µg/m³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m ³	30.2	32.6	27.8	28.6	35.7	39.1	40.0	35.0
12.	Permissible Limits of PM ₁₀ *	µg/m³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM10	µg/m ³	42.1	40.4	45.2	41.6	46.5	43.2	39.3	40.0
14.	Permissible Limits of SO ₂ *	µg/m³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m ³	8.6	9.1	8.4	8.3	8.9	8.7	8	9.1
16.	Permissible Limits of NO ₂ *	µg/m ³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m ³	9.8	9.1	8.4	8.6	10.4	10.2	8.6	8.6
18.	Permissible Limits of NH ₃ **	µg/m ³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D.							
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL	µg/m ³	N.D.							

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

adeja PI Royal Environment Auditing & Consultancy Service, Rajkot

Rajkot

Analyst

Ref. No.: 2621/07/2019-20

Date: 31/07/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - JULY - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : Hariya Water Tank

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			05/07/2019	19/07/2019
02.	Time of sampling	Hr		8.40	8.35
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		3 to 6	2 to 6
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.2	1.3
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	40.4	43.2
10.	Measured Concentration of PM 2.5	µg/m ³	60	33	39
11.	Measured Concentration of SO ₂	µg/m ³	80	9.1	8.7
12.	Measured Concentration of NO ₂	µg/m ³	80	9.1	10.2
13.	Measured Concentration of O ₃	µg/m ³	100	8.1**	8.0**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D.	N.D.
15.	Measured Concentration of CO	mg/m ³	2.00	0.86**	0.95**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.38**	1.40**
17.	Measured Concentration of Pb	µg/m ³	1	0.14	0.09
18.	Measured Concentration of Ni	ng/m ³	20	1.9	1.3
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler *Permissible Limits are as per NAAQM Standard 2009.

All Calibration done on : 05/05/2019

** 8:00 Hours monitoring value

Rajkot

Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date:31/08/2019

Ref. No.: 2718/08/2019-20

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : AUGUST' 2019

Name of company : Atul Limited,

Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			1	ocation N	lo 1: 66 K	VA GEB S	Sub Station	1		
01.	No. of Week	-	(1	0	2	0	3	0	4	0	15
02.	Date & Time Starting of Monitoring	1.2.	01/08/2019 8.25	02/08/2019 8.35	07/08/2019 8.20	08/08/2019 8.30	12/08/2019 8.25	16/08/2019 8.30	21/08/2019 8.15	22/08/2019 8.25	28/08/2019 8.45	29/08/2019 8.55
03.	Date & Time - Ending of Monitoring		02/08/2019 8.25	03/08/2019 8.35	08/08/2019 8.20	09/08/2019 8.30	13/08/2019 8.25	17/08/2019 8.30	22/08/2019 8.15	23/08/2019 8.25	29/08/2019 8.45	30/08/2019 8.55
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440	1441	1442
05.	Dominant Wind Direction (From)	-	SE									
06.	Wind Speed Velocity	Km/Hr.	2 to 6	4 to 8	4 to 8	3 to 8	2 to 8	5 to 8	2 to 6	4 to 8	2 to 8	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM10	m ³ /Min.	1.21	1.16	1.12	1.20	1.22	1.18	1.14	1.16	1.22	1.20
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM _{2.5} *	µg/m ³	60	60	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m³	25.6	26.2	28.4	30.2	26.3	28.1	22.2	25.8	32.7	30.2
12.	Permissible Limits of PM10*	µg/m ³	100	100	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	hð\w ₂	38.4	35.7	40.2	39.2	36.3	32.5	35.2	36.2	40.2	41.2
14.	Permissible Limits of SO2 *	hð\w ₃	80	80	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m³	8.1	7.6	8.2	7.7	7.6	7.2	7.2	7.5	8.3	8.5
16.	Permissible Limits of NO2 *	µg/m ^a	80	80	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO2	hð,w ₃	7.8	7.1	8.0	7.5	7.6	7.2	6.8	7	7.3	7.9
18.	Permissible Limits of NH3 **	µg/m ³	850	850	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D									
20.	Permissible Limits of HCL **	hð\wa	200	200	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL **	µg/m ³	N.D	N.D	N.D	N.D.						

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3)Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC8A

DI adepa Royal Environment Auditing & Consultancy Service, Rajkot

Rajkot

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Emsil : royalenvironment@live.com admin@royalconsultancy.com

Date:31/08/2019

Ref. No.: 2719/08/2019-20

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : AUGUST' 2019

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit	1			Locatio	n No 2: H	lariya Wat	er Tank			
01.	No. of Week		0	1	0	2	0	3	C	4	C	5
02.	Date & Time Starting of Monitoring	-	01/08/2019 8.40	02/08/2019 8.50	07/08/2019 8.35	08/08/2019 8.55	12/08/2019 8.40	16/08/2019 8.55	21/08/2019 8.50	22/08/2019 9.05	28/08/2019 9.30	29/08/201 9.45
03.	Date & Time - Ending of Monitoring	-	02/08/2019 8.40	03/08/2019 8.50	08/08/2019 8.35	09/08/2019 8.55	13/08/2019 8.40	17/08/2019 8.55	22/08/2019 8.50	23/08/2019 9.05	29/08/2019 9.30	30/08/201 9.45
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440	1440	1440
05.	Dominant Wind Direction (From)	-	SE	SE								
06.	Wind Speed Velocity	Km/Hr.	4 to 8	3 to 6	2 to 6	4 to 6	2 to 6	4 to 6	5 to 8	4 to 6	5 to 8	6 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m ³ /Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM10	m ³ /Min.	1.20	1.22	1.18	1.16	1.22	1.20	1.16	1.12	1.14	1.12
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0,2	0.2	0.2
10.	Permissible Limits of PM2.5*	µg/m ³	60	60	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM2.5	µg/m ³	20.3	22.4	18.2	20.7	19.6	18.2	25.1	29.8	20.0	17.4
12.	Permissible Limits of PM ₁₀ *	µg/m ³	100	100	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	µg/m³	30.2	32.1	34.2	31.7	35.7	38.2	46.2	54.2	26.2	22.2
14.	Permissible Limits of SO2*	µg/m³	80	80	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m ³	6.2	6.5	7.2	7.1	7	6.3	7.3	7.7	7.6	7.8
16.	Permissible Limits of NO2*	µg/m ³	80	80	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m ³	5.8	5.5	6.2	5.8	5.2	5.3	6	6.4	6	5.8
18.	Permissible Limits of NH ₃ **	µg/m³	850	850	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D.	N.D.								
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL	µg/m³	N.D.	N.D.								

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polliutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

Deladel 1. Royal Environment Auditing & Consultancy Service, Rajkot

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royatenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2720/08/2019-20

Date: 31/08/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - AUGUST - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : 66 KVA GEB Sub Station

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			02/08/2019	16/08/2019
02.	Time of sampling	Hr		8.35	8.30
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)	() -112		SE	SE
05.	Wind Speed	Km/Hr	<u></u>	4 to 8	5 to 8
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.2	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	35.7	32.5
10.	Measured Concentration of PM 2.5	µg/m ³	60	26.2	28.1
11.	Measured Concentration of SO ₂	µg/m ³	80	7.6	7.2
12.	Measured Concentration of NO ₂	µg/m ³	80	7.1	7.2
13.	Measured Concentration of O ₃	µg/m ³	100	5.1**	6.2**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D	N.D
15.	Measured Concentration of CO	mg/m ³	2.00	0.72**	0.79**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.36**	1.41**
17.	Measured Concentration of Pb	µg/m ³	1	0.67	0.70
18.	Measured Concentration of Ni	ng/m ³	20	1.4	1.6
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler *Permissible Limits are as per NAAQM Standard 2009., All Calibration done on : 05/05/2019

** 8:00 Hours monitoring value

Rajkol

Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2721/08/2019-20

Date: 31/08/2019

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - AUGUST - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : Hariya Water Tank

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			02/08/2019	16/08/2019
02.	Time of sampling	Hr		8.50	8.55
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		3 to 6	4 to 6
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.2	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	32.1	38.2
10.	Measured Concentration of PM 2.5	µg/m ³	60	22	18
11.	Measured Concentration of SO ₂	µg/m ³	80	6.5	6.3
12.	Measured Concentration of NO ₂	µg/m ³	80	5.5	5.3
13.	Measured Concentration of O ₃	µg/m ³	100	4.6**	6.0**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D.	N.D.
15.	Measured Concentration of CO	mg/m ³	2.00	0.66**	0.71**
16.	Measured Concentration of C_6H_6	µg/m ³	5	1.12**	1.18**
17.	Measured Concentration of Pb	µg/m ³	1	0.10	0.11
18.	Measured Concentration of Ni	ng/m ³	20	1.2	1.1
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

All Calibration done on : 05/05/2019

** 8:00 Hours monitoring value

oude CE Royal Environment Auditing & Consultancy Service

*Permissible Limits are as per NAAQM Standard 2009.,

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph, +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 30/09/2019

Ref. No.: 2818/09/2019-20

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : SEPTEMBER' 2019

Name of company : Atul Limited,

Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			Location	No 1: 66	KVA GEB	Sub Stati	on	
01.	No. of Week		0	1	0	2	0	3		04
02.	Date & Time Starting of Monitoring	-	04/09/2019 8.55	05/09/2019 9.00	11/09/2019 8.30	12/09/2019 8.40	18/09/2019 9.00	19/09/2019 9.10	25/09/2019 8.20	26/09/2019 8.30
03.	Date & Time - Ending of Monitoring	Ţ	05/09/2019 8.55	06/09/2019 9.00	12/09/2019 8.30	13/09/2019 8.40	19/09/2019 9.00	20/09/2019 9.10	26/09/2019 8.20	27/09/2019 8.30
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440
05.	Dominant Wind Direction (From)		SE							
06.	Wind Speed Velocity	Km/Hr.	4 to 6	4 to 6	2 to 8	3 to 8	4 to 8	5 to 8	4 to 8	4 to 8
07.	Average Flow Rate For Dust Monitoring PM25	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m ³ /Min.	1.22	1.18	1.20	1.20	1.18	1.22	1.20	1.20
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM _{2.5} *	µg/m ³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m ³	20.3	22.1	19.4	18.6	20.4	18.4	20.6	21.4
12.	Permissible Limits of PM ₁₀ *	hð\w ₃	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	µg/m³	39.4	38.2	37.6	39.4	35.6	40.2	39.4	37.6
14.	Permissible Limits of SO ₂ *	µg/m³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m³	8.2	8.1	7.8	7.9	7.2	7.6	7.9	7.5
16.	Permissible Limits of NO2 *	µg/m³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m ³	9.3	9.7	8.8	8.7	8.6	8.2	8.4	8.2
18.	Permissible Limits of NH ₃ **	µg/m ³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D							
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL **	µg/m ³	N.D	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polllutants Sampler Model No. AAS-109, (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

1 depa

Rajkal

Piber

Ref. No.: 2820/09/2019-20

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - SEPTEMBER - 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : 66 KVA GEB Sub Station

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			05/09/2019	19/09/2019
02.	Time of sampling	Hr		9.00	9.10
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		4 to 6	5 to 8
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.2	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	38.2	40.2
10.	Measured Concentration of PM 2.5	µg/m ³	60	22.1	18.4
11.	Measured Concentration of SO ₂	µg/m ³	80	8.1	7.6
12.	Measured Concentration of NO ₂	µg/m ³	80	9.7	8.2
13.	Measured Concentration of O ₃	µg/m ³	100	6.8**	6.9**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D	N.D
15.	Measured Concentration of CO	mg/m ³	2.00	0.75**	0.80**
16.	Measured Concentration of C_8H_6	µg/m ³	5	1.66**	1.81**
17.	Measured Concentration of Pb	µg/m ³	1	0.52	0.62
18.	Measured Concentration of Ni	ng/m ³	20	1.6	1.9
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

*Permissible Limits are as per NAAQM Standard 2009.,

All Calibration done on : 05/05/2019

Rajkot

** 8:00 Hours monitoring value

()padepa

Prudie

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 30/09/2019

Ref. No.: 2819/09/2019-20

DETAILED RESULTS OF AMBIENT AIR QUALITY MONITORING FOR THE MONTH : SEPTEMBER' 2019

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Contact Person: Mr. Hriday Desai, General Manager (HSE)

S. No.	Particulars	Unit			Locat	ion No 2:	Hariya W	ater Tank	2	
01.	No. of Week		0	1	0	2	0	3		04
02.	Date & Time Starting of Monitoring	14	04/09/2019 9.00	05/09/2019 9.15	11/09/2019 8.55	12/09/2019 9.10	18/09/2019 9.30	19/09/2019 9.40	25/09/2019 8.45	26/09/2019 8.55
03.	Date & Time - Ending of Monitoring		05/09/2019 9.00	06/09/2019 9.15	12/09/2019 8.55	13/09/2019 9.10	19/09/2019 9.30	20/09/2019 9.40	26/09/2019 8.45	27/09/2019 8.55
04.	Duration of Sampling	Min.	1440	1440	1440	1440	1440	1440	1440	1440
05.	Dominant Wind Direction (From)		SE							
06.	Wind Speed Velocity	Km/Hr.	4 to 6	2 to 6	2 to 4	4 to 8	2 to 4	4 to 8	4 to 8	4 to 8
07.	Average Flow Rate For Dust Monitoring PM _{2.5}	m³/Hr.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
08.	Average Flow Rate For Dust Monitoring PM ₁₀	m ³ /Min.	1.18	1.2	1.22	1.18	1.18	1.20	1.20	1.22
09.	Average Flow Rate for Gas Monitoring	LPM	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
10.	Permissible Limits of PM2.5*	µg/m³	60	60	60	60	60	60	60	60
11.	Measured Concentration of PM _{2.5}	µg/m ³	16.4	18.2	17.8	16.2	17.4	15.2	17.2	16.3
12.	Permissible Limits of PM10 *	µg/m³	100	100	100	100	100	100	100	100
13.	Measured Concentration of PM ₁₀	µg/m ³	32.8	34.2	33.7	37.8	32.1	36.4	38.2	39.7
14.	Permissible Limits of SO ₂ *	µg/m ³	80	80	80	80	80	80	80	80
15.	Measured Concentration of SO ₂	µg/m³	5.8	6	6.4	6.3	6.4	5.9	6.2	6.7
16.	Permissible Limits of NO2*	µg/m³	80	80	80	80	80	80	80	80
17.	Measured Concentration of NO ₂	µg/m³	6.5	6.8	7.5	7.3	7.1	6.7	7.2	7.6
18.	Permissible Limits of NH ₃ **	µg/m³	850	850	850	850	850	850	850	850
19.	Measured Concentration of NH ₃	µg/m ³	N.D.							
20.	Permissible Limits of HCL **	µg/m ³	200	200	200	200	200	200	200	200
21.	Measured Concentration of HCL	µg/m ³	N.D.							

Instrument Used: Ecotech make 2 Nos. of (1) RDS, Model No.: APM - 217BL, (2) Gaseous Polllutants Sampler Model No. AAS-109 (3) Ecotech PM2.5 Sampler Model No.: AAS 127

All Calibration done on. : 06/05/2019

*Permissible Limits are as per NAAQ Standard dated 16th November 2009., **Permissible Limits are as per GPCB CC&A

mader?

Rallos

Predip

Environment Auditing & Consultancy Service 303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date: 30/09/2019

Ref. No.: 2821/09/2019-20

REPORT OF AMBIENT AIR QUALITY MONITORING (NAAQM - SEPTEMBER- 2019)

Name of company : Atul Limited, Dist. : Valsad - 396 020.

Test Method : As per IS Standards - 5182_23/4/6

Location of Sampling : Hariya Water Tank

Sr. No.	Particulars	Unit	Permissible Limits*	1 st Time	2 nd Time
01.	Date of sampling			05/09/2019	19/09/2019
02.	Time of sampling	Hr		9.15	9.40
03.	Duration of sampling	Min.		1440.00	1440.00
04.	Dominant Wind Direction (From)			SE	SE
05.	Wind Speed	Km/Hr		2 to 6	4 to 8
06.	Avg. flow rate during sampling PM 10	m ³ /min		1.2	1.2
07.	Avg. flow rate during sampling PM 2.5	m ³ /Hr		1.0	1.0
08.	Avg. flow rate for Gas sampling	LPM		0.2	0.2
09.	Measured Concentration of PM 10	µg/m ³	100	34.2	36.4
10.	Measured Concentration of PM 2.5	µg/m ³	60	18	15
11.	Measured Concentration of SO ₂	µg/m ³	80	6.0	5.9
12.	Measured Concentration of NO ₂	µg/m ³	80	6.8	6.7
13.	Measured Concentration of O ₃	µg/m ³	100	4.6**	6.0**
14.	Measured Concentration of NH ₃	µg/m ³	400	N.D.	N.D.
15.	Measured Concentration of CO	mg/m ³	2.00	0.66**	0.71**
16.	Measured Concentration of C ₆ H ₆	µg/m ³	5	1.12**	1.18**
17.	Measured Concentration of Pb	µg/m ³	1	0.10	0.11
18.	Measured Concentration of Ni	ng/m ³	20	1.2	1.1
19.	Measured Concentration of As	ng/m ³	6	ND	ND
20.	Measured Concentration of B(a)P	ng/m ³	1	ND	ND

Instrument used : Ecotech make - RDS, Gaseous Sampler & PM 2.5 Sampler

*Permissible Limits are as per NAAQM Standard 2009.,

All Calibration done on : 05/05/2019

** 8:00 Hours monitoring value

siader

Raikel

agadip

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 230/04/2019-20

Report of Stack Emission of Boilers/Heaters, Month April 2019

	Source	Date of		Parameter				
Sr. No.		Sampling	SPM	SO2	NOx	Туре	e of fuel used	
	Permissible limits *		100.0 mg/Nm ³	600.0 mg/Nm ³	600.0 mg/Nm ³			
1	FBC Boiler E1	18/04/2019	75	98	120			
2	FBC Boiler E2		Not Running During the Month					
3	FBC Boiler E3	18/04/2019	80	128	145	Coal		
4	FBC Boiler W1(old)	10/04/2019	65	95	135			
	<u> </u>	Date of		Parameter				
	Source	Sampling	SPM	SO2	NOx	Туре	e of fuel used	
	Permissible limits *		150.0 mg/Nm ³	100.0 ppm	50.0 ppm			
5	Hot Oil Unit (Resorcinol Plant)	10/04/2019	N.D.	N.D.	45	CNG		
6	Hot Oil Plant shed-B	25/04/2019	N.D.	N.D.	45		CNG	
7	Oil burner Shed-B (Stand By)		Not Ru	nning During the	Month		CNG	
8	Thermic Fluid Heater of DCO/DAP Plant	12/04/2019	N.D.	N.D.	40		CNG	
9	DG set 1500 KVA (Standby)		Not Ru	nning During the	Month		Diesel	
10	DG set 1010 KVA (Standby)	-	Not Ru	nning During the	Month		Diesel	
	0 aurora	Date of		Parame	ter			
	Source	Sampling	SPM	SO2	NOx	Mercury	Type of fuel used	
	Permissible Limits *		50.0 mg/Nm ³	600.0 mg/Nm ³	300.0 mg/Nm ³			
11	Boiler (50 TPH 2 Nos) Commn Stack, W2,W3	12/04/2019	45	105	95	ND	Coat	

* Permissible Limits are as per MoEF Notification dated : 7th December, 2015. S.O.3305 (E)

Foge poleani

Royal Environment Auditing & Consultancy Service

Pradip.

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 240/05/2019-20

Report of Stack Emission of Boilers/Heaters, Month MAY 2019

	Source	Date of		Parameter				
Sr. N		Sampling	SPM	SO ₂	NOx	т	ype of fuel used	
	Permissible limits *		100.0 mg/Nm	³ 600.0 mg/Nm	1 ³ 600.0 mg/Nn	-		
1	FBC Boiler E1		Not R	unning During th	ne Month		1995 B. 1997	
2	FBC Boiler E2	-	Not Running During the Month					
3	FBC Boiler E3	24/05/2019		135	152	Coal		
4	FBC Boiler W1(old)	17/05/2019	70	98	145			
	Source	Date of		Parameter				
		Sampling	SPM	SO ₂	NOx	Ту	pe of fuel used	
	Permissible limits *		150.0 mg/Nm ³	100.0 ppm	50.0 ppm			
5	Hot Oil Unit (Resorcinol Plant)	16/05/2019	N.D.	N.D.	46	CNG		
6	Hot Oil Plant shed-B	02/05/2019	N.D.	N.D.	48		CNG	
7	Oil burner Shed-B (Stand By)		Not Ru	nning During the	Month		CNG	
8	Thermic Fluid Heater of DCO/DAP Plant	17/05/2019	N.D.	N.D.	45		CNG	
9	DG set 1500 KVA (Standby)	-	Not Ru	nning During the	Month		Diesel	
10	DG set 1010 KVA (Standby)	-		ning During the			Diesel	
	Source	Date of		Parame	ter			
	Gource	Sampling	SPM	SO ₂	NO _x	Mercury Type of fuel us		
1	Permissible Limits *		50.0 mg/Nm ³	600.0 mg/Nm ³	300.0 mg/Nm ³	-	-	
11	Boiler (50 TPH 2 Nos) Commn Stack, W2,W3	17/05/2019	48	112	99	ND	Coal	

SU Royal Environment Auditing & Consultancy Service

uditing a Rajkot

Analyst

10 G

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 250/06/2019-20 Report of Stack Emission of Boilers/Heaters, Month JUNE 2019 Parameter Date of Source Sr. No. Sampling SPM SO2 NO. Type of fuel used Permissible limits * ----100.0 mg/Nm3 600.0 mg/Nm³ 600.0 mg/Nm³ 1 FBC Boiler E1 Not Running During the Month ----2 FBC Boiler E2 06/06/2019 84 132 150 3 FBC Boiler E3 07/06/2019 Coal 81 133 148 4 FBC Boiler W1(old) 05/06/2019 68 96 142 Parameter Date of Source Sampling SPM SO, NO_x Type of fuel used Permissible limits * 150.0 mg/Nm³ -100.0 ppm 50.0 ppm 5 Hot Oil Unit (Resorcinol Plant) 28/06/2019 N.D. N.D. 42 CNG 6 Hot Oil Plant shed-B 06/06/2019 N.D. N.D. 44 CNG Oil burner Shed-B (Stand By) 7 Not Running During the Month Thermic Fluid Heater of CNG 8 DCO/DAP Plant 14/06/2019 N.D. N.D. 43 CNG 9 DG set 1500 KVA (Standby) Not Running During the Month Diesel DG set 1010 KVA (Standby) 10 Not Running During the Month Diesel Source Date of Parameter Sampling SPM SO2 NO, Mercury Type of fuel used Permissible Limits * ----50.0 mg/Nm³ 600.0 mg/Nm³ 300.0 mg/Nm³ Boiler (50 TPH 2 Nos) 11 Commn Stack, W2,W3 05/06/2019 47 109

* Permissible Limits are as per MoEF Notification dated : 7th December, 2015. S.O.3305 (E)

Prodopa Royal Environment Auditing & Consultancy Service

Rajkot

95

ND

Analyst

Coal

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 260/07/2019-20

Report of Stack Emission of Boilers/Heaters, Month JULY 2019

		Date of		Parameter			
Sr. No.	Source	Sampling	SPM	SO2	NOx	Туре	e of fuel used
	Permissible limits *		100.0 mg/Nm ³	600.0 mg/Nm ³	600.0 mg/Nm ³		
1	FBC Boiler E1	11/07/2019	87	120	135		
2	FBC Boiler E2	05/07/2019	82	127	147	Coal	
3	FBC Boiler E3	19/07/2019	82	126	138		
4	FBC Boiler W1(old)	25/07/2019	68	94	132		
		Date of	Parameter				
	Source	Sampling	SPM	SO ₂	NOx	Type of fuel used	
	Permissible limits *		150.0 mg/Nm ³	100.0 ppm	50.0 ppm		
5	Hot Oil Unit (Resorcinol Plant)	25-07-2019	N.D.	N.D.	38	CNG	
6	Hot Oil Plant shed-B	26-07-2019	N.D.	N.D.	39		CNG
7	Oil burner Shed-B (Stand By)		Not Ru	inning During the	Month		CNG
8	Thermic Fluid Heater of DCO/DAP Plant	25-07-2019	N.D.	N.D.	42		CNG
9	DG set 1500 KVA (Standby)	-	Not Ru	inning During the	Month		Diesel
10	DG set 1010 KVA (Standby)	-	Not Ru	inning During the	Month		Diesel
		Date of	-	Parame	eter		
	Source	Sampling	SPM	SO2	NOx	Mercury	Type of fuel used
	Permissible Limits *		50.0 mg/Nm ³	600.0 mg/Nm ³	300.0 mg/Nm ³		
11	Boiler (50 TPH 2 Nos) Commn Stack, W2,W3	13/07/2019	47	109	95	ND	Coal

910d9/9. Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 270/08/2019-20

Report of Stack Emission of Boilers/Heaters, Month AUGUST' 2019

		Date of		Parameter				
Sr. No.	Source	Sampling	SPM	SO2	NOx	Туре	of fuel used	
	Permissible limits *		100.0 mg/Nm ³	600.0 mg/Nm ³	600.0 mg/Nm ³			
1	FBC Boiler E1	22/08/2019	65	103	123			
2	FBC Boiler E2	02/08/2019	83	108	138	Coal		
3	FBC Boiler E3	08/08/2019	73	142	147			
4	FBC Boiler W1(old)	25/07/2019	53	105	120			
		Date of	Parameter					
	Source	Sampling	SPM	SO2	NOx	Type of fuel used		
	Permissible limits *		150.0 mg/Nm ³	100.0 ppm	50.0 ppm)m		
5	Hot Oil Unit (Resorcinol Plant)	30-08-2019	N.D.	N.D.	22	CNG		
6	Hot Oil Plant shed-B	22-08-2019	N.D.	N.D.	27		CNG	
7	Oil burner Shed-B (Stand By)		Not Ru	unning During the	Month		CNG	
8	Thermic Fluid Heater of DCO/DAP Plant	29-08-2019	N.D.	N.D.	42	1.2	CNG	
9	DG set 1500 KVA (Standby)		Not Ru	unning During the	Month		Diesel	
10	DG set 1010 KVA (Standby)		Not Ru	unning During the	Month		Diesel	
		Date of		Parame	eter	-		
	Source	Sampling	SPM	SO2	NOx	Mercury	Type of fuel used	
	Permissible Limits *		50.0 mg/Nm ³	600.0 mg/Nm ³	300.0 mg/Nm ³			
11	Boiler (50 TPH 2 Nos) Commn Stack, W2,W3	09/08/2019	34	120	84	ND	Coal	

pasteps P Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 280/09/2019-20

Report of Stack Emission of Boilers/Heaters, Month September' 2019

		Date of		Parameter			
Sr. No.	Source	Sampling	SPM	SO2	NOx	Тур	e of fuel used
	Permissible limits *		100.0 mg/Nm ³	600.0 mg/Nm ³	600.0 mg/Nm ³		
1	FBC Boiler E1	20/09/2019	60	114	142		
2	FBC Boiler E2	11/09/2019	80	107	138	Coal	
3	FBC Boiler E3	26/09/2019	68	135	132		
4	FBC Boiler W1(old)	19/09/2019	64	110	127		
		Date of	Parameter				
	Source	Sampling	SPM	SO2	NOx	Type of fuel used	
	Permissible limits *		150.0 mg/Nm ³	100.0 ppm	50.0 ppm		
5	Hot Oil Unit (Resorcinol Plant)	27-09-2019	N,D,	N.D.	28	CNG	
6	Hot Oil Plant shed-B	27-09-2019	N.D.	N.D.	30		CNG
7	Oil burner Shed-B (Stand By)		Not Ru	nning During the	Month	CNG	
8	Thermic Fluid Heater of DCO/DAP Plant	13-09-2019	N.D.	N.D.	38		CNG
9	DG set 1500 KVA (Standby)	100 Aug 1	Not Ru	nning During the	Month		Diesel
10	DG set 1010 KVA (Standby)	-	Not Ru	nning During the	Month		Diesel
		Date of		Parame	ter	1.11	
	Source	Sampling	SPM	SO2	NOx	Mercury	Type of fuel used
	Permissible Limits *		50.0 mg/Nm ³	600.0 mg/Nm ³	300.0 mg/Nm ³	1	
11	Boiler (50 TPH 2 Nos) Commn Stack, W2,W3	20/09/2019	29	138	98	ND	Coal

ade G17 Royal Environment Auditing Consultancy Service

Ralkol

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 30/04/2019

Ref. No.: 235/04/2019-20

Name of Company : Atul Limited District : Valsad - 396 020.

Scrubber & Vents									
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)				
Atul Ea	st Site								
1	Phosgene Plant	-	Phosgene	0.1 ppm	Not in Use				
			Cl ₂	9.0 mg/Nm ³	3.2				
2	Dechlorination Plant(Hypo)	05/04/2019	HCI	20.0 mg/Nm ³	4.8				
-	Common stack of HCL Sigri Unit-		Cl ₂	9.0 mg/Nm ³	6.5				
3	1 & 2	05/04/2019	HCI	20.0 mg/Nm ³	6.8				
FCB PI	lant								
		1.44.44	SO ₂	40.0 mg/Nm ³	Not in Use				
4	Foul Gas Scubber	-	NOx	25.0 mg/Nm ³	Norm Doo				
Sulfuri	ic Acid (East Side)								
			SO ₂	2.0 kg/T	0.9				
5	Sulphuric Acid Plant	19/04/2019	Acid Mist	50.0 mg/Nm ³	6.3				
		Not running	Cl ₂	9.0 mg/Nm ³					
6	ChloroSulfonic Plant Reactor	during visit	HCI	20.0 mg/Nm ³					
Incine	rator								
			SPM	150.0 mg/Nm ³	80				
		-	SO ₂	40.0 mg/Nm ³	17.8				
7	Incinerator	04/04/2019	NOx	25.0 mg/Nm ³	13.5				
			% of Efficiency	%	99.9				

9 Royal Environment Auditing & Consultancy Service

Auditing & environmen Rajkot

Prodi P. Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 236/04/2019-20

Date : 30/04/2019

Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
NI Plan	t				
	AND AND A DECK	Not Running	SO ₂	40.0 mg/Nm ³	
8	Foul Gas Scubber	During Visit	Nox	25.0 mg/Nm ³	
2-4-D F	Plant				
9	Dryer-1		SPM	20.0 mg/Nm ³	7.2
10	Dryer-2		SPM	20.0 mg/Nm ³	7.9
11	Dryer-3	- 18/04/2019	SPM	20.0 mg/Nm ³	9.5
12	Dryer-4		SPM	20.0 mg/Nm ³	8.1
			Cl ₂	9.0 mg/Nm ³	7.3
13	Common Scrubber; 2,4D Plant	18/04/2019	HCL	20.0 mg/Nm ³	8.1
			Phenol		N.D.
NBD P	Plant				
14	Spray Dryer		SPM	150.0 mg/Nm ³	Not in Use

CP Plant

			Cl ₂	9.0 mg/Nm ³	-
15	MCPA	Not Running During visit	HCL	20.0 mg/Nm ³	
			SO ₂	40.0 mg/Nm ³	
	6 Fipronil	Not Running	SO ₂	40.0 mg/Nm ³	
16	Fipronil	During visit	HCL	20.0 mg/Nm ³	
17	Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	-
		Not Running	SO ₂	40.0 mg/Nm ³	
18	18 Pyrathroids	During visit	HCL	20.0 mg/Nm ³	-
19	Stack at Amine Plant	04/04/2019	NH ₃	175 mg/Nm ³	7.9

Royal Environment Auditing & Consultancy Service

Pradip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 30/04/2019

Ref. No.: 237/04/2019-20

Sr. No.	Stack Details	Scrubber 8 Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
tul West	Site	<u>г</u>	Cl ₂	9.0 mg/Nm ³	4.2
28	Shed A05/03/44	03/04/2019	HCI	20.0 mg/Nm ³	7.1
				40 Mg/Nm ³	5.2
	And an and a	-	SO ₂		4.6
29	Shed B18/02/24 Fan	04/04/2019	Cl ₂	9.0 mg/Nm ³	5.1
			HCI	20.0 mg/Nm ³	6.8
30	Shed B2/12/24 Reaction Vessel	04/04/2019	Cl ₂	9.0 mg/Nm ³	5.8
			HCI	20.0 mg/Nm ³	6.4
31	Shed C5/20/15 Chlorinator	05/04/2019	Cl ₂	9.0 mg/Nm ³	
			HCI	20.0 mg/Nm ³	7
32	Shed D Niro Spray dryer 45	11/04/2019	SPM	150.0 mg/Nm ³	75
33	Shed D Niro Spray dryer 50		SPM	150.0 mg/Nm ³	58
34	Shed E 7/12/49 Spray Dryer	04-04-2019	SPM	150.0 mg/Nm ³	13.2
25	Shed F F6/1/15 Reaction Vessel	04/04/2019	Cl ₂	9.0 mg/Nm ³	6.3
35	Shed F PONTS Reaction vesser	0110112010	HCI	20.0 mg/Nm ³	6.7
	Shed G 10/8/1 (receiver)	Not Running During Visit	Cl ₂	9.0 mg/Nm ³	-
36			HCI	20.0 mg/Nm ³	-
			Cl ₂	9.0 mg/Nm ³	6.5
37	Shed H H1/6/17 Chlorinator	11/04/2019	HCI	20.0 mg/Nm ³	6.8
	Shed K K-13/3/4 Final of Sulfuric		SO ₂	2.0 kg/T	1.7
38	acid plant	11/04/2019	Acid Mist	50.0 mg/Nm ³	13.5
			HBr	-	N.D.
39	Shed J15/09/25	11/04/2019	SO ₂	40 Mg/Nm ³	8.9
			SO2	40 Mg/Nm ³	7.5
40	Shed J12/01/42	11-04-2019	Cl ₂	20.0 mg/Nm ³	7.2
			HCI	9.0 mg/Nm ³	6.3
			SO ₂	40 Mg/Nm ³	9.1
41	Shed J12/03/36	11/04/2019	HCI	9.0 mg/Nm ³	6.5
	-		Cl ₂	9.0 mg/Nm ³	6.3
42	Shed N Scrubber Fan N20/03/24	12/04/2019	нсі	20.0 mg/Nm ³	9.8
43	Shed N Scrubber Fan N20/02/41	12/04/2019		ung 40 Mg/Nm ³	8.3

Royal Environment Auditing & Consultancy Service

Rajkot Roy *

gradif. Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 30/04/2019

Ref. No.: 238/04/2019-20

		Scrubber	& Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
MPSL Pla	nt				
20	Phosgene Scrubbr at MPSL	12/04/2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	12/04/2019	Phosgene	0.1 ppm	N.D.
NICO Plan	it				
22	Central scrubber at Nico Plant	-	Acetonytryle, IPA	-	-
ESTER PI	ant				
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	-
		Not Running	HCL	20 Mg/Nm ³	
25	MPP Plant Scrubber	During visit	Phosgene	0.1 ppm	-
Atul East	Site				
			H ₂ S		N.D.
26	26 Sulfer Black Plant 19	19/04/2019	NH ₃	175.0 mg/Nm ³	18.2
			H ₂ S	-	N.D.
27	Sulfer Dyes Plant	19/04/2019	NH ₃	175.0 mg/Nm ³	16.5

Royal Environment Auditing Auditing & Consultancy Service

Prodip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 239/04/2019-20

Date : 30/04/2019

		Scrubbe	r & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
tul North	i Site				
	Catalytic Incinerator of N-FDH Plant		SPM	150.0 mg/Nm ³	60
		12/04/2019	SO ₂	40.0 mg/Nm ³	13.5
44			Nox	25.0 mg/Nm ³	11.8
			Formaldehyde	10.0 mg/Nm ³	N.D.
45	PHIN Plant vessel	10/04/2019	Phosgene	0.1 ppm	N.D.
46	DCDPS Plant	10/04/2019	SO3	-	N.D.
47	DDS Plant	10/04/2019	NH ₃	175 Mg/Nm ³	15.8
48	SPIC II Plant	13/04/2019	SO3	-	N.D.
49	SPIC I Plant	13/04/2019	NH3	175 Mg/Nm ³	15.8
		10/01/0010	NH ₃	175 Mg/Nm ³	16.5
50	SPIC IV Plant	10/04/2019	SO ₂		8.5
51	Furnace (Phosgene Plant New)	25/04/2019	PM	150Mg/Nm ³	85
		05/01/02/2	со	-	N.D.
52	Rector (Phosgene Plant New)	25/04/2019	Phosgene	0.1ppm	N.D.

pade OD Royal Environment Auditing & Consultancy Service

Prodip

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.co

Ref. No.: 245/05/2019-20

Date : 31/05/2019

Name of Company : Atul Limited District : Valsad - 396 020.

		Scr	ubber & Vents		
Sr. No		Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except
Atul Ea	ast Site				where specified)
1	Phosgene Plant	-	Phosgene	0.1 ppm	Not in Use
2	Dechlorination Plant(Hypo)	Shutdown	Cl ₂	9.0 mg/Nm ³	-
		during visit	HCI	20.0 mg/Nm ³	
3	3 Common stack of HCL Sigri Unit-	Shutdown	Cl ₂	9.0 mg/Nm ³	
	1&2	during visit	HCI	20.0 mg/Nm ³	
CB Pla	ant			1.2	
4	Foul Gas Scubber		SO2	40.0 mg/Nm ³	
			NOx	25.0 mg/Nm ³	Not in Use
Sulfuric	Acid (East Side)				
5	Sulphuric Acid Plant	16/05/2019	SO ₂	2.0 kg/T	1.1
			Acid Mist	50.0 mg/Nm ³	7.8
6	ChloroSulfonic Plant Reactor	16/05/2019	Cl ₂	9.0 mg/Nm ³	8.1
			HCI	20.0 mg/Nm ³	15.3
cinerat	tor			2.40	
			SPM	150.0 mg/Nm ³	85
7 1	ncinerator	02/05/2019	SO ₂	40.0 mg/Nm ³	18.3
			NOx	25.0 mg/Nm ³	14.5
			% of Efficiency	%	99.9

Royal Environment Audia Auditing & Consultancy Service

alting & ronn Rajkot

Predip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.co

Ref. No.: 246/05/2019-20

		Scrub	ber & Vents		
Sr. No	5. Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
NI Pla	nt				
8	8 Foul Gas Scubber	Not Running	SO ₂	40.0 mg/Nm ³	
		During Visit	Nox	25.0 mg/Nm ³	
2-4-D I	Plant				
9	Dryer-1	- 10/05/2019 -	SPM	20.0 mg/Nm ³	7.5
10	Dryer-2		SPM	20.0 mg/Nm ³	8.3
11	Dryer-3		SPM	20.0 mg/Nm ³	9.8
12	Dryer-4		SPM	20.0 mg/Nm ³	8.5
			Cl ₂	9.0 mg/Nm ³	7.6
13	Common Scrubber; 2,4D Plant	10/05/2019	HCL	20.0 mg/Nm ³	8.4
			Phenol		N.D.
IBD PI	ant				
14	Spray Dryer		SPM	150.0 mg/Nm ³	Not in Use
P Plar	nt	- I	1999	11	
			Cl ₂	9.0 mg/Nm ³	

	15 MCPA		Cl ₂	9.0 mg/Nm ³	
15		Not Running During visit	HCL	20.0 mg/Nm ³	
			SO ₂	40.0 mg/Nm ³	
16	16 Fipronil	Not Running	SO2	40.0 mg/Nm ³	
		During visit	HCL	20.0 mg/Nm ³	-
17	Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	-
18	Pyrathroids	Not Running	SO2	40.0 mg/Nm ³	
		During visit	HCL	20.0 mg/Nm ³	
19	Stack at Amine Plant	02-05-19	NH ₃	175 mg/Nm ³	8.3

adaya. D Royal Environment Auditing **Consultancy Service**

alting & Rajkot

Predip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 31/05/2019

Ref. No.: 248/05/2019-20

		Scrubb	er & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
MPSL Pla	nt			1	
20	Phosgene Scrubbr at MPSL	15/05/2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	15/05/2019	Phosgene	0.1 ppm	N.D.
NICO Plar	ht				
22	Central scrubber at Nico Plant	-	Acetonytryle, IPA	-	-
ESTER PI	ant			1	
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	-
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	-
25	MPP Plant Scrubber	Not Running	HCL	20 Mg/Nm ³	
		During visit	Phosgene	0.1 ppm	-
tul East S	Site				
26	Sulfer Black Plant	23/05/2019	H ₂ S	-	N.D.
		20/00/2013	NH ₃	175.0 mg/Nm ³	18.6
27	Sulfer Dyes Plant	23/05/2019	H ₂ S	-	N.D.
			NH ₃	175.0 mg/Nm ³	17.2
28	MPP Plant	24/05/2019	HCL	20 Mg/Nm ³	15.3
29	Flavors & Fragrances Plant	24/05/2019	HCL	20 Mg/Nm ³	16.3

padela. Royal Environment Auditing **Consultancy Service**

diting & Rajkot

Prodip

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 247/05/2019-20

Date : 31/05/2019

	1	Scrubber	& Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
Alui Wes		1	10000		
30	Shed A05/03/44	02/05/2019	Cl ₂	9.0 mg/Nm ³	4.3
			HCI	20.0 mg/Nm ³	7.3
			SO ₂	40 Mg/Nm ³	5.6
31	Shed B18/02/24 Fan	02/05/2019	Cl ₂	9.0 mg/Nm ³	4.3
			HCI	20.0 mg/Nm ³	5.3
32	Shed B2/12/24 Reaction Vessel	02/05/2019	Cl ₂	9.0 mg/Nm ³	7.1
			HCI	20.0 mg/Nm ³	6.2
33	Shed C5/20/15 Chlorinator	02/05/2019	Cl ₂	9.0 mg/Nm ³	6.5
		010012010	HCI	20.0 mg/Nm ³	7.1
34	Shed D Niro Spray dryer 45	02/05/2019	SPM	150.0 mg/Nm ³	80
35	Shed D Niro Spray dryer 50	02/03/2019	SPM	150.0 mg/Nm ³	63
36	Shed E 7/12/49 Spray Dryer	Not Running During Visit	SPM	150.0 mg/Nm ³	
37	Shed F F6/1/15 Reaction Vessel	02/05/2019	Cl ₂	9.0 mg/Nm ³	6.8
		02/00/2010	HCI	20.0 mg/Nm ³	6.9
38	Shed G 10/8/1 (receiver)	Not Running	Cl ₂	9.0 mg/Nm ³	
		During Visit	HCI	20.0 mg/Nm ³	
39	Shed H H1/6/17 Chlorinator	16/05/2019	Cl ₂	9.0 mg/Nm ³	6.6
		10.00.2010	HCI	20.0 mg/Nm ³	7.1
40	Shed K K-13/3/4 Final of Sulfuric	09/05/2019	SO ₂	2.0 kg/T	1.8
-	acid plant	00/00/2013	Acid Mist	50.0 mg/Nm ³	14.3
41	Shed J15/09/25	09/05/2019	HBr		N.D.
		00/03/2013	SO ₂	40 Mg/Nm ³	9.1
			SO ₂	40 Mg/Nm ³	8.2
42	Shed J12/01/42	09/05/2019	Cl ₂	20.0 mg/Nm ³	7.6
			HCI	9.0 mg/Nm ³	6.5
43	Shed J12/03/36	09/05/2019	SO ₂	40 Mg/Nm ³	9.3
		00/00/2019	HCI	9.0 mg/Nm ³	6.6
44	Shed N Scrubber Fan N20/03/24	09/05/2019	Cl ₂	9.0 mg/Nm ³	6.5
		05/05/2019	HCI	20:0 mg/Nm ³	10.5
45	Shed N Scrubber Fan N20/02/41	09/05/2019	SO2	40 Mg/Nm ³	8.5

ba Royal Environment Auditing & Consultancy Service

Predip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 249/05/2019-20

Date : 31/05/2019

	1	Scrubbe	er & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
Atul Norti	h Site				
			SPM	150.0 mg/Nm ³	65
46	Catalytic Incinerator of N-FDH Plant	09/05/2019	SO ₂	40.0 mg/Nm ³	14.8
		00/00/2013	NO _x	25.0 mg/Nm ³	12.9
			Formaldehyde	10.0 mg/Nm ³	N.D.
47	PHIN Plant vessel	03/05/2019	Phosgene	0.1 ppm	N.D.
48	PHIN - II Plant	03/05/2019	HCL	20 Mg/Nm ³	13.2
		00/00/2013	COCI ₂	0.1 ppm	N.D.
49	DCDPS Plant	17/05/2019	SO3	-	N.D.
50	DDS Plant	17/05/2019	NH ₃	175 Mg/Nm ³	16.3
51	SPIC II Plant	17/05/2019	SO3	-	N.D.
52	SPIC I Plant	17/05/2019	NH ₃	175 Mg/Nm ³	16.5
53	SPIC IV Plant	17/05/2019	NH ₃	175 Mg/Nm ³	17.3
		11103/2019	SO ₂	-	8.9
54	Furnace (Phosgene Plant New)	03/05/2019	PM	150Mg/Nm ³	95
55	Rector (Phosgene Plant New)	03/05/2019 -	со	-	N.D.
	t megene i lait neity	03/03/2019	Phosgene	0.1ppm	N.D.

adapa Royal Environment Auditing Consultancy Service

aning & r Rajkot

Predip Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 255/06/2019-20


Date : 29/06/2019

Name of Company : Atul Limited District : Valsad - 396 020.

Scrubber & Vents										
Sr. No	Current Dotans	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)					
Atul E	ast Site				where specified)					
1	Phosgene Plant	-	Phosgene	0.1 ppm	Not in Use					
2	Dechlorination Plant(Hypo)	22/06/2019	Cl ₂	9.0 mg/Nm ³	8.1					
1			HCI	20.0 mg/Nm ³	15.2					
3	3 Common stack of HCL Sigri Unit-	22/06/2019	Cl ₂	9.0 mg/Nm ³	8.1					
	1&2		HCI	20.0 mg/Nm ³	12.3					
CBPI	ant			A STATE	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
4 Foul Gas	Foul Gas Scubber	1.60	SO2	40.0 mg/Nm ³						
			NOx	25.0 mg/Nm ³	Not in Use					
ulfurio	c Acid (East Side)				*					
5	Sulphuric Acid Plant	21/06/2019	SO ₂	2.0 kg/T	1.2					
			Acid Mist	50.0 mg/Nm ³	8.5					
6	ChloroSulfonic Plant Reactor	21/06/2019	Cl ₂	9.0 mg/Nm ³	8.5					
		21100/2010	HCI	20.0 mg/Nm ³	14.2					
cinera	ator									
			SPM	150.0 mg/Nm ³	92					
7 1	Incinerator	06/06/2019	SO ₂	40.0 mg/Nm ³	20.3					
		0000/2019	NOx	25.0 mg/Nm ³	16.1					
			% of Efficiency	%	99.9					

Dicolaja. Royal Environment Auditing & Consultancy Service

Rajkot

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 256/06/2019-20

		Scrub	ber & Vents	6.00.20	
Sr. No	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
NI Plar	nt	Sec. 2	254		
8	8 Foul Gas Scubber	Not Running	SO ₂	40.0 mg/Nm ³	
		During Visit	Nox	25.0 mg/Nm ³	
2-4-D F	Plant				
9	Dryer-1		SPM	20.0 mg/Nm ³	8.3
10	Dryer-2	26/06/2019	SPM	20.0 mg/Nm ³	10.1
11	Dryer-3	20/00/2019	SPM	20.0 mg/Nm ³	10.5
12	Dryer-4		SPM	20.0 mg/Nm3	9.5
			Cl ₂	9.0 mg/Nm ³	8.2
13	Common Scrubber; 2,4D Plant	26/06/2019	HCL	20.0 mg/Nm ³	9.8
			Phenol	· · · · · · · · · · · · · · · · · · ·	N.D.
IBD Pla	ant				1
14	Spray Dryer		SPM	150.0 mg/Nm ³	Not in Use
P Plan	ŧ	<u> </u>			

	1		Cl ₂	9.0 mg/Nm ³	
15	MCPA	Not Running During visit	HCL	20.0 mg/Nm ³	
			SO ₂	40.0 mg/Nm ³	-
16 Fipronil	Not Running	SO ₂	40.0 mg/Nm ³		
		During visit	HCL	20.0 mg/Nm ³	
17	Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	
18	Pyrathroids	Not Running	SO ₂	40.0 mg/Nm ³	-
		During visit	HCL	20.0 mg/Nm ³	
19	Stack at Amine Plant	06-06-2019	NH ₃	175 mg/Nm ³	8.1

Topadepa. Royal Environment Auditing & Consultancy Service

diting Rajkot

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 258/06/2019-20

Date : 29/06/2019

	1	Scrubb	er & Vents		1997 - AMERICA
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
MPSL Pla	int				where specified)
20	Phosgene Scrubbr at MPSL	21/06/2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	21/06/2019	Phosgene	0.1 ppm	N.D.
NICO Plan	nt				
22	Central scrubber at Nico Plant		Acetonytryle, IPA		
ESTER PI	ant				
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	1.
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	
25	MPP Plant Scrubber	Not Running	HCL	20 Mg/Nm ³	<u> </u>
		During visit	Phosgene	0.1 ppm	
tul East S	Site	Sec. Sec.			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
26	Sulfer Black Plant	21/06/2019	H ₂ S		N.D.
-	13 <u>1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NH ₃	175.0 mg/Nm ³	19.8
27	Sulfer Dyes Plant	21/06/2019	H ₂ S		N.D.
			NH ₃	175.0 mg/Nm ³	18.1
28	MPP Plant	20/06/2019	HCL	20 Mg/Nm ³	15.2
29	Flavors & Fragrances Plant	20/06/2019	HCL	20 Mg/Nm ³	15.9

Djadeja. Royal Environment Auditing & Consultancy Service

Rajkot

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 257/06/2019-20

Date : 29/06/2019

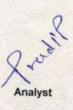
C	St. 1 5				Obtained Value
Sr. No.		Date of Sampling	Paramenter	Permissible Limits	(in mg/Nm ³ excep where specified)
itul Wes	l'Site	1			intere opeenieur
30	Shed A05/03/44	06/06/2019	Cl ₂	9.0 mg/Nm ³	4.5
			HCI	20.0 mg/Nm ³	7.5
24			SO ₂	40 Mg/Nm ³	6.2
31	Shed B18/02/24 Fan	07/06/2019	Cl ₂	9.0 mg/Nm ³	4.6
		12000	HCI	20.0 mg/Nm ³	6.1
32	Shed B2/12/24 Reaction Vessel	06/06/2019	Cl ₂	9.0 mg/Nm ³	7.8
		HCI	20.0 mg/Nm ³	6.5	
33	33 Shed C5/20/15 Chlorinator	06/06/2019	Cl ₂	9.0 mg/Nm ³	6.6
-		2.2	HCI	20.0 mg/Nm ³	7.8
34	Shed D Niro Spray dryer 45	05/06/2019	SPM	150.0 mg/Nm ³	86
35	Shed D Niro Spray dryer 50	-	SPM	150.0 mg/Nm ³	66
36	Shed E 7/12/49 Spray Dryer	Not Running During Visit	SPM	150.0 mg/Nm ³	
37 Shed F F6/	Shed F F6/1/15 Reaction Vessel	06/06/2019	Cl ₂	9.0 mg/Nm ³	7.1
			HCI	20.0 mg/Nm ³	7.5
38	Shed G 10/8/1 (receiver)	Not Running	Cl ₂	9.0 mg/Nm ³	
		During Visit	HCI	20.0 mg/Nm ³	
39	Shed H H1/6/17 Chlorinator	07/06/2019	Cl ₂	9.0 mg/Nm ³	7.1
-			HCI	20.0 mg/Nm ³	7.3
40	Shed K K-13/3/4 Final of Sulfuric acid plant	07/06/2019	SO ₂	2.0 kg/T	1.5
			Acid Mist	50.0 mg/Nm ³	15.8
41	Shed J15/09/25	08/06/2019	HBr		N.D.
-			SO ₂	40 Mg/Nm ³	9.8
			SO ₂	40 Mg/Nm ³	8.5
42	Shed J12/01/42	08/06/2019	Cl ₂	20.0 mg/Nm ³	8.2
- 1			HCI	9.0 mg/Nm ³	6.9
43	Shed J12/03/36	08/06/2019	SO2	40 Mg/Nm ³	9.2
			HCI	9.0 mg/Nm ³	6.8
44	Shed N Scrubber Fan N20/03/24	07/06/2019	Cl ₂	9.0 mg/Nm ³	6.7
5			HCI	20.0 mg/Nm ³	10.1
45	Shed N Scrubber Fan N20/02/41	07/06/2019	SO2	40 Mg/Nm ³	8.8

Rajkot

place? Royal Environment Auditing & Consultancy Service

Rudi Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com


Ref. No.: 259/06/2019-20

Date : 29/06/2019

Scrubber & Vents								
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)			
Atul Nort	h Site							
	and the second second		SPM	150.0 mg/Nm ³	70			
46	Catalytic Incinerator of N-FDH Plant	14/06/2019	SO ₂	40.0 mg/Nm ³	14.3			
			NO _x	25.0 mg/Nm ³	13.2			
	1 Same		Formaldehyde	10.0 mg/Nm ³	N.D.			
47	PHIN Plant vessel	13/06/2019	Phosgene	0.1 ppm	N.D.			
48	PHIN - II Plant	13/06/2019	HCL	20 Mg/Nm ³	12.9			
			COCI2	0.1 ppm	N.D.			
49	DCDPS Plant	13/06/2019	SO3	-	N.D.			
50	DDS Plant	13/06/2019	NH ₃	175 Mg/Nm ³	15.9			
51	SPIC II Plant	13/06/2019	SO3		N.D.			
52	SPIC I Plant	13/06/2019	NH ₃	175 Mg/Nm ³	17.2			
53	SPIC IV Plant	13/06/2019	NH ₃	175 Mg/Nm ³	18.6			
		10/00/2019	SO ₂		9.2			
54	Furnace (Phosgene Plant New)	27/06/2019	PM	150Mg/Nm ³	99			
55	Rector (Phosgene Plant New)	27/06/2019	со	-	N.D.			
200		2110012019	Phosgene	0.1ppm	N.D.			

Djadej 9. Royal Environment Auditing & Consultancy Service

Ailing & Rajkot

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 265/07/2019-20

Date : 31/07/2019

Name of Company : Atul Limited District : Valsad - 396 020.

		Scrut	ober & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
Atul Ea	st Site				
1	Phosgene Plant		Phosgene	0.1 ppm	Not in Use
2	Dechlorination Plant(Hypo)	18/07/2019	Cl ₂	9.0 mg/Nm ³	8.4
			HCI	20.0 mg/Nm ³	14.6
3	Common stack of HCL Sigri Unit- 1 & 2	18/07/2019	Cl ₂	9.0 mg/Nm ³	7.5
3			HCI	20.0 mg/Nm ³	11.3
FCB PI	ant				
	Foul Gas Scubber	-	SO ₂	40.0 mg/Nm ³	Not in Use
4			NOx	25.0 mg/Nm ³	
Sulfurio	c Acid (East Side)				
5	Sulphuric Acid Plant	18/07/2019	SO ₂	2.0 kg/T	0.9
5			Acid Mist	50.0 mg/Nm ³	9.6
6	ChloroSulfonic Plant Reactor	18/07/2019	Cl ₂	9.0 mg/Nm ³	7.6
0			HCI	20.0 mg/Nm ³	15.2
Inciner	ator				
	Incinerator	05/07/2019	SPM	150.0 mg/Nm ³	97
7			SO ₂	40.0 mg/Nm ³	17.2
			NOx	25.0 mg/Nm ³	17.6
			% of Efficiency	%	99.9

Royal Environment Auditing & Consultancy Service

Rajkot

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 266/07/2019-20

					Date : 31/07/2
-		Scrub	ber & Vents		
Sr. No	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except
NI Pla	nt			1	where specified)
8	Foul Gas Scubber	Not Running During Visit	SO ₂	40.0 mg/Nm ³	
			Nox	25.0 mg/Nm ³	
2-4-D F	Plant				
9	Dryer-1	- 19/07/2019	SPM	20.0 mg/Nm ³	8.3
10	Dryer-2		SPM	20.0 mg/Nm ³	9.8
11	Dryer-3		SPM	20.0 mg/Nm ³	11.0
12	Dryer-4		SPM	20.0 mg/Nm3	10.3
	Common Scrubber; 2,4D Plant	19/07/2019	Cl ₂	9.0 mg/Nm ³	8.1
13			HCL	20.0 mg/Nm ³	10.0
			Phenol		N.D.
IBD Pla	ant				
14	Spray Dryer	*	SPM	150.0 mg/Nm ³	Not in Use
P Plan	t				
15	МСРА	Not Running During visit	Cl ₂	9.0 mg/Nm ³	
			HCL	20.0 mg/Nm ³	
			50		

		During visit	HCL	20.0 mg/Nm ³	
			SO2	40.0 mg/Nm ³	-
16	Fipronil	Not Running During visit	SO2	40.0 mg/Nm ³	
			HCL	20.0 mg/Nm ³	
17	Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	
18	Pyrathroids	Not Running During visit	SO2	40.0 mg/Nm ³	
			HCL	20.0 mg/Nm ³	
19	Stack at Amine Plant	04-07-2019	NH ₃	175 mg/Nm ³	9.2

rader Royal Environment Auditing & Consultancy Service

diting d Rajkot *

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 268/07/2019-20

Date : 31/07/2019

		Scrubb	er & Vents		11000
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
MPSL Pla	int				where specified)
20	Phosgene Scrubbr at MPSL	26-07-2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	26-07-2019	Phosgene	0.1 ppm	N.D.
NICO Plan	nt	10000			
22	Central scrubber at Nico Plant		Acetonytryle, IPA		
ESTER PI	ant				
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	· · · · · ·
25	MPP Plant Scrubber	Not Running	HCL	20 Mg/Nm ³	-
		During visit	Phosgene	0.1 ppm	
tul East S	Site *				
26	Sulfer Black Plant	18/07/2019	H ₂ S	-	N.D.
			NH ₃	175.0 mg/Nm ³	20.2
27	Sulfer Dyes Plant	18/07/2019	H ₂ S		N.D.
-			NH ₃	175.0 mg/Nm ³	16.5
28	MPP Plant	Not Running During visit	HCL	20 Mg/Nm ³	
29	Flavors & Fragrances Plant	Not Running During visit	HCL	20 Mg/Nm ³	

9 Royal Environment Auditing & Consultancy Service

Rajkot

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 267/07/2019-20

Date : 31/07/2019

-		Scrubber	& Vents		
Sr. No. Atul Wes	orack becans	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ excep where specified)
		T T			
30	Shed A05/03/44	04/07/2019	Cl ₂	9.0 mg/Nm ³	5.2
			HCI	20.0 mg/Nm ³	7.3
31	Shed B18/02/24 Fan		SO ₂	40 Mg/Nm ³	7.1
	5160 B10/02/24 Fan	04/07/2019	Cl ₂	9.0 mg/Nm ³	3.9
-			HCI	20.0 mg/Nm ³	6.4
32	2 Shed B2/12/24 Reaction Vessel 04/07/20	04/07/2019	Cl ₂	9.0 mg/Nm ³	7.1
			HCI	20.0 mg/Nm ³	5.9
33	Shed C5/20/15 Chlorinator	04/07/2019	Cl ₂	9.0 mg/Nm ³	6.1
24	1 Mage		HCI	20.0 mg/Nm ³	8
34	Shed D Niro Spray dryer 45	13/07/2019	SPM	150.0 mg/Nm ³	75
35	Shed D Niro Spray dryer 50		SPM	150.0 mg/Nm ³	69
36	Shed E 7/12/49 Spray Dryer	Not Running During Visit	SPM	150.0 mg/Nm ³	-
37 Shed F	Shed F F6/1/15 Reaction Vessel	04/07/2019	Cl ₂	9.0 mg/Nm ³	8
-			HCI	20.0 mg/Nm ³	9.1
38	Shed G 10/8/1 (receiver)	Not Running	Cl ₂	9.0 mg/Nm ³	
		During Visit	HCI	20.0 mg/Nm ³	
39	Shed H H1/6/17 Chlorinator	11/07/2019	Cl ₂	9.0 mg/Nm ³	6.8
			HCI	20.0 mg/Nm ³	8.1
40	Shed K K-13/3/4 Final of Sulfuric acid plant	11/07/2019	SO ₂	2.0 kg/T	1.1
			Acid Mist	50.0 mg/Nm ³	18.1
41	Shed J15/09/25	11/07/2019	HBr		N.D.
			SO ₂	40 Mg/Nm ³	8.7
42			SO ₂	40 Mg/Nm ³	12.3
42	Shed J12/01/42	11/07/2019	Cl ₂	9.0 mg/Nm ³	5.5
			HCI	20.0 mg/Nm ³	7.2
43	Shed J12/03/36	11/07/2019	SO ₂	40 Mg/Nm ³	9.8
-			HCI	20.0 mg/Nm ³	7.2
44 5	Shed N Scrubber Fan N20/03/24	11/07/2019	Cl ₂	9.0 mg/Nm ³	7.8
15			HCL And	20.0 mg/Nm ³	8.3
45 5	Shed N Scrubber Fan N20/02/41	11-07-2019	SO2	40 Mg/Nm ³	8.2

Rajkol

Royal Environment Auditing & Consultancy Service

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 269/07/2019-20

Date : 31/07/2019

		Scrubbe	er & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
tul Nort	h Site				incle specified)
			SPM	150.0 mg/Nm ³	-
46	Catalytic Incinerator of N-FDH Plant	Not Running	SO ₂	40.0 mg/Nm ³	-
		During visit	NO _x	25.0 mg/Nm ³	
			Formaldehyde	10.0 mg/Nm ³	-
47	PHIN Plant vessel	12-07-2019	Phosgene	0.1 ppm	N.D.
48	PHIN - II Plant 12-07-2019	12-07-2019	HCL	20 Mg/Nm ³	13.4
-		1	COCI2	0.1 ppm	N.D.
49	DCDPS Plant	12-07-2019	SO3	-	N.D.
50	DDS Plant	12-07-2019	NH ₃	175 Mg/Nm ³	17.3
51	SPIC II Plant	12-07-2019	SO3		N.D.
52	SPIC I Plant	12-07-2019	NH ₃	175 Mg/Nm ³	18.3
53	SPIC IV Plant	12-07-2019	NH ₃	175 Mg/Nm ³	19.2
			SO ₂		9.2
54	Furnace (Phosgene Plant New)	26/07/2019	РМ	150Mg/Nm ³	95
55	Rector (Phosgene Plant New)	26/07/2019	со		N.D.
			Phosgene	0.1ppm	N.D.

ndiling d Rajkot

Date: 31/08/2019

Ref. No.: 275/08/2019-20

Name of Company : Atul Limited District : Valsad - 396 020.

		Scrubb	per & Vents		Section 2.
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
Atul Ea	st Site				
1	Phosgene Plant		Phosgene	0.1 ppm	Not in Use
			Cl ₂	9.0 mg/Nm ³	6.3
2	2 Dechlorination Plant(Hypo)	23/08/2019	HCI	20.0 mg/Nm ³	8.1
	Common stack of HCL Sigri Unit- 1 & 2		Cl ₂	9.0 mg/Nm ³	5.6
3		23/08/2019	HCI	20.0 mg/Nm ³	9.6
FCB PI	ant				
		-	SO ₂	40.0 mg/Nm ³	Not in Use
4	Foul Gas Scubber		NOx	25.0 mg/Nm ³	
Sulfuri	ic Acid (East Side)			100 m 100 m	
			SO ₂	2.0 kg/T	0.5
5	Sulphuric Acid Plant	22/08/2019	Acid Mist	50.0 mg/Nm ³	7.3
			Cl ₂	9.0 mg/Nm ³	6.7
6	ChloroSulfonic Plant Reactor	22/08/2019	HCI	20.0 mg/Nm ³	12.6
Incine	rator				
			SPM	150.0 mg/Nm ³	83
			SO ₂	40.0 mg/Nm ³	12.4
7	Incinerator	08/08/2019	NOx	25.0 mg/Nm ³	9.4
			% of Efficiency	%	99.9

Deladap. Royal Environment Auditing & Consultancy Service

Rajkol

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 276/08/2019-20

Date : 31/08/2019

		Scrubi	ber & Vents		
Sr. No.	. Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
NI Plan	nt				
	8 Foul Gas Scubber	Not Running	SO ₂	40.0 mg/Nm ³	
8		During Visit	Nox	25.0 mg/Nm ³	1
2-4-D F	Plant				
9	Dryer-1		SPM	20.0 mg/Nm ³	5.6
10	Dryer-2	22/02/2010	SPM	20.0 mg/Nm ³	6.2
11	Dryer-3	22/08/2019	SPM	20.0 mg/Nm ³	15.4
12	Dryer-4		SPM	20.0 mg/Nm3	8.3
			Cl ₂	9.0 mg/Nm ³	7.2
13	Common Scrubber; 2,4D Plant	22/08/2019	HCL	20.0 mg/Nm ³	8.6
			Phenol		N.D.
NBD P	lant				
14	Spray Dryer		SPM	150.0 mg/Nm ³	Not in Use

CP Plant

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Cl ₂	9.0 mg/Nm ³	
15	MCPA	Not Running During visit	HCL	20.0 mg/Nm ³	-
	1		SO2	40.0 mg/Nm ³	
10	16 Leipropil	Not Running	SO2	40.0 mg/Nm ³	
16		During visit	HCL	20.0 mg/Nm ³	
17	Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	
18	Durathanida	Not Running	SO ₂	40.0 mg/Nm ³	
18	Pyrathroids	During visit	HCL	20.0 mg/Nm ³	-
19	Stack at Amine Plant	08-08-2019	NH ₃	175 mg/Nm ³	16.4

20 Da Royal Environment Auditing & Consultancy Service

aning Rajkot

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 278/08/2019-20

Date : 31/08/2019

		Scrubber	& Vents		and the second
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ excep where specified)
MPSL Pla	nt				
20	Phosgene Scrubbr at MPSL	29-08-2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	29-08-2019	Phosgene	0.1 ppm	N.D.
NICO Plan	nt				
22	Central scrubber at Nico Plant	-	Acetonytryle, IPA		-
ESTER PI	ant				
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	-
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	
	MPP Plant Scrubber	Not Running	HCL	20 Mg/Nm ³	
25		During visit	Phosgene	0.1 ppm	
Atul East	Site				
		20/00/2010	H ₂ S		N.D.
26	Sulfer Black Plant	22/08/2019	NH ₃	175.0 mg/Nm ³	35.4
			H ₂ S		N.D.
27	Sulfer Dyes Plant	22/08/2019	NH ₃	175.0 mg/Nm ³	25.7
28	MPP Plant	08-08-2019	HCL	20 Mg/Nm ³	14.5
29	Flavors & Fragrances Plant	Not Running During visit	HCL	20 Mg/Nm ³	

padet Royal Environment Auditing & Consultancy Service

nalyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 31/08/2019

Ref. No.: 277/08/2019-20

		Scrubber 8	& Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
ul West	Site				
	21 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	01/08/2019	Cl ₂	9.0 mg/Nm ³	6.3
30	Shed A05/03/44	01/00/2013	HCI	20.0 mg/Nm ³	8.3
-		1 Mar. 199	SO ₂	40 Mg/Nm ³	16.2
31	Shed B18/02/24 Fan	02/08/2019	Cl ₂	9.0 mg/Nm ³	4.6
			HCI	20.0 mg/Nm ³	8.1
1.			Cl ₂	9.0 mg/Nm ³	5.4
32	Shed B2/12/24 Reaction Vessel	02/08/2019	HCI	20.0 mg/Nm ³	8.4
		and the second second	Cl ₂	9.0 mg/Nm ³	6.1
33	Shed C5/20/15 Chlorinator	02/08/2019 03/08/2019 03/08/2019 03/08/2019 03/08/2019 Not Running During Visit 02/08/2019 Not Running During Visit	HCI	20.0 mg/Nm ³	7.6
34	Shed D Niro Spray dryer 45		SPM	150.0 mg/Nm ³	60
35	Shed D Niro Spray dryer 50	03/08/2019	SPM	150.0 mg/Nm ³	68
36	Shed E 7/12/49 Spray Dryer		SPM	150.0 mg/Nm ³	-
12.1	Shed F F6/1/15 Reaction Vessel		Cl ₂	9.0 mg/Nm ³	6.8
37		02/08/2019	HCI	20.0 mg/Nm ³	8.6
-		Not Running	Cl ₂	9.0 mg/Nm ³	-
38	Shed G 10/8/1 (receiver)		HCI	20.0 mg/Nm ³	
-			Cl ₂	9.0 mg/Nm ³	5.3
39	Shed H H1/6/17 Chlorinator	01/08/2019	HCI	20.0 mg/Nm ³	8.4
	Shed K K-13/3/4 Final of Sulfuric		SO ₂	2.0 kg/T	0.8
40	acid plant	01/08/2019	Acid Mist	50.0 mg/Nm ³	12.4
			HBr		N.D.
41	Shed J15/09/25	01/08/2019	SO ₂	40 Mg/Nm ³	13.7
			SO ₂	40 Mg/Nm ³	10.8
42	Shed J12/01/42	01/08/2019	Cl ₂	9.0 mg/Nm ³	6.3
72			HCI	20.0 mg/Nm ³	5.7
			SO ₂	40 Mg/Nm ³	14.1
43	Shed J12/03/36	01/08/2019	HCI	20.0 mg/Nm ³	9.4
			Cl ₂	9.0 mg/Nm ³	6.2
44	Shed N Scrubber Fan N20/03/24	08/08/2019	HCI	20,0 mg/Nm ³	10.3
45	Shed N Scrubber Fan N20/02/41	08-08-2019	SO2	40 Mg/Nm ³	15.1

Raikot

padapa Royal Environment Auditing & Consultancy Service

Analyst

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Date : 31/08/2019

Ref. No.: 279/08/2019-20

		Scrubber	& Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
tul North	Site				
			SPM	150.0 mg/Nm ³	-
		Not Running	SO2	40.0 mg/Nm ³	
46	Catalytic Incinerator of N-FDH Plant	During visit	NOx	25.0 mg/Nm ³	
			Formaldehyde	10.0 mg/Nm ³	
47	PHIN Plant vessel	10-08-2019	Phosgene	0.1 ppm	N.D.
	PHIN - II Plant	10-08-2019	HCL	20 Mg/Nm ³	9.6
48		10-00-2010	COCl ₂	0.1 ppm	N.D.
49	DCDPS Plant	09-08-2019	SO3		N.D.
50	DDS Plant	09-08-2019	NH ₃	175 Mg/Nm ³	23.2
51	SPIC II Plant	09-08-2019	SO3	- 04-	N.D.
52	SPIC I Plant	09-08-2019	NH ₃	175 Mg/Nm ³	12.3
		09-08-2019	NH ₃	175 Mg/Nm ³	17.5
53	SPIC IV Plant	09-06-2019	SO ₂		8.6
54	Furnace (Phosgene Plant New)	29/08/2019	PM	150Mg/Nm ³	87
		20/08/2010	со		N.D.
55	Rector (Phosgene Plant New)	29/08/2019	Phosgene	0.1ppm	N.D.

Rajkot 1

Analyst

Date : 30/09/2019

Ref. No.: 285/09/2019-20

Name of Company : Atul Limited District : Valsad - 396 020.

		Scrub	ber & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
Atul Ea	st Site				
1	Phosgene Plant		Phosgene	0.1 ppm	Not in Use
-		10/00/0010	Cl ₂	9.0 mg/Nm ³	7.1
2	Dechlorination Plant(Hypo)	19/09/2019	HCI	20.0 mg/Nm ³	9.4
	Common stack of HCL Sigri Unit-	10/00/0010	Cl ₂	9.0 mg/Nm ³	5.2
3	1&2	19/09/2019	HCI	20.0 mg/Nm ³	10.2
FCB PI	ant				· · · · · · · · · · · · · · · · · · ·
			SO ₂	40.0 mg/Nm ³	- Not in Use
4	Foul Gas Scubber	-	NOx	25.0 mg/Nm ³	
Sulfuri	c Acid (East Side)				
-		10/00/2010	SO ₂	2.0 kg/T	0.7
5	Sulphuric Acid Plant	19/09/2019	Acid Mist	50.0 mg/Nm ³	12.4
		10,000,000,10	Cl ₂	9.0 mg/Nm ³	5.4
6	ChloroSulfonic Plant Reactor	19/09/2019	HCI	20.0 mg/Nm ³	10.6
Inciner	ator				
		1	SPM	150.0 mg/Nm ³	65
		10/00/0010	SO ₂	40.0 mg/Nm ³	15.4
7	Incinerator	12/09/2019	NOx	25.0 mg/Nm ³	7.3
			% of Efficiency	%	99.9

Royal Environment Auditing & Consultancy Service

Rakol

Analyst

Date : 30/09/2019

Ref. No.: 286/09/2019-20

		Scrubb	per & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
NI Plan	t				
		Not Running	SO ₂	40.0 mg/Nm ³	
8	Foul Gas Scubber	During Visit	Nox	25.0 mg/Nm ³	
2-4-D P	Plant				
9	Dryer-1	20/09/2019	SPM	20.0 mg/Nm ³	7.8
10	Dryer-2		SPM	20.0 mg/Nm ³	9.4
11	Dryer-3		SPM	20.0 mg/Nm ³	8.2
12	Dryer-4		SPM	20.0 mg/Nm3	10.2
		20/09/2019	Cl ₂	9.0 mg/Nm ³	7.4
13	Common Scrubber; 2,4D Plant		HCL	20.0 mg/Nm ³	6.4
			Phenol		N.D.
NBD P	lant			No.	
14	Spray Dryer		SPM	150.0 mg/Nm ³	Not in Use
CP Pla	nt	19.11.1			
		0.1.2.1	Cl ₂	9.0 mg/Nm ³	
15	MCPA	Not Running During visit	HCL	20.0 mg/Nm ³	
			SO ₂	40.0 mg/Nm ³	

	During visit			
· · · · · · · · · · · · · · · · · · ·		SO2	40.0 mg/Nm ³	
16 Fipronil	Not Running	SO2	40.0 mg/Nm ³	
	During visit	HCL	20.0 mg/Nm ³	
Imidacloprid	Not Running During visit	NH ₃	175 mg/Nm ³	-
18 Pyrathroids	Not Running	SO2	40.0 mg/Nm ³	
	During visit	HCL	20.0 mg/Nm ³	
Stack at Amine Plant	05-09-2019	NH ₃	175 mg/Nm ³	24.2
	Imidacloprid Pyrathroids	Fipronil Not Running During visit Imidacloprid Not Running During visit Pyrathroids Not Running During visit	SO2 Fipronil Not Running During visit HCL Imidacloprid Not Running During visit Not Running During visit Pyrathroids	FipronilNot Running During visitSO240.0 mg/Nm³FipronilNot Running During visitHCL20.0 mg/Nm³ImidaclopridNot Running During visitNH3175 mg/Nm³PyrathroidsNot Running During visitSO240.0 mg/Nm³PyrathroidsNot Running During visitSO240.0 mg/Nm³

ade S Doual Environ sultancy Service

Rajkot

Predie Analyst

Date : 30/09/2019

Ref. No.: 288/09/2019-20

		Scrubbe	r & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
MPSL Pla	nt				
20	Phosgene Scrubbr at MPSL	19-09-2019	Phosgene	0.1 ppm	N.D.
21	Central Scrubber at MPSL	19-09-2019	Phosgene	0.1 ppm	N.D.
NICO Plan	nt				
22	Central scrubber at Nico Plant		Acetonytryle, IPA		
ESTER PI	ant				A
23	Scrubber at Ester plant for Glyphosate	Not Running During visit	Formaldehyde	10 Mg/Nm ³	
24	Central Scrubber MCPA Plant	Not Running During visit	HCL	20 Mg/Nm ³	-
05	MDD Direct Consider	Not Running	HCL	20 Mg/Nm ³	-
25	MPP Plant Scrubber	During visit	Phosgene	0.1 ppm	
Atul East	Site				
-	Culture Direct	10/00/2010	H ₂ S		N.D.
26	Sulfer Black Plant	19/09/2019	NH ₃	175.0 mg/Nm ³	45.3
		10/00/2010	H ₂ S		N.D.
27	Sulfer Dyes Plant	19/09/2019	NH ₃	175.0 mg/Nm ³	32.6
28	MPP Plant	20-09-2019	HCL	20 Mg/Nm ³	15.7
29	Flavors & Fragrances Plant	Not Running During visit	HCL	20 Mg/Nm ³	

09 Royal Environmen Auditing & Consultancy Service

Rajkot

Rhendie Analyst

Date : 30/09/2019

Ref. No.: 287/09/2019-20

	and the second	Scrubber &	& Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ except where specified)
tul West	Site			1	
30	Shed A05/03/44	04/09/2019	Cl ₂	9.0 mg/Nm ³	7.2
50		CHOOLETE	HCI	20.0 mg/Nm ³	8.9
			SO2	40 Mg/Nm ³	18.3
31	Shed B18/02/24 Fan	04/09/2019	Cl ₂	9.0 mg/Nm ³	6.2
			HCI	20.0 mg/Nm ³	14.3
		04/09/2019	Cl ₂	9.0 mg/Nm ³	6.3
32	Shed B2/12/24 Reaction Vessel	04/09/2019	HCI	20.0 mg/Nm ³	9.4
		04/09/2019	Cl ₂	9.0 mg/Nm ³	7.6
33	Shed C5/20/15 Chlorinator	04/09/2019	HCI	20.0 mg/Nm ³	9.7
34	Shed D Niro Spray dryer 45	10/00/0010	SPM	150.0 mg/Nm ³	75
35	Shed D Niro Spray dryer 50	12/09/2019	SPM	150.0 mg/Nm ³	68
36	Shed E 7/12/49 Spray Dryer	Not Running During Visit	SPM	150.0 mg/Nm ³	-
		04/09/2019	Cl ₂	9.0 mg/Nm ³	6.9
37	37 Shed F F6/1/15 Reaction Vessel	04/03/2013	HCI	20.0 mg/Nm ³	8.2
		Not Running	Cl ₂	9.0 mg/Nm ³	
38	Shed G 10/8/1 (receiver)	During Visit	HCI	20.0 mg/Nm ³	
		05/00/0010	Cl ₂	9.0 mg/Nm ³	7.3
39	Shed H H1/6/17 Chlorinator	05/09/2019	HCI	20.0 mg/Nm ³	12.4
	Shed K K-13/3/4 Final of Sulfuric	05/00/0010	SO2	2.0 kg/T	0.6
40	acid plant	05/09/2019	Acid Mist	50.0 mg/Nm ³	15.7
		05/00/0010	HBr		N.D.
41	Shed J15/09/25	05/09/2019	SO2	40 Mg/Nm ³	15.2
			SO2	40 Mg/Nm ³	14.8
42	Shed J12/01/42	05/09/2019	Cl ₂	9.0 mg/Nm ³	7.2
			HCI	20.0 mg/Nm ³	6.7
			SO ₂	40 Mg/Nm ³	16.4
43	Shed J12/03/36	05/09/2019	HCI	20.0 mg/Nm ³	10.6
1			Cl ₂	9.0 mg/Nm ³	7.8
44	Shed N Scrubber Fan N20/03/24	06/09/2019	HCI	20.0 mg/Nm ³	11.4
45	Shed N Scrubber Fan N20/02/41	06-09-2019	SO2	40 Mg/Nm ³	14.2

Lano

Rajkot

Ref. No.: 289/09/2019-20

Date : 30/09/2019

		Scrubber	r & Vents		
Sr. No.	Stack Details	Date of Sampling	Paramenter	Permissible Limits	Obtained Value (in mg/Nm ³ excep where specified)
tul North	Site				
			SPM	150.0 mg/Nm ³	
		Not Running	SO ₂	40.0 mg/Nm ³	-
46	Catalytic Incinerator of N-FDH Plant	During visit	NOx	25.0 mg/Nm ³	
			Formaldehyde	10.0 mg/Nm ³	-
47	PHIN Plant vessel	12-09-2019	Phosgene	0.1 ppm	N.D.
		12-09-2019	HCL	20 Mg/Nm ³	14.3
48	48 PHIN - II Plant		COCI2	0.1 ppm	N.D.
49	DCDPS Plant	12-09-2019	SO3		N.D.
50	DDS Plant	12-09-2019	NH ₃	175 Mg/Nm ³	45.2
51	SPIC II Plant	06-09-2019	SO3		N.D.
52	SPIC I Plant	06-09-2019	NH3	175 Mg/Nm ³	35.6
50		00.00.0010	NH ₃	175 Mg/Nm ³	25.7
53	SPIC IV Plant	06-09-2019	SO ₂	-	8.2
54	Furnace (Phosgene Plant New)	19-09-2019	РМ	150Mg/Nm ³	74
	Desta (Discourse Discitition)	10/00/2010	со	-	N.D.
55	Rector (Phosgene Plant New)	19/09/2019	Phosgene	0.1ppm	N.D.

Rajkol

Royal Environment Auditing & Consultancy Service

699 Analyst

તા. 🔌 -૦૯-૨૦૧૭.	કાર્ચપાલક ઈજનેરશ્રીની કરોરી દમણગંગા નહેર વિશાખા વિભાગ નં.3, નેશનલ ઠાઈવે નં.૮, બલીઠા (વાપી) ફોન નં.૦૨૬૦-૨૪૦૧૩૧૨ ફેક્સ નં.૦૨૬૦-૨૪૨૩૪૬૨ ઈ-મેલ:- <u>dcdd3vapi@yathoo.com</u>
પ્રતિ, અધિક્ષક ઈજનેરશ્રી, દમણગંગા યોજના વર્તુળ, વલસાડ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

વિષય :- અતુલ લીમીટેડ, અતુલ દ્વારા ઔદ્યોગિક દેતુ માટે પાર નદીમાંથી ઉપાડવામાં આવતા પાણીના

દરો/જથ્થા સંબંધે તા.૨૭-૦૧-૨૦૧૬ ની અસરથી કરારનામું કરવા બાબત.

સંદર્ભ:-

(૧) સરકારશ્રીના ઠરાવ ક્રમાંક:- ડબલ્યુટીઆર/૧૬/૨૦૧૬/૬૯૧૯૪૨/પી, તા.૨૦-૦૭-૨૦૧૭. (૨) વર્તુળ કચેરીના પત્રાંક:- ડીએમએન/પીબી/પારનદી-અતુલ/૧૮૬૯, તા.૦૮-૦૮-૨૦૧૭.

ઉપરોક્ત વિષયના અનુસંધાનમાં સવિનય જણાવવાનું કે મે. અતુલ લીમીટેડ, અતુલને ઔદ્યોગિક હેતુ માટે પાર નદીમાંથી દૈનિક ૧૮૧૮૪ કિલોલીટર (4.0 MGD) i.e. વાર્ષિક ૬૬૩૭૧૬૦ કિલોલીટર પાણીનો જથ્થો ઉપાડવા માટે કરવામાં આવેલ કરારનામાની મુદત પૂર્ણ થતાં સરકારશ્રીના સંદર્ભ(૧) થી મંજુર થયેલ નવા કરારનામાં ઉપર <u>તા.૧૩-૦૯-૨૦૧૭</u> ના રોજ (તા.૨૭-૦૧-૨૦૧૬ ની પશ્વાદવર્તી અસરથી) સહી સિક્કા કરવામાં આવેલ છે. જે સંદર્ભ(૧) થી દર્શાવેલ સરકારશ્રીના ઠરાવમાં આપેલ સુચના મુજબ છે. ઉક્ત કરારનામાની બે નકલ તેમજ કરેલ કરારનામા બાબતે આપવાનું રહેતું પ્રમાણપત્ર આ સાથે સાદર કરવામાં આવે છે. જે આપ સાહેબને સુવિદિત થાય.

બિડાણ:- (૧) પ્રમાણપત્ર (૨) કરારનામાની નકલ

(એન.કે.સારદ્રાજ) કાર્યપાલક ઈજનેર દમણગંગા નદેર વિશાખા વિભાગ નં.૩ બલીઠા (વાપી)

બકલ રવાના પ્રતિ નાયબ કાર્યપાલક ઈજનેરશ્રી દમણગંગા નહેર પેટાવિભાગ નં.૧૧, પારડી તરફ જાણ તેમજ જરૂરી કાર્યવાહી સારૂં. બિડાણ:- કરારનામાની નકલ.

ન્નકલ રવાના પ્રતિ, શ્રી બી.એન. મોઠનન, હ્યેલ ટાઇમ ડાયરેકટર, અતુલ લિમિટેડ, અતુલ, તા. પારડી, જિ. વલસાડ. તરફ જાણ તેમજ જરૂરી કાર્યવાઠી થવા સારૂં. બિડાણ:- કરારનામાની નકલ.

પાણી અને વાણી સાચવીને વાપરો.

AGREEMENT

Period: - 27-01-2016 to 26-01-2011

ATUL LIMITED

ATUL.

Permission for withdrawal of Water

For Industrial Purpose From Par River @ Village Atul

0)

शु४रात गुजरात GUJARAT

200 2013 273 Sul al જે સાંધણ સાથે ઉપયા 24,8219 arizo વયાણ આચો. 659 22 m 22 m 2141 23min 41 એમ, એન, ધીરા સ્ટાંપ પેન્ડર લઇ જનારની સહી 61. 01. 98/64 2CIIN ખંડ્રજી ટેકરાં, વલસંગ

AGREEMENT

Agreement for supply of water to ATUL LIMITED, ATUL, TALUKA & DIST. VALSAD, 396020 for drawl of 4 M.G.D(18184 Cubic meter/ kilo liters per day)i.e 6637160 cubic meter per year water from Notified 'RIVER PAR' IN Dist.Valsad for Industrial purpose.

This agreement made on this day of $\underline{i3}^{th}S = \underline{5t} \cdot 2017$ between ATUL LIMITED, ATUL through its Authorized Representative Shri B.N.Mohanan Whole Time Director, Atul Limited, Atul/ hereinafter in this agreement called the "Licencee" Which expression shall, unless context otherwise requires and admits, be deemed to include its administrators, executors, successors and assigns) having its regulatored office and the time of the successors and assigns) having its regulatored office and the time of the successors and assigns) having its regulatored office and the time of the successors and assigns) having its regulatored office and the time of the successors and assigns) having its regulatored office and the time of the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and assigns having its regulatored office and the successors and successors and assigns having its regulatored office and the successors and successors and assigns having its regulatored office and the successors and successors and assigns having its regulatored office and the successors and successors are associated associated associated associated associated associated associat

executors, successors and assigns) having its registered office at Atal House, G I Patel Marg,

Executive Engineer, D'ganga Canal Distry Dn. No. 3, BALITHA (VAPI)

PAGE 1 OF 1

Whole-time Director

BE 850803

Navrangpura Ahmedabad 380014 of the one part and the Governor of the State of Gujarat through Executive Engineer, Damanganga Canal Distributory Division No. 3, Balitha (Vapi). in office (herein after called as "The Government" which expression shall, unless context otherwise requires and admits, be deemed to include his successors in office and assigns)of the other part.

WHERE AS the Licencee has applied to the Government for permission to draw water from 'RIVER PAR' Notified vide Notification No. GH/J/41/76/INF-1075/3/P Dated 13.08.1976 published in Government Gazette on dated 07.10.1976 at drawl point Atul Limited Pump house on river Par for manufacture of Chemical Products(type-of production in detail-for e.g. 'Viscos Yam/Beverages.' pve/paper etc.') for purpose of Non-Agricultural Industrial (Industrial/Drinking)for use of its proposed/existing Plant at Atul Limited Atul Ta.& Dist. Vaisad(Official Name of licencee and Detailed Location of the Production unit/Institution).

AND WHEREAS the Government has, under its sanction letter No. Narmada, Water Resources, Water Supply & Kalpsar Department Resolution No.WTR/1092/22319/14/Part.3/P dated 25.01.2006 & Resolution No.WTR/16/2016/691942/P, dated:- 20-07-2017, agreed to grant such permission on the terms and conditions here-in-after appearing and as mentioned in the Government of Gujarat; Narmada, Water Resources, Water Supply & Kalpsar Department Resolution No.WTR/2005/41/P, dated 03/02/2007.

NOW THIS INDENTURE WITNESS and the parties here to hereby agree as follows:

(1) The Government hereby grants the permission to the Licencee to draw water from NOTIFIED RIVER PAR at following drawl point on the terms and conditions hereafter appearing. (1) At Atal Weir, village Atul ou river Par. (For the period upto water evailable in Atul weir) (2) At Pardi checkwall, village Atul on river Par. (For a period during which water is not available at Atul weir). This period will be decided every year by the Superintending Engineer, depending upon the availability of water in Atul weir.) The licencee shall construct and maintain the head works for drawing water from River Par and other required structures at suitable places as approved by the Government or its authorised officer at their risk & cost and shall provide all ancillary arrangements that may be required in connection with the drawing and conveying the water required for the use of Licencee near village Atul & Haria in Valsad Taluka of Valsad District. The intake structures shall be epen to inspection by the Government and the Government shall exercise necessary control.

NALE

Executive Engineer, S'ganga Canal Distry Dn. No. 3,

PAGE 2 OF 11

Provident - Infrastructure Unit

B. N. Mohanan

Whole-time Director

(2) The licencee shall install and maintain at its own cost, the pipeline and other requirements required for conveying water from the source of supply to the place of actual use. The expenditure towards the drawl of water i.e. installation of pumps, pipelines, meters and all other requirements in connection with the drawl of water, shall be borne by the Licencee.

(3) The licencee shall draw water directly from River Par to the extent of 18184 Cubic meters/ kilo liters per day throughout the each financial year for the construction period and there after maximum up to 36368 Cubic meters/per day or less as may be required for the optimum plant capacity under operation from time to time. It would be permissible for the Licencee to increase the intake up to 18184 Cubic metres per day for one month during the construction period and thereafter maximum up to 36368. Cubic metres per day for one month during the construction period and thereafter maximum up to 36368. Cubic metres per day for a period not exceeding one to Four month on available natural flow in river Par without any water supply from another sources with the approval of the Narmada, Water Resources, Water Supply & Kalpsar Department, to facilitate the filling of the Licencee reservoir before cut trail flow in river Par or dry season in each year. closure of the canal.

(4) (1) The licencee agrees to bear the cost herein below detailed that may be apportioned between the beneficiaries on prorata basis of their demands, on account of remodeling that may take place to meet the total requirements of the beneficiaries in case.

Supply of water to him is from River Par. The cost of remodeling shall include cost of preparation of plans, estimates and scrutiny thereof, etc. as per Appendix-I to the Gujarat Public Works Department manual volume I & II. The total cost of strengthening and remodeling of _______ canal is estimated to be Rupees _______ at present, out of which the share of the Licencee is estimated to be Rupees _______ The licencee shall deposit this amount of Rupees _______ in advance to enable the Government to take up the entire work on priority basis. The licencee shall pay the balance amount on the basis of actual immediately after the work is completed.

(4)

(2)The licencee shall be allowed to draw the water only after he is paid up the apportioned cost referred to in sub-clause 4(1) above, in advance.

Nabr

Executive Engineer, D'ganga Canal Distry Dn. No. 3, BALITKA (VAPI)

B. N. Mohanan Whole-time Director & President - Infrastructure Unit

PAGE 3 OF 11

- (5) (i). The licencee shall pay a licence fee at the rate of Rs. 501/- per year or at as such rates as may be fixed by the Government from time to time in that behalf during the subsistence as the agreement.
- (5) (ii). The demand of 18184 kiloliters per day of water for the each financial year. The licencee should obtain the approval of their yearly demand of each financial year. Every year before 1st April, otherwise the earlier approved quantity of water will be considered for the next financial year also & security deposit will be recovered for earlier approved demand. The licensee shall draw water directly from up stream of Atul weir at Atul, pump house on notified Par River at near village Atul of Valsad taluka to the extent of total 18184 (Kiloliters) Cubic metres per day for the period of each financial year.
- (5) (iii). No penalty will charged to the licensee if utilized quantity of water upto 25 % less or more then the reserved quantity of water. Penalty will be charged at the rate of 25% addition to normal water charges for quantity utilized by the unit less than 75% of reserved quantity of water without prior approval. In case where unit will utilized 25% or more quantity of water than the reserved the excess utilized quantity will be charge at the rate 25% addition to normal water charge.
- (6) The licencee shall pay for the quantity of water drawn, as measured in the manner provided under clause-7 below, at the rates and terms given below.
- (i) The Licencee shall pay the water charges for the quantity of water actually drawn as per the rates mentioned in the Government of Gujarat, Narmada, Water Resources, Water supply & Kalpsar Department Resolution No. WTR/2005/41/P dated,3-2-2007, effective from 01-01-2007 subject to fulfillment of conditions laid down in above mentioned resolution as well as conditions mentioned in sanction letter.
- (ii) The interest rates, penalty and all other charges/conditions mentioned in above mentioned Government of Gujarat, Narmada, Water Resources, Water Supply & Kalpsar Department, resolution No. WTR/2005/41/P, dated, 03-02-2007 shall be applicable and the licencee shall have to fulfill it.
- (iii) The above rates so fixed shall be subject to upward revision that may be made by the government in Narmada, Water Resources, Water Supply & Kalpsar Department from time to time in connection with water reserved and used for irrigation & non-irrigation

Executive Engineer, B'ganga Canal Distry Dn. No. 3, BALITHA (VAPI)

PAGE 4 OF 11

B. N. Mohanan Whole-time Director

Precident - Infrastructure Unit /

purposes. The rates fixed by the government shall be exclusive of cost of pumping, conveying etc. of water from the source.

- (iv) The charges as mentioned in sub clause-(i), above, shall be paid in advance by the Licencee before 10th day of each month following the month to which water charges pertains calculated as per the estimated requirement of water for the month. The bills as per actual payment of charges shall be prepared every month and served on the Licencee for payment thereof.
- (v) If the arrears of water charges referred to above accumulate for more than six months, the Government shall be at liberty to ask the licencee to stop drawl of water from the source and it shall be incumbent on the licencee to do so and in case of default, Government may take action to stop entry into the intake without any notice at the risk and cost of the licencee.
- (vi) If the Scientific measuring devices referred to in Clause-7 below, ceases to function or goes out of order in any month, the charges leviable in respect of that month shall be calculated on the basis of the average quantity of water drawn in the preceding three months or the quantity of water drawn in the same month of preceding year whichever is higher, provided that there has been no increase in the capacity of the plant/plants and the corresponding water requirements thereof during such year. If the capacity of the Plant/Plants has increased during such year, the water drawn shall be correspondingly estimated on the prorata basis. For the purpose of such estimate, the licencee shall furnish necessary data to the Executive Engineer concerned whose decision in the matter shall be final and binding to the licencee.
- (7) A suitable scientific measuring device shall be installed by the Licencee at suitable place in consultation with and with the approval of the Executive Engineer, Damanganga Canal Distributory Division No. 3, Balitha (Vapi) or his successor in office for measuring the quantity of water drawn by the Licencee.

The cost of measuring device, its installation and maintenance shall be borne by the Licencee. The measurement of the quantity of water drawn shall be taken jointly by the representative of the Government and of the Licencee. The measuring device shall be open for inspection by the concerned authorities.

(8) If the measuring device referred to in the clause-7, ceases to function or goes out of order, the Licencee shall, as and when such occasion arises, get necessary repairs

Sir

Executive Engineer, D'ganga Canal Distry Dn. No. 3, DAT ITUA (MADI)

PAGE 3 OF 11

B. N. Mohanan Whole-time Director

thereto carried out and restore the same to its original position or replace the same if so found necessary and as required by the Executive Engineer concerned within one month of its going out of order.

(9) The water drawn by the Licencee from the River Par shall be used only for the purpose for which permission to use the same is granted to him and as such the use shall be confined to the legitimate requirements of the Licencee.

The Licencee shall not draw water from the above mentioned sources for sale or supply to any person, firm or Company or other body by whatever name called.

- (10) (1) The grant of the permission to draw water under this agreement shall not mean any assurance to the Licencee regarding availability of quantity of water as per the requirements of the Licencee and regarding the quality of water. The Licencee shall not be entitled to any compensation for non availability of quantity of water on account of reasons beyond the control of the government/department. It shall be incumbent on the licencee to make its own arrangement to meet its requirement of water during the periods the canal is closed on account of repairs or accidental breach.
- (10) (2) If the special measures for conserving the water and reducing the losses of evaporation and seepage are found necessary in scarcity years, the expenses on this account shall be borne by the Licencee.
- (11) The permission granted in this agreement shall not in any manner prejudicially affect the existing water rights vested in the riparian owners nor shall it any way prejudice the rights of government to launch or implement any new scheme or schemes in public interest in future in connection with the water of Notified River Par of the (Name of Office of division) from which Licencee is permitted to draw water.
- (12) The drawl of water under this agreement by the licencee shall be subject to the provisions of the Gujarat Irrigation and Drainage Act, 2013, Gujarat Irrigation and Drainage Rules, 2014 and other rules made there under as amended from time to time and orders that may be passed or issued in that behalf by the Government / Department from time to time.
- (13) The Licencee shall at all reasonable times allow the officers of the government to inspect the work sites and records regarding quantity of water drawn, utilized and supplied to other parties, if any, and to take copy of the records.

North

Executive Engineer, Siganga Canal Distry Dn. No. 3, BALITHA (VAPI)

PAGE 6 OF 11

Windle-time Director

(14) An amount equivalent to three months proveiling water charges shall be initially deposited by the licencee with the Executive Engineer, Damanganga Canal Distributory Division No.3, Balitha (Vapi) or his successor in the office as security deposit for the due performance of the terms of this agreement. The deposit shall be in the form of Fixed Deposit in any Nationalized Bank/schedule bank and shall be pledged by the licencee in favour of the Executive Engineer, Damanganga Canal Distributory: Division No.3, Balitha (Vapi) or his successor in office. The enhancement in amount of security deposit due to yearly increase in the rate of water charges shall also be deposited by the Licencee. Such Fixed Deposit must continue in force during entire period of this agreement without any break.

0.

- (14) An amount equivalent to three months prevailing water charges shall be initially deposited by the licencee with the Executive Engineer, Damanganga Canal Distributory Division No. 3, Balitha (Vapi)or his successor in the office as security deposit for the due performance of the terms of this agreement. The deposit shall be in the form of Bank Guarantee. The enhancement in amount of security deposit due to yearly increase in the rate of water charges shall also be deposited by the Licences. In the case of acceptance of Bank Guarantee in form of a Security Deposit, it must he issued from Nationalized Bank based in Gujarat State only and shall be pledged by the licences in favour of the Executive Engineer, Damangange Canai Distributory Division No. 3, Balitha (Vapi) or his successor in office. Such Bank Guarantee must continue in force during entire period of this agreement without any break.
- (15) The Executive Engineer, Damanganga Canal Distributory Division No. 3, Balitha (Vapi) shall dispose of all matters pertaining to this agreement subject and falling within his purview subject to decision that may be taken in appeal before the Superintending Engineer, Damanganga Project Circle Valsad in the matter and the decision of the Superintending Engineer in the matter shall be final.

los

Executive Engineer, Ogange Canal Distry On. Vo. J., SALITHA (VAPI) Who'e-time Director President - Infrastructure Unit

PAGE 7 OF 11

- (17) The Licencee shall arrange at its own cost the discharge of the trade waste and effluents after due treatment as may be permitted from time to time by the State Water Pollution Control Board safely in the place earmarked for the purpose in the vicinity in consultation and with the approval of Public Health Authority. In case where the Collector, Valsad District finds that the arrangement of discharge is not suitable, it shall be the duty of Licencee to make other suitable arrangement as may be directed by him. If the discharge of trade waste and effluent proves to be a source of nuisance to the field and or the population in the neighborhoods, the Licencee shall treat the same further in such manner as may be directed by the Government.
- (18) This agreement shall remain in force for a period of 5 (Five) years (<u>repeat in words</u> Years) from the date of execution 27.01.2016[or * from dated / 20 * applicable only where retrospective offect sanctioned] thereof unless terminated earlier, by the Licencee by giving six calendar month's notice in writing to the Government for the purpose. The Licencee shall not be eligible for any compensation on account of such premature termination.
- (19) The Government may allow the drawl of water according to the terms stated in this agreement after the expiry of the agreement on receipt of a request to that effect from the Licencee at least six month before the expiry of the period of this agreement.
- (20) The Licencee shall bear all the legal charges, stamp duty, registration fees and translation charges and all other charges and expenses incurred in connection with this presents.
- (21) The Government shall be entitled to terminate this agreement upon serving the Licencee with a notice of 1 month(One Month) for breach of any of the terms and conditions of this agreement or in the event the Licencee fails to pay any sum due to the Government under this agreement. The Licencee shall not be eligible to claim any compensation from the Government on account of withdrawing the facility of drawl of water as a result of premature termination of the agreement or even otherwise. Without prejudice to any right of the Government to proceed in accordance with the relevant clauses/rules No.6(v) to recover such sums due from the Licencee, the security deposits shall be forfeited. Any drawl of water from the River Par (Location of clause) after the expiry of the period of the notice shall be treated as an unauthorised act and shall be subject to such penal charges as may be determined by the Government.

Executive Enginest, Digiting Canal Distry Dn. No. 3. BALITHA (VAPI)

PAGE 8 OF 11

B. N. Mohanan Whole-time Director & Prasident - Infrastructure Unit

- (22) Except as otherwise herein provided, all notices to be given and other actions to be taken on behalf of the Licencee shall be given or taken by the Whole time Director, Atul Limited, Atul or any other official authorized by the Licencee.
- (23) All sums and amount due and payable under this agreement shall be recoverable as arrears of land revenue under the Gujarat Land Revenue Code, 1879 without prejudice to any other rights or remedies available to the Government under any other case.
- (24) Both parties are bounded to follow all the condition mentioned in attached appendix in Gujarati vernacular.

IN WITNESS WHERE OF Mr. AMrs. AMrs. Shri_B.N.Mohanan Whole Time Director Atul Limited at village Haria in Atul Taluka Valsad of Valsad District duly authorized by the Board of Directors of the Licencee for and on behalf of the Licencee and Shri N.K. Bhardwaj Executive Engineer, Damanganga Canal Distributory Division No. 3, Balitha (Vapi) for and on behalf of the Governor of Gujarat have signed there presents and herein set their respective seals on the day and year first above written.

Sealed and delivered by W.K.Bhardwaj **Edutive** Engineer 5 Galal Distry. Division No. 3. Baitha (Vapi) of the Governor of PP科学有W esence of

CM. h. Kotech.

Signed, Scaled and delivered by LIM Mr. B.N. Mohanan Whole Time Director Atul Limited Atul For and on behalf of the Licencee In presence of

Witness (I)

Witness (I)

D.N. Materan

Witness (II)

A.R. Pillow Margur. Drilition

11

Witness (II)

PAGE O OF 11

अलायही शरतोः -

- (૧) પાણી લેવા સબબ સરકારશ્રી દ્વારા વખતો વખત નક્કી થતા પાણીના સામાન્ય દરો, સ્થાયીદરો તથા અન્ય દરો સરકારશ્રીને નક્કી કરેલ સમય મર્યાદામાં ફ્રેરજીયાત ભરવાના રહેશે.
- (૨) પરવાનેદાર સંસ્થા એકમે/પાણીનો ખરેખર ઉપાડ કરતાં પહેલાં સરકારશ્રી નક્કી કરે તે શરતો સાથેનું કરારનામું કરવાનું રહેશેકરારનામું કર્યા સિવાય કોઇપણ સંજોગોમાં પાણી ઉપાડી શકશે નાં તેમ થશે તો પાણી ઉપાડની તારીખથી દોઢા દરે આકારણી કરવામાં આવશે નહીં
 - (3) પરવાનેદાર સંસ્થાએ પાણી ઉપાડતાં પહેલાં પાણીનો જથ્થો માપવા મેઝરીંગ ડીવાઇસ તેના ખર્ચે અને જોખમે મુકવાનું રહેશેવોટર મીટર મુકથા સિવાય પાણી ઉપાડશે તો તેને અનધિકૃત ગણી . સામાન્ય દરોના દોઢા દરે આકારણી કરવામાં આવશે
- (૪) દરેક માસની પાણીની જરૂરીયાત મુજબના સામાન્ય દરો અને સ્થાયી દરો દર માસની દસમી તારીખ પઢેલાં આગોતરા ભરવાના રહેશેસ્થાયી દરો પાણી ઉપાડે કે ન ઉપાડે તો પણ મંજૂર .કરેલ જથ્થા ઉપર મંજૂરીની તારીખથી લેવાના રહેશે
- (૫) પરવાનેદાર સંસ્થાએ પોતાને જોઇતો એક વર્ષના સમયગાળા માટેનો પાણીનો જથ્થો દરેક વર્ષની ૧લી એપ્રિલ પહેલાં સંબંધિત અધીક્ષક ઇજનેરશ્રી પાસે લેખિતમાં મંજૂર કરાવવાનો રહેશેતેમ કરવામાં ચૂક થશે તો એટલે કે પહેલી એપ્રિલ પછી જો વાર્ષિક જથ્થો મંજૂર કરાવવામાં આવશે અથવા પહેલી એપ્રિલ પહેલાં જે તે વર્ષનો આરક્ષિત જથ્થો લેખિતમાં મંજૂર કરાવવામાં નહીં આવે તો સ્થાયીદરો પાણી ઉપાડે કે ન ઉપાડે તો પણ સરકારે મૂળ મંજૂર કરેલ જથ્થા ઉપર લેવામાં આવશે તથા આ બાબતે નાણાક્રિય વળતરનો કોઇ દાવો સ્વીકારવામાં આવશે નહીં.
- (5) બિલની તારીખથી બે માસમાં પાણીનાં નાણાં નહીં ભરાય તો સરકારશ્રી દવારા વખતો વખતના નકકી થતા દરોએ વ્યાજ અને સર્વિસ ચાર્જ લેવામાં આવશેજો બિલના નાણાં છ માસમાં ચૂકવવામાં નફરીંં આવે તો પાણી પુરવઠો બંધ કરવામાં આવશે.
- (૭) પરવાનેદાર સંસ્થાને અપાયેલ મંજૂરી. આ વિભાગના જે તે વખતના નિયમો, ઠરાવોની જોગવાઇઓ, મુંબઇ સિંચાઇ અધિનિયમન ની જોગવાઇઓ તથા ગુજરાત નઢેર નિયમો ૧૮૭૯-ક-ની જોગવાઇઓને આધિન રઠેશે અને તે નિયમો પરવાનેદાર સંસ્થાને બંધનકર્તા ૧૯૬૨૨ઠેશે.
- (૮) પરવાનેદાર સંસ્થાને જે સ્થળેથી પાણી લેવા મંજૂરી અપાચેલ હોય, તે સ્થળેથી મંજૂરી મુજબનો પૂરતો પાણીનો જથ્થો ના મળે કે અપુરતો મળે તો તેવા પ્રસંગોએ અન્ય કોઇ સ્થળમાંથી પાણી છોડવામાં આવશે નહીં તથા અછતના વર્ષમાં પાણીની ઉપલબ્ધિ મુજબ પરવાનેદાર સંસ્થાની પાણીની જરૂરિયાતના જથ્થામાં કાપ મુકવામાં આવશેઆ અંગે વળતરનો કોઇ દાવો . સ્વીકારવામાં આવશે નહીં.

Executive Engineer, J'ganga Canal Distry Dn. No. 3, BALITHA (VAPI)

PAGE 10 OF 11

3. N. Mohanan

3. M. Wohanan Whole-lime Director & President - Infrastructure Unit

- પરવાનેદાર સંસ્થાએ પાણીના પ્રાપ્તિ સ્થાનથી તેના ખરેખર ઉપયોગના સ્થળ સુધી પાણી લઇ (2) જવાની વ્યવસ્થા તથા તે માટે એચતથા પાઇપલાઇન વિગેરે તેના ખર્ચે અને .આર.સી.આર. કર જોખમેવાના રહેશેપાઇપલાઇન ક્રોસીંગ જો નહેરમાંથી પસાર કરવાની શાય તો નિયમોનુસાર .ડીપોઝીટ તેમજ ભાડુ આપવાનું થશે
 - (૧૦) બિલો બનાવતી વખતે પાણીના જથ્થાની માપણી અને આકારણી ઉપાડના સ્થળેથી આપવામાં આવતા જથ્શા મુજબ કરવાની રહેશે વપરાશકાર સંસ્થા કે એકમને મળેલ પાણીના જથ્શા .મુજબ नहीं.
- (૧૧) પાણી આપવા માટે નકેરોને રીમોડલીંગ, લાઇનીંગ કે સ્ટ્રેન્ધનીંગ કરવાની જરૂર જણાશે તો તે માટેનો પ્રમાણસરનો ખર્ચ પરવાનેદાર સંસ્થાએ ભોગવવાનો રહેશે.
- (१२) परवानेहार संस्था तेने मंकूर इरायेल पाण्डीना कथ्यामांथी सरझरश्रीनी परवानगी सिवाय अन्य કોઇને કોઇ કેતુ માટે પાણી આપી શકશે નહીં, કે મેળવેલ મંજૂરીના કેતુ સિવાચ અન્ય કેતુ માટે પાણી વાપરી શકશે નહીં.
- (૧૩) ભવિષ્યમાં નહેરમાં સિંચાઇ માટે પાણી બંધ કરવાના પ્રસંગોએ પરવાનેદાર સંસ્થાએ તેટલા સમયના સ્ટોરેજ માટેની વૈકલ્પિક વ્યવસ્થા તેના ખર્ચે અને જોખમે કરવાની રહેશે.
- (૧૪) પરવાનેદાર સંસ્થાએ પોતાની સંસ્થામાં પાણીના વપરાશ બાદ નીકળતા ગંદા પાણીને ગુજરાત પ્રદુષણ નિયંત્રણ બોર્ડની પરવાનગી મુજબ શુધ્ધિકરણ કરીને છોડવાનું રહેશે.

(શ્રી બી.એન.મોઠનન)

હીલરાઈમ ડાયરેક્ટર અતુલ લીમીટેડ यतुल

1.

O CANGA CHIM DISTRY DIV સાક્ષીઓ (9) Kolechn I INEI

મેન.કે.ભારદ્રાજ)

ર્ધપાલક ઇજનેર

બલીઠા (વાપી).

🧱 વિશાખા વિભાગ નં- 3

(5)

साक्षीओ N. Thatken (9)

(?) A.R. Pillar

ANNEXURE-VII MEDICAL CHECKUP REPORT

Sr No	EMP. ID	Display Name	Unit	Grade	Medical Check-up Date
1	27421	Dipak kumar Patel	U&S	6	12/04/2019 (EHM)
2	64010	Sanjay kumar Patel	U&S	5	18/09/2018 (PEM)
3	1267	Krishna kant Panchal	U&S	4	19/03/2019 (EHM)
4	1644	Nishith kumar Gandhi	U&S	4	24/01/2018 (EHM)
5	61060	Bhavik Naik	U&S	4	20/03/2019 (EHM)
6	62083	Bhupesh Prajapati	U&S	4	05/03/2019 (EHM)
7	62130	Prashant Itekar	U&S	4	11/032019 (EHM)
8	63314	Trilok Kasvala	U&S	4	29/03/2019 (EHM)
9	63862	Ramkumar Raja	U&S	4	28/07/2018 (PEM)
10	62382	Viral Patel	U&S	4	11/03/2019 (EHM)
11	27221	Ritesh Patel	U&S	4	20/02/2019 (EHM)
12	33638	Jayanti patel	U&S	4	21/02/2019 (EHM)
13	33645	Sanjay Modi	U&S	4	22/02/2019 (EHM)
14	62229	Parmod Singh	U&S	4	11/03/2019 (EHM)
15	63388	Chintan Rawal	U&S	4	15/03/2019 (EHM)
16	64070	Joy Sarkar	U&S	4	17/12/2018 (PEM)
18	1860	Dharmesh Chaudhari	U&S	3	18/03/2019 (EHM)
19	5191	Hasmukh Patel	U&S	3	14/03/2019 (EHM)
20	6223	Nitin Naik	U&S	3	01/03/2019 (EHM)
21	6256	Khusalbhai Patel	U&S	3	15/03/2019 (EHM)
22	62914	Nimesh Kumar Soni	U&S	3	13/03/2019 (EHM)
25	6541	Abdulsamad Shaikh	U&S	3	15/03/2019 (EHM)
27	6561	Yashin Shaikh	U&S	3	12/03/2019 (EHM)
28	6562	Shashikant Patel	U&S	3	18/03/2019 (EHM)
30	63075	Dilip Zala	U&S	3	19/03/2019 (EHM)
31	62762	Premkant Tiwari	U&S	3	18/03/2019 (EHM)
32	62914	Nimesh Soni	U&S	3	13/03/2019 (EHM)
35	63096	Mohan Patel	U&S	3	13/03/2019 (EHM)
36	62606	Manesh patel	U&S	3	11/03/2019 (EHM)
37	6574	Kamlesh Ratod	U&S	3	19/02/2019 (EHM)
38	63743	Parixit Jadav	U&S	3	21/05/2018 (PEM)
39	63744	Vipul Karena	U&S	3	14/05/2018 (PEM)
40	63351	Sagar Sharma	U&S	3	12/02/2018 (EHM)
59	63769	Yatinkumar Patel	U&S	2	06/06/2018 (PEM)
62	64093	Viralkumar Prajapati	U&S	2	31/12/2018 (PEM)
63	64320	Kishorbhai Tandel	U&S	2	04/23/2019 (PHM)
65	62527	Divyesh Patel	U&S	2	11/02/2019 (PHM)
66	63041	Mayur Patel	U&S	2	01/01/2019 (PEM)
67	63204	Tejas Mistry	U&S	2	29/01/2019 (PHM)

68	63263	Rahul Ahire	U&S	2	08/02/2019 (PHM)
69	62915	Pankaj Lad	U&S	2	31/01/2019 (PHM)
70	63892	Pankaj Tandel	U&S	2	29/01/2019 (PHM)
71	63949	Nehul Patel	U&S	2	04/02/2019 (PHM)
72	64800	Ritesh Patel	U&S	2	29/06/2019 (PEM)
75	64210	Rahul Patel	U&S	2	22/04/2019 (PEM)
76	62911	Dilip Patel	U&S	2	12/02/2019 (PHM)
79	64794	Parimal Patel	U&S	2	31/08/2019 (PEM)
80	64502	Minesh Rathod	U&S	2	19/06/2019 (PEM)
84	64224	Harshiv Desai	U&S	GT	14/03/2019 (PEM)
85	64530	Rahul Gangajaliya	U&S	GT	13/06/2019 (PEM)
86	64229	Raj rajput	U&S	GT	22/03/2019 (PEM)
87	64548	Yash Bhavsar	U&S	GT	25/06/2019 (PEM)
88	64531	Sunny Patel	U&S	GT	18/06/2019 (PEM)
89	64528	Devarshi Trivedi	U&S	GT	13/06/2019 (PEM)
ABBF	REVIATION :				
1	EHM	Executive Health Monitoring			
2	PHM	Periodic Health Monitoring			
3	PEM	Pre-employment Health Mo	nitoring		

Laboratory Report

			LAB080055
Name	Mr Darshal V Desai	Report Date	06-12-2019
Age/Gender	32 Y/M	MR No	MR001804
Visit ID	OP092761		
Doctor	Vishal Mehta		
Test Date	06-12-2019 08:50	Lab ID No	LAB080055
Sample Date	06-12-2019 08:16	Specimen	Blood

Haematology

Test Description	Result	Units	Reference Range
CBC + DIFF - Complete Haemogram			
WBC - White Blood Cell Count	7.07	10^3uL	Normal 4.23 - 9.07
RBC - Red Blood Cell Count	5.08	10^6uL	Normal 4.63 - 6.08
HGB - Haemoglobin	15.60	g/dL	Normal 13.7 - 17.5
HCT - Haematocrit (PCV)	44.90	%	Normal 40.1 - 51.0
MCV - Mean Cell Volume	88.40	fL	Normal 79.0 - 92.2
MCH - Mean Cell Haemoglobin	30.70	pg	Normal 25.7 - 32.2
MCHC - Mean Cell Haemoglobin Concentration	34.70	g/aL	Normal 32.3 - 36.5
PLT - Platelet Count	263.00	10^3/uL	Normal 163 - 337
RDW-SD - RBC Distribution Width Standard Deviation	41.00	fL	Normal 35.1 - 43.9
RDW-CV - RBC Distribution Width Coefficient Variation	12.90	%	Normal 11.6 - 14.4
PDW - PLT Distribution Width	9.20	fL	
MPV - Mean Platelet Volume	9.10	fL	
P-LCR - PLT Large Cell Ratio	17.30	%	
PCT - Plateletcrit	0.24	%	
NEUT - Neutrophil Count	65.50	%	Normal 34.0 - 67.9
LYMPH - Lymphocyte Count	26.70	%	Normal 21.8 - 53.1
MONO - Monocyte Count	4.80 *	%	Normal 5.3 - 12.2
EO - Eosinophil Count	2.40	%	Normal 0.8 - 7.0
BASO - Basophil Count	0.60	%	Normal 0.2 - 1.2

Key: *=Abnormal Low, **=Critical Low, ***=Improbable Low, #=Abnormal High, ##=Critical High, ###=Improbable High **Haematology Analyzer :** Sysmex XS-800i (fully automated 5-part blood cell counter) [Transasia] **Biochemistry Analyzer :** Cobas C-111 (fully automated) [Roche]

> Lab Technician Mrs.Priti Desai

Lescui

Laboratory Report

Name	Mr Darshal V De	esai		Repo	rt Date	06-12-2019
Age/Gender	32 Y/M			MR N	0	MR001804
Visit ID	OP092761					
Doctor	Vishal Mehta					
		Bioc	hemistry	,		
Test Description		Result	Units	Reference Range		
FBS - Fasting Blood Sugar						
Specimen:Blood Lab ID No: LAB080056					Sample Date:12/ Test Date: 12/	
Blood Sugar - Fasting		94	mg/dL	Normal 70.0 - 110.0	0	
Lipid Profile Specimen:Serum Lab ID No: LAB080057					Sample Date:12/ Test Date: 12/6	
Total Cholesterol		179.81	mg/dL	Normal upto 250		/13 12.001 1
HDL Cholesterol		41.56	mg/dL	Normal 30.0 - 70.0		
Triglycerides		90.26	mg/dL	Normal 60.0 - 165		
VLDL Cholesterol		18.05	mg/dL	Normal 7.0 - 35.0		
LDL Cholesterol		120.2	mg/dL	Normal 50.0 - 190.0	0	
LDL/HDL Ratio		2.89		Normal Upto 3.0		
TC/HDL Ratio		4.33 #		Normal Upto 4.0		
Specimen:Serum Lab ID No: LAB080058					Sample Date:12/ Test Date: 12/6	
SGOT / AST		28.70	Units/L	Normal 5.0 - 40.0 [Limitations-interfer concentrations of S may lead to false re	Sulfasalazine Sul	
Specimen:Serum Lab ID No: LAB080059					Sample Date:12/ Test Date: 12/6	
SGPT / ALT		37.70	Units/L	Normal 5.0 - 40.0 [Limitations-interfer concentrations of S may lead to false re	Sulfasalazine Sulf	
Bilirubin (Serum) Specimen:Serum Lab ID No: LAB080060					Sample Date:12/ Test Date: 12/6	
Total Bilirubin		0.56	mg/dL	Normal 0.3 - 1.0		
Direct Bilirubin		0.30 #	Ŭ	Normal Upto 0.2		
Indirect Bilirubin		0.26		Normal Upto 0.8		
				-		

Key: *=Abnormal Low, **=Critical Low,***=Improbable Low, #=Abnormal High, ##=Critical High, ###=Improbable High **Haematology Analyzer :** Sysmex XS-800i (fully automated 5-part blood cell counter) [Transasia] **Biochemistry Analyzer :** Cobas C-111 (fully automated) [Roche]

> Lab Technician Mrs.Priti Desai

Heesen

Laboratory Report

			LAB080063
Name	Mr Darshal V Desai	Report Date	06-12-2019
Age/Gender	32 Y/M	MR No	MR001804
Visit ID	OP092761		
Doctor	Vishal Mehta		
Test Date	06-12-2019 15:27	Lab ID No	LAB080063
Sample Date	06-12-2019 08:16	Specimen	Urine

Microbiology

Test Description	Result	Units	Reference Range
Urine Routine And Microscopy			
Volume	30	ml	
Colour	Yellow		
Appearance	Clear		
рН	5.0		
Specific Gravity	1.030		
Protein (Albumin)	Negative	mg/dL	
Glucose	Negative	g/dL	
Ketone (Acetone)	Negative	mg/dL	
Bilirubin	Negative		
Blood	Negative		
Epithelial Cells	2 - 4	/hpf	
Pus Cells	1 - 2	/hpf	
RBCs	Absent	/hpf	
Crystals	Absent		
Amorphous	Absent		
Casts	Absent		
Yeast Cells	Absent	/hpf	
Mucous	Absent		
Bacteria	Nil	/hpf	

Key: *=Abnormal Low, **=Critical Low,***=Improbable Low, #=Abnormal High, ##=Critical High, ###=Improbable High **Haematology Analyzer :** Sysmex XS-800i (fully automated 5-part blood cell counter) [Transasia] **Biochemistry Analyzer :** Cobas C-111 (fully automated) [Roche]

> Lab Technician Mrs.Priti Desai

Leseu

ANNEXURE-VIII

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2322/04/2019-20

Date: 30/04/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Date of Monitoring : 24/04/2019

Sr.	L LOCATIONS L	Avg. Results in dB(A)	
No.		Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Prescribed Limits		75.0	70.0
01.	Near Main Guest House	68.9	56.1
02.	Near TSDF	66.2	60.3
03.	Wyeth colony	60.4	52.4
04.	Garm Panchayat Hall	69.5	55.1
05.	Main office building , North site	66.5	58.9
06.	ETP, West site	70.2	55.1
07.	Opposite Shed D, West site	68.9	55.9
08.	ETP, West site	68.7	56.3
09.	Near Haria water tank	64.5	55.2
10.	66KV	67.8	56.2

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make)

Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration Due on : 16/09/2019

Rajkot

Prodip. Analyst

Ref. No.: 2422/05/2019-20

Date: 31/05/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Date of Monitoring : 16/05/2019

Sr.	L LOCATIONS	Avg. Results in dB(A)	
No.		Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Prescribed Limits		75.0	70.0
01.	Near Main Guest House	65.3	55.5
02.	Near TSDF	65.9	61.3
03.	Wyeth colony	61.3	53.2
04.	Garm Panchayat Hall	70.2	56.2
05.	Main office building , North site	66.9	59.1
06.	ETP, West site	70.6	55.9
07.	Opposite Shed D, West site	68.9	55.4
08.	ETP, West site	69.3	57.3
09.	Near Haria water tank	65.1	56.8
10.	66KV	66.9	56.9

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make)

Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration Due on 16/09/2019

Rajkot

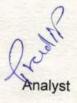
Prudip. Analyst

Ref. No.: 2522/06/2019-20

Date: 29/06/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited, Address : District : Valsad - 396 020.


Date of Monitoring : 14/06/2019

Sr. No.	LOCATIONIC	Avg. Results in dB(A)	
		Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Pres	cribed Limits	75.0	70.0
01.	Near Main Guest House	64.2	52.4
02.	Near TSDF	63.4	60.2
03.	Wyeth colony	62.1	52.4
04.	Garm Panchayat Hall	67.2	53.4
05.	Main office building , North site	67.2	57.3
06.	ETP, West site	69.8	52.8
07.	Opposite Shed D, West site	67.6	53.4
08.	ETP, West site	68.4	56.1
09.	Near Haria water tank	67.2	57.1
10.	66KV	65.2	58.3

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make)

Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration Due on : 16/09/2019

Rajkot

Ref. No.: 2622/07/2019-20

Date: 31/07/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Date of Monitoring : 26/07/2019

Sr.	LOCATIONS	Avg. Results in dB(A)	
No.		Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Prescribed Limits		75.0	70.0
01.	Near Main Guest House	58.6	50.2
02.	Near TSDF	62.3	59.8
03.	Wyeth colony	56.4	50.4
04.	Garm Panchayat Hall	65.7	52.7
05.	Main office building , North site	69.2	64.2
06.	ETP, West site	62.8	58.4
07.	Opposite Shed D, West site	61.3	52.1
08.	ETP, West site	67.4	55.4
09.	Near Haria water tank	58.7	54.2
10.	66KV	68.1	56.1

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make) Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration done on : 13/09/2018

Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email : royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2722/08/2019-20

Date: 31/08/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited,Address: District : Valsad - 396 020.

Date of Monitoring : 23/08/2019

Sr.		Avg. Res	ults in dB(A)
No.	LOCATIONS	Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Prescribed Limits		75.0	70.0
01.	Near Main Guest House	52.6	49.2
02.	Near TSDF	58.2	52.8
03.	Wyeth colony	40.2	35.4
04.	Garm Panchayat Hall	60.7	55.7
05.	Main office building , North site	62.2	58.6
06.	ETP, West site	59.3	53.2
07.	Opposite Shed D, West site	62.4	54.2
08.	ETP, West site	64.3	60.3
09.	Near Haria water tank	45.3	38.4
10.	66KV	63.2	54.8

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make)

Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration done on : 13/09/2018

521 ade Royal Environment Auditing & Consultancy Service

303-304, Shivalik-7, B/s Bal Adalat, Gondal Road, RAJKOT - 360 002. Ph. +91 281 2360695 Email ; royalenvironment@live.com admin@royalconsultancy.com

Ref. No.: 2822/09/2019-20

Date : 30/09/2019

REPORT OF NOISE LEVEL MEASUREMENT

Name of company : Atul Limited, Address : District : Valsad - 396 020.

Date of Monitoring : 27/09/2019

Sr.	LOCATIONS	Avg. Res	ults in dB(A)
No.	LOCATIONS	Day Time 6.00 AM - 10.00 PM	Night Time 10.00 PM - 6.00 AM
Prescribed Limits		75.0	70.0
01.	Near Main Guest House	55.3	51.2
02.	Near TSDF	62.4	59.8
03.	Wyeth colony	56.4	45.2
04,	Garm Panchayat Hall	60.1	58.6
05.	Main office building , North site	62.4	54.5
06.	ETP, West site	65.4	60.6
07.	Opposite Shed D, West site	62.8	58.4
08.	ETP, West site	67.2	59.5
09.	Near Haria water tank	57.6	55.3
10.	66KV	62.4	58.2

Instruments used : Sound level meter, Model : SL - 4030 (Lutron Make)

Range : A - 30 to 80 dB, B-50 to 100 dB,C-80 to 130 dB., Calibration done on : 1/08/2019

Royal Environment Auditing & Consultancy Service

ANNEXURE-IX TRAINING RECORDS

Training Record: Participant List

Subject: Workpluce Subery. Day: 01 FOCULTY: PARIMALSHAH & MIKESH CHEVALIDOLE: 26120129 Venue: Afril Club. Time: 05:00 cm 10 05:00 PM Mobile # Sign Business | Unit Site No Name Employee # 9340434939 Shubham Sharma 64655 BILLustic East 1 7874774447 BICUNSTIC 2 siddhaeth Makeshari 64364 Ecust 1/44D 9737177845 64365 East 3 Milan J. Gandharua BI / Caustic 4 8450551626 CO/shal-B west. Rehit Lukhung 64572 5 POLEnst. Mointenance NORTH 9601063230 KANDARP DESATE 64549 CP Small Par 1874456795 6 Porrest H Padd 200068 East 9919395534 CP-Eng. Fust 7 Ankit D. Bhatt 61171 EASE WRITE NEATLY IN BLOCK CAPITAL LETTERS. 8 2P. East 9984174423 200 Harshod. 2. late 1542 CP Engo 9727006740 Pishan 9 Kishen K. Surveying 63969 Fust 9978355944 V. Nnuil Vishv N. Naik ARIKilolab 10 81539 East Dot Kankay Kumor sharma 64091 Colshed-E 7405 888262 West 11 shid chF 8460384638 Ayinash Laur csiy 64780 Wist 12 Amitality Shel E 4064 907004 64705 West Amit Crubta 13 8460673400 (E)Atims 119.5 PH West 14 A. Rajput 64229 Kai Rakesh Bajapat 64228 CP Sulfagroup rast 9727170714 FB 15 Barun Shaw 64703 8777 594397 Barren. CP/Sulfa East 16 BI Ryorcinol North TOH6HOR SHA 17 Sugar Gondality 64492 7568637033 Fart 18 Devansh 64168 Kaushile Vasura North POT CNIL 8758016392 Gu 536 19 Bhavin Voglan 64541 Ussicial 9725282137 EAST 20 9584479613 North 21 Shubban Malze 64740 PO 14-2 Jignesh Churchen 64542 RE LIVIL Gast-7401777012 22 CP Indero-2 Anter S-Sthah Eart 9808579958 23 64395 ANDEP 24 25 26 27 28 29 30

FM07 | SOP L&D.04 | HR | Ver 02 | January 18, 2019

Subject: Workplace Sufety. Day: 01 Foculty: PARIMALSHAH & MIKESH CHEVALI Date: 16/10/19 Venue: Aful Club. Time: 08:00 cm 10 05:00 pm

No	Nome	Employee #	Business Unit	Site	Mobile #	Sign
1	Maush J shah	40966	Polymer-qu	North	9901080124	1y .:
2	Lay shyere	62382	PO-NETP	North	-	Juli
3	Kenti Shijege	64863	CP - Diunon	Fast	9978425751	Compt-
4	HARSHAD, C PRAJAPAT		co. SIDyus	East.	9898266767	H.C. Lant
5	Sanjar S. Modi		U25(114)	went	9825595517	Shoot
6	Francist Delvin	A STATE OF STREET	TET S. Acick	East	9926025160	frank -
7	GIAURAY AVIRAJA		POlymes	North	8154913602	Chausa
8	Aunal Putel	64552	BI Caughic	East	9998840062	Auney
9	Parkesta Sich,	63521	co pater	Fast	4-33318635	assin
10	Jar Prychun	63675	CP meloyant	Fayt	8866983898	Amil
11	Hemat in shak	900049	RALL East	East	9998045190	11m Shah
12	H. B. shah	64832	POINETP	North	8320037127	fil
13	Naters thread	61652	PONETP	NORth	878029374	Maine
14	Vishal Ragped	-63269	UP 159702	Feel	903346909)	A
15	Astoz Korodiya	GUUSS	BI	Past	9624699496	Addrey
16	Paras Gradhing	64556	PO-Mech	HO RTH	7567086500	teast
17	Jignesh Chenhan	64542	BI-CIVIL	Eust	7405377082	Felle
18	Joyesh Tank	the second se	CP-Ester	East	9737128841	- Fayty
19	Sohum Putel	63703	10.58	East	9998965451	-Sel
20	Golan Mustafa	62750	CO-SP	WEST	8905350084	and
21	Dinesh Jogterp	63666	CO(shed-N)	west	9601004862	D. Begin
22	Ajoy M. Vayhela	64783	Co (shed-D)	west	90 90 801 EE OE	2000/1
23	Donu. prepionte	(376)	BEFORT	East	8180502798	-Ven /2
24	nongares.		EP-2(P0)	North	9 (737892	11-50-
25	Patril kung	64631	EP-1 (100)	North	9773496713	Raly
26	Ratil Kuma Ravi 3 gyer	33581	1185-	East	990403331	Roger
27	111 - 10-					
28						
29						
30						

FM07 | 50P L&D.04 | HR | Ver 02 | January 18, 2019

Subject: Porocess Sufery Truining

01 Day:

Date: 27/11/2019

Faculty: Sufety-Teum Venue: Lewoning Centre.

Time: 08:00 cm to 05:00 PM

itu

No	Name	Employee #	Business Unit	Site	Mobile #	Sign
1	Devans . P. Patel	63898	CO/Amai. Lab	west	9726979880	D-P. Takel
2	Jeeran Jadhar	64924	POLAtul	North	9672472851	Loelle
3	Bhupendra singh	63227	Co/ Prod	west	7405099310	
4	Deepak Nale	64916	po/Aful	North	9702049438	
5	Gauren Vaidza	64417	POIRED	North	9537328512	Graid 2
6	VYAS RAJ J.	64602	COIRLD	WEST	\$160932689	Lyg
7	Suby Rutendau p	63896	col(ac)	WEST	73838937	alu
8	Rushikesh p	63963	AR-12L.	East	9518736789	ARasn'
9	Abuind p. Shekhaw	62345	AR-RSD	East	9974952855	Adrelf
10	- 0	63856	AR-RZD	cont	8382702751	Nago
11	Soni Kevin H.	64050	CP-Bood.	Eust.	8001770471	freez.
12	- iam chouch hay		CO.R+P	West	9913247867	A.J.
13	Toto Automidi	1675	CO/R8.P.	West.	9998986984	0 1 -
14	TUNSIT M. Chaure	61649	Co / weet	ules+	7984877329	Matu
15	- MO. Machine 2	63377	Co heest	west	769 3496162	MoRani
1	- A MILES OF PAFME		415	west	372689336r	Dhut
1	Crow10013 40000	500065	рю		9924753292	Topic
_	Darwije II Monsay	62743	03	West	44 62823829	Sahip
1	in shall it. H. shall		CP	East	8197620159	
_	O vistoon Der	64930	BI	East	9616101454	
-	1 Sanket Kulavad	× 66932	CP	Eyst	9724775647	Fresh
	2					
+	23					
1		-				
-	25				1	
	27		-			
	28	-			1.1.1	
-	29					
	30	-				
		_				

FM07 | SOP L&D.04 | HR | Ver 02 | January 18, 2019

atul

Ξαςι	ilty:	Safety Teu	5		Date: 2	7/11/20	019
/ent	le:	Learning Ce	mtoe.		Time: 08	or cum to	os imp
	No	Name	Employee #	Business Unit	Site	Mobile #	Sign
	1	Jignesh G. Pares.	63835	BI-CETP	Ecist.		Ipat
	2	Rojnikant. A. Potel	63798	BT. CETP	East.		1x h
e	3	Indroyeet Kik	64778	13 In Countic			abojee
	4	Shubhan Dukay	64627	BI- Constic	a characteristic contracteristic contracterist		Que
	5	Samat Saha	64904	BI - Anisole	East		The
	6	Aushing Rutel	64059	CO-SIB	East		GARDAY
SS.	7	Tusher Bhunderi		po-ep=	North		THE A
TER	8	Murshid Almand	63995	CO-SID	Fast		Muched
LETT	9	Devaryh chautron		BI-Ryorcing	-		Franker
	10	Sushil Kumas	64705	CP- MPP	East		Gushil
CAPITAL	11	Hernal M Shah	900049	CO-RACL	East		Hm Shach
	12	Amarish Modu	63945	AR- Kito lab	East		Ausi
CK	13	Kamlesh B. Petu	63392	AR-RED	East		Derstates
BLOCK	14	Amieit Gr. Patel	61337	AR-ROD	Fust		Apaty
	15	Moheen, B-Ruter	63096	power 19 lent	West		M BOOR
EATLY IN	16	Noeresh & wish	10220	ARomatics			(Decel-
EAT	17	5			1.1.1		wers -
Z	18			1			
WRITE	19						
1	20						
ASE	21						
PLEA	22						
-	23						
	24						
	25						
	26						
	27						
	28						
	29						
	30						

alul

Training Record: Participant List

21

Subject: CARRELE-2 Solvery Truining Day: 01 Faculty: PARIMAL SHAH Date: 12/12/19 Venue: ECC, East Sife Time: 08:00 am 10/2:00 pm

	No	Name	Employee #	Business Unit	Site	Mobile #	Sign
				BI Reso	022 4452		et kler
-	1	Chiman 13 Poter	5944	BI Resu	in the second second		SBROMA
-	2	Jiran. B. Raturd			East site		Cali
1	3	Patil Tushux R	64965	CO Power Plant	Q 2-2 2116/5		T. Drugter J
-	4	Eps D Mosting	63204	Boltes URS	TELFILL CONTRACTOR OF A DECK		After
1	5	Bhood Al. latet	6319	-Biledon	Estsite		20
1	6	RUHUL .K. Pater	63914	chium	East site		Smi.
HS.	7	Symil. M. Patel	51728	E Por	~	_	O.P.B.M
	8	Orvyesh 1. Patet	52875	B1-Anaven	East side		De
ц I	9	Dingang m. Retel	52877	11	11		
	10	Wilesh 1. Sebani	64711	CP	East Site		VillSerter 1
	11	Vaseria Hasendou c.	64957	BI	11		
	12	Nayaky APesh. J.	64954	BI-Reso	East		Araey-204
_	13	Vinuy Kumur P. Rold	64964	co west			any P.Rote
	14	Vasava Rahul R	64959	10	Fast		Veuand R.P.
m	15	Navnchandschat	and the second se	BI	Est'		NCPUTH
	16	Volund Harsh R.	52873	BI-Cours	East.		Vatane
	17	Minesh S. Rupped	64502		nt west-site		Rathedme
11	18	, and the second	64968	Co-west		× 4	Flat
-	10	Almas T. LAL	6264	CPER	Esta	>	(leter
F	20	C. Ili hulle	64958	BE	EST		S.K. Vagery
	-		5681	ce	puther		- V Tunder
5 4	21	Chrigen V Funder		co	west		Bayot
	22	Jigneshkumer B. Norker	62684	CP	Fast		TCP
4	23	Jayen C Patel		CP/MBP	East		P
-	24	Prifesn. B. Rital	64320	USPH			Torndol, K.V.
-	25	Tundel Kishor-V.	63764	VISTRIH			7. R. Poter
-	26	Yatin. R. Parel	64960	BI	Forst		Villey
-	27	Villas R. Both	64963	CO	west sait		
-	28	Ratel Kevin P					KP
2	29	Patel Fehil U	64962	Co	west suit		1
3	30	Patel Britesh N.	64962	0	west size		PNPatu.

FM07 | SOP L&D.04 | HR | Ver 02 | January 18, 2019

Subject: Grouele 2 Sofety Touining. Foculty: PARIMAL SHAH 01 Day: Date: 12/12/19 Time: 08:00 com to 12:00 PM Venue: ECC, Eust Site

	No	Name	Employee #	Business Unit	Site	Mobile #	Sign
Ī	1	Jigar P. Potel	64967	Co.	west site		Putel J.P
	2	Keten R. 4 condhi	6326	CPDnyt	Eastsite	9725136302	1200
	3	Dering B. Tindel	52878	BI. SACED	East site	7046554398	Detanols
	4	Jigar P. Patel Ketern R. gemelhi Dereng, B. Tandel Syman M. Maike	6345	DC.P.	Eact site	6345	mm
	5						
	6						1000
S.	7		2	1			
LETTERS	8						
ET	9						
	10						
TIC	11						
CAPITAL	12						
	13			L		1	
LO(14					C	
E E	15			1			
7	16			1.2.1			
NEATLY IN BLOCK	17						
NE	18						
TE	19						
WRITE	20						
						(C. 1997)	
PLEASE	22			1.000			
٩	23				1		
	24		1				
	25	1					
	26						
	27			1			
	28						
	29						
	30						

FM07 | SOP L&D.04 | HR | Ver 07 | January 18, 7619

Sub	ject:	New Employee	. Safet	y Inductor	۳M Day:	01	
ac	ultar	PAPIMAL S	LI A M		Date: 2	6/11/19	
		TAPIMAL S TR Confessence				:00 to 4	: ODPr
_	1	Name	Employee #	Business Unit	Site	Mobile #	Sign
	No		021 - 00	ABL, Ambernach	Ambernah	9773562840	5
	1	Jitendres & Chavon		a start was a second to the second second	North	122/022880	R
	2	Renish Rampusiya	64 921	PH, RED	East	9924775647	- OPEN
	3	Sanket Kalaradry	66932	CP. ATU		2228383265	Jusay
	4	Subarng Kawkig	64934	120	east	9665476951	auteu
	5	Tejaswini Nikam		AR	EAST	9904840354	0 0100
1	6	HITESH PANCHASARA		AB LIAMbernat	Ambernat	9892156622	Bul
i l	7	Anand Bhilave	210065		west	9 5 5 69 18670	Rou
LETTERS.	8	Masson d Rochul	81570	BI		9616101452	AUL
-	9	Vistony Der	64930	01	1-1124		00
	10						
	11						
	12					1.5.5.5.5.1	
	13						
	14						
	15						
	16						
	17					-	
	18	*					
	19						
	20						
	21						1.20
	22						
1	23						
	24	1					
	25				3.000		
1	26						
	27	14 J					
					201		

atul

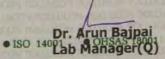
TEST REPORT

QR/5.10/01 Page: 1 of 1

Customer's Name and Address

ATUL LIMITED	Test Report No. : PLPL/181220045
P.O ATUL-396 020,	Issue Date : 21/01/2019
DIST:VALSAD.	Customer's Ref. : As Per Quotation

Description of Sample	:	Water Sample	Quantity/No. of Samples	
Sampling Date	:	20/12/2018	Protocol (Purpose)	: QC
Sample Receipt Date	:	20/12/2018	Lab ID	: PLPL/181220045
Packing/Seal	:	Sealed	Test of Parameters	: As Per Table
Date of Starting of Test	:	20/12/2018	Date of Completion	: 21/01/2019
Identification of Sample	:	Borewell near East	er plant, East Site, Atul Ltd #	The second se


RESULT TABLE

SR. NO.	PARAMETERS	UNIT	RESULT	ACCEPTABLE LIMIT AS PER IS 10500:2012	PERMISSIBLE LIMIT AS PER IS 10500:2012	TEST METHOD
1	Colour	Hazen	1	Max 5	Max 15	IS3025(P-4)83Re.02
2	pH	++.	6.7	6.5 - 8.5		IS3025(P-11)83Re.02
3	Suspended Solids	mg/L	24			IS3025(P-17)84Re.02
4	Total Dissolved Solids	mg/L	1894	Max 500	Max 2000	IS3025(P-16)84Re.02
5	Chloride as Cl	mg/L	920	Max 250	Max 1000	IS3025(P-32)88Re.99 Argentometric method
6	Oil & Grease	mg/L	ND ^{\$}	Max 0.5		APHA(22 nd Edi)5520 B
7	Phenolic Compound as C ₆ H ₅ OH	mg/L	ND ^{\$}	Max 0.001	Max 0.002	IS3025(P-43)92Re.03 4- Aminoantipyrine method
8	Hexavelant Chromium as Cr ⁺⁶	mg/L	ND ^{\$}	-		APHA(22 nd Edi)3500Cr B Colorimetric method
9	Sulphate as SO ₄	mg/L	384	Max 200	Max 400	IS 3025 (P-24)1986
10	Cyanide as CN	mg/L	ND ^{\$}	Max 0.05		APHA(22 nd Edi)4500CN E Colorimetric & Tritemetric
11	COD	mg/L	ND ^{\$}		-	APHA(22 nd Edi) 5220-B OPEN REFLUX
12	BOD (3 Days @ 27°C)	mg/L	ND ^{\$}		-	IS 3025 (P-44)1993
13	Sulphide as S	mg/L	ND ^{\$}	Max 0.05	1000 - 201 - T	APHA(22 nd Edi) 4500-S
14	Ammonical Nitrogen as NH ₃	mg/L	2.55	Max 0.5	-	IS:3025 (P-34) 1988 (Re.2003)
15	Total Hardness as CaCO ₃	mg/L	183	Max 200	Max 600	IS3025(P-21)84EDTARe.02
16	Total Alkalinity	mg/L	540	Max 200	Max 600	IS3025(P-23)86Re.03
17	Mercury as Hg	mg/L	ND ^{\$}	Max 0.001		AAS APHA(22 nd Edi)3112 B
18	Calcium as Ca	mg/L	56	Max 75	Max 200	IS3025(P-21)84EDTARe.02
19	Magnesium as Mg	mg/L	10.32	Max 30	Max 100	A TRANSPORT PARTY CARE
20	Fluoride as F	mg/L	1.05	Max 1.0	Max 1.5	APHA(22 nd Edi) 4500 F D SPANDS Method

Detection Limit : Oil & Grease : < 2 , Phenolic Compound : < 0.005, Hexavelent Chromium as Cr+6 : < 0.05, Cyanide as CN: < 0.0001, Sulphide as S: < 0.025, Mercury as Hg: < 0.001.

\$: Not Detected, # : Detail given by customer.

Dr. Maheshwari Solanki FSSAI Apgr. Scientist Recognised by MoEF, New Delhi Under Sec. 12 of Environmental (Protection) Act-1986 Schedule II auditor

• ISO 9001

"Pollucon House", Plot NOSE& Thoppenantiji maulajaat sodary) DRI saaditians snentionad averagaytri Farsan Mart, Navjivan Circle,Udhana Magdalla Road, Surat-395007, Gujarat, India.

061-2635750, 0261-2635751, 0261-2635775, 07016605174, WEB: www.polluconlab.com, E. mail: pollucon@gmail.com, info@polluconlab.com

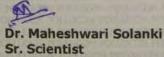
POLLUCON LABORATORIES PVT. LTD.

TEST REPORT

Customer's Name and Address :

100

QR/5.10/01 Page: 1 of 1


ATUL LIMITED	Test Report No.: PLPL/181225011
P.O ATUL-396 020,	Issue Date : 04/01/2019
DIST:VALSAD.	Customer's Ref.: Verbal

Description of Sample	:	Solid Sample	Quantity/No. of Samples	:	03 kg/01
Sampling By	:	Pollucon Lab.pvt.ltd.	Protocol (Purpose)	:	QC
Sample Receipt Date	:	25/12/2018	Lab ID	:	PLPL/181225011
Packing/Seal	:	Sealed	Test of Parameters	:	As Per Table
Date of Starting of Test	:	25/12/2018	Date of Completion	:	04/01/2019
Identification of Sample	:	NEAR BOILER PLANT	WEST SITE#		

RESU	LT T	ABLE	
 			-

SR. NO.	PARAMETERS	UNIT	RESULT	TEST METHOD
1	pH		7.87	IS:2720(P-26)1987
2	Chloride	mg/kg	34.31	Soil Manual of India
3	Sulphate	mg/kg	161	IS:2720(P-27)
4	Organic Matter	%	0.60	IS:2720(P-22)1972
5	Colour		Brownish	Soil Manual of India
6	Soil Texture		Sandy Loam	Soil Manual of India
7	Nature Moisture Content	%	9.35	IS:2720(P-2)
8	Bulk Density	gm/cm ³	1.18	Soil Manual of India
9	Mercury	mg/kg	Not Detected	USEPA 3050 B
10	Total Nitrogen	%	2.14	FCO 2018

: Detail given by customer.

FSSAI Approved Lab

Note: This report is subject to terms & conditions mentioned overleaf. • GPCB approved schedule II auditor • ISO 14001 Recognised by MoEF. New Delhi Under Sec. 12 of Environmental (Protection) Act-1986

"Pollucon House", Plot No. 5 & 6, Opp.Balaji Industrial Society, Old Shantinath Silk Mill Lane, Near Gaytri Farsan Mart, Navjivan Circle, Udhana Magdalla Road, Surat-395007, Gujarat, India.

Phone : 0261-2635750, 0261-2635751, 0261-2635775, 07016605174, WEB: www.polluconlab.com, E. mail: pollucon@gmail.com, info@polluconlab.com

Scanned by CamScanner

• ISO 9001

Dr. Arun Bajpai

Lab Manager(Q)

ATUL LIMITED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 2.14– Technical Specification of existing & proposed ESP

Sr. No.	Particulars	Units	Details					
А.	Existing							
1.	Type of ESP		Horizontal dry					
2.	Number of gas fields in series in direction of gas flow	Nos.	three					
3.	Number of electrical fields per boiler	Nos.	three					
4.	Type of Discharge Electrode		spiral					
5.	Type of Rapping		Tumbling hammer					
6.	Total no. of high voltage rectifier units installed	Nos.	three					
7.	Pressure drop across ESP (flange to flange)	mmwc	10 to 15					
8.	Ash hopper outlet flange elevation		3.0					
9.	No. of hoppers in ESP	Nos.	3					
B.	Proposed							
1.	Make		CETHAR					
2.	Fuels							
2.1	Fuel combinations - 1		100 % Imported coal					
2.2	Fuel combinations - 2		100 % Indian coal					
2.3	Fuel combinations - 3		50 % Indian coal + 50 % Imported coal					
2.4	Fuel combinations - 4		100 % Lignite (By adding limestone)					
2.5	Fuel combinations - 5		70 % Indian Coal + 30 % Lignite (By adding limestone)					
3.	Gas flow rate to ESP							
3.1	Fuel combinations - 1							
3.2	Fuel combinations - 2	m ³ /s	21.60					
3.3	Fuel combinations - 3	m /s	24.25					
3.4	Fuel combinations - 4		23.25					

ATUL LIMITED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Particulars	Units	Details
3.5	Fuel combinations - 5		22.60
4.	Gas temperature at inlet of ESP		
4.1	Fuel combinations - 1		
4.2	Fuel combinations - 2		
4.3	Fuel combinations - 3	^o C	140
4.4	Fuel combinations - 4		
4.5	Fuel combinations – 5		
5.	Inlet dust concentration		1
5.1	Fuel combinations - 1		22.15
5.2	Fuel combinations - 2		56.40
5.3	Fuel combinations - 3	gm/nm ³	32.30
5.4	Fuel combinations - 4	52.40	
5.5	Fuel combinations – 5	54.30	
6.	Outlet dust concentration with all fields in service	mg/nm ³	50
7.	General Data of ESP		1
7.1	Type of ESP		Horizontal flow dry type
7.2	Number of precipitators for boiler		1
7.3	Number of gas paths per Precipitator		1
7.4	Number of gas fields in series in direction of gas flow	No.	4
7.5	Number of electrical fields per boiler		4
7.6	Type of Discharge Electrode		spiral
7.7	Type of Rapping		Tumbling hammer
7.8	Total Collecting Area	m^2	3822
7.9	Total no. of high voltage rectifier	Nos.	4
7.10	Pressure drop across ESP (flange to flange)	mmwc	30
7.11	Ash hopper outlet flange elevation		3
7.12	No. of hoppers in ESP	Nos.	4

ANNEXURE-XII

20

2

AGREEMENT

BETWEEN

AMBUJA CEMENTS LIMITED (ACL) MUMBAI, INDIA

AND

ATUL LIMITED ATUL, GUJARAT

For

SUPPLY OF DRY FLY ASH

From

ATUL LIMITED, ATUL, VALSAD GUJARAT

Dated: 21.09.2019

1

This agreement is made at Mumbai on ____ day of October 2019 between:

M/s. Ambuja Cements Ltd (ACL), a company incorporated under the Companies Act, 1956, having its Corporate office at Elegant Business Park, MIDC Cross Road 'B', Off Andheri Kurla Road., Andheri (E), Mumbai 400059, and having its registered office at PO Ambujanagar- 362715, Taluka- Kodinar, Dist: Gir Somnath, Gujarat - India (hereinafter referred to as the "ACL or Purchaser" which expression shall unless excluded by or repugnant to the context includes its successors and/or permitted assigns) of the FIRST PART;

AND

Atul Limited, a company incorporated under the provisions of the company act, 1956 and having its registered office at Atul House, G I Patel Marg, Ahmedabad – 380014, Gujarat, India and manufacturing facility At Post Atul, Ta – Valsad, Dist. Valsad, Gujarat (herein referred to as "the Supplier" which expression shall, unless repugnant to the context of meaning thereof, be deemed to mean and include its successors in business and assigns) represented herein by its Mr. B N Mohanan, Whole Time Director & Occupier of the company who is authorised to do so through the resolution dated 13th May 2011 passed by its board of directors of the SECOND PART;

Supplier has approached ACL to supply dry fly ash generated from their Captive Thermal Power Plant.

ACL is manufacturing various grade of cement including PPC. ACL has expressed its interest to purchase fly ash and/or other any products (collectively referred to as "Product(s)" and more particularly described under Annexure I) for their captive or any other use for cement plant at Magdalla and / or at any other location or associates of ACL on the terms and conditions as furnished below:

Scope of Supply and Quantity

The Supplier shall supply Product(s)per day as per schedule informed to the Supplier from time to time. However, actual off take qty may increase/decrease depending on availability and as per ACL's requirement which shall be communicated to the Supplier.

2. <u>Rate:</u>

ACL Agrees to pay Rs. 40 PMT (Ex Works) as fixed price during entire tenure of this agreement. This price includes material cost, loading charges and all other related expenses but excludes GST.

SPEO 2429 9520716

3. Taxes

GST

Goods and Service Tax shall be paid extra as applicable at the rate prevailing at the time of dispatch. Presently GST is applicable @ 5%, i.e. 2.5% as CGST Plus 2.5% as SGST as per the Goods and Service Tax Act, 2017. Supplier shall ensure to provide documents as per GST Rules and sent to Consignees Works / Destination as required by the Purchaser for availing GST credit. The Supplier will provide proper Duty paying document to the Purchaser. However, the claiming of GST Credit is the responsibility of the Purchaser.

In the event of Consignee's Works / Units being not able to obtain GST credit, on account of improper/incomplete GST documents, GST shall not be reimbursed till the documents are rectified by the supplier to the requirements as per statutes.

Supplier needs to mention GST Number on the challans, invoice-cum-challans, and delivery notes accompanying the consignment.

4. Delivery:

The Supplier shall ensure delivery/availability of material as per schedule communicated to the Supplier by plant representative.

5. Payment Terms:

ACL hereby agrees to make payment as mentioned herein as per Clause 2 above against monthly invoices raised by M/s Atul Limited, within 30 (Thirty) days from the invoicing date. For invoice purpose actual material receipt at ACL i.e. weighment at ACL Plant weighbridge shall be considered.

All the payments shall be made by ACL directly to supplier through RTGS facility.

6. <u>Quality:</u>

Quality of the Product(s) supplied by the Supplier should be acceptable as per IS: 3812 Part 1 2013 for the manufacturing of Portland Pozzolana Cement (PPC). ACL reserves the right to check and verify quality for conformance to IS: 3812. In case of non-conformance of Product(s) to IS provisions, the parties shall resolve the issue mutually.

7. Loading Facility:

Supplier shall make proper arrangement for loading flyash to bulker / close body trucks. Supplier shall take care legal and statutory compliance of flyash storage, loading station along with nearby facilities owned by supplier.

Supplier shall provide weighbridge at loading station so to ensure optimum loading of processed ash in vehicles appointed by ACL.

8. Conditions Precedent

ACL shall provide to the Supplier;

- (a) Entity profile
- (b) Copy of Pan Card
- (c) Copy of list of Directors / Partners, / Authorised Signatories containing name, address and specimen signature.
- (d) Copy of GST certificate

9. <u>Representations And Warranties</u>

The parties represent and warrant that they shall obtain and/or have obtained individually all required and necessary approvals, consents, permits and authorization, as applicable, for entering into this Agreement and perform any act and/or obligation under this Agreement including but not limited to all requisite environmental sanctions.

The parties represent and warrant that they have been duly authorized and have the full right and authority to enter into, execute and deliver this Agreement;

The parties represented warrant that they have the authority to enter into this Agreement and shall not be in violation of any applicable law upon the execution of this Agreement;

This Agreement constitutes its legal, valid and binding obligation, enforceable against it in accordance with the terms hereof;

Its representations shall stand true and valid during the term, including extension thereof, and it shall have an obligation to disclose to the other party as and when any of its representations ceases to be true and valid.

Termination 8.

- If, any party to this Agreement: 1.
- is in material breach of its obligations under this Agreement; 1.
- fails to comply with applicable law and/or permits; and ii.
- abandons or repudiates the Agreement; iii.
- Supplier's inability to provide the agreed quantity and quality of Product(s) iv.

In such case, the other party may give notice regarding the same.

Then the party in default is required to make good such failure or breach to its reasonable satisfaction, within a period of 30 (thirty) days from the date of receipt of such notice. If the defaulting party fails to make good the cause within the specified period, then the other party can terminate the Agreement by giving a further notice of 10 days.

Without prejudice to any claim for any antecedent breach, either party shall be entitled 2. at its option, on the occurrence of any of the following events, to terminate this Agreement by delivering a written notice of 90 (ninety) days to that effect to the other party:

- If any direction or order from any Governmental Authority or any change in applicable law is enacted and brought in force, which prevents or significantly impairs the construction of the performance of any of the party under this Agreement. In this case, the agreement will automatically become void;
- In case a force majeure event continues for a continuous period of more than 90 (ninety) ii. days, both parties shall mutually discuss on terms and conditions so as to terminate the agreement and in no case the agreement shall terminate automatically.

Neither party, Supplier and/or ACL shall be liable for any indirect or consequential damages.

Force Majeure Clause :

9

Notification procedure for Force Majeure

In the event of occurrence of a Force Majeure Event, the affected Party shall, within 48 (forty eight) hours of the occurrence of such Force Majeure Event, notify the other Party in writing of a such Force Majeure Event and providing detailed explanation as to why the event constitutes a Force Majeure Event. If the other Party disputes the Force Majeure Event, it shall, within 48 (forty eight) hours of receiving such notice from the affected Party give to the affected Party written notice of such dispute. In case, the force majeure conditions continue for a period of seven (7) days, the other party shall have option to terminate the Agreement by giving written notice of three (3) days.

-. 10

10. CSR, Health & Safety

Both the parties shall ensure CSR, Health and safety related statutory compliances.

11. Governing Law, Dispute Resolution And Jurisdiction

This agreement shall be governed by, and construed in accordance with the laws of India and the Courts in Mumbai shall have an exclusive jurisdiction to resolve any dispute between the Parties in relation to this LOI.

In the event a dispute, difference or claim ("Dispute") arises out of or in relation to or in connection with the interpretation or implementation of this LOI, the Parties (the "Disputing Parties") shall attempt in the first instance to resolve such Dispute through amicable consultations between the Disputing Parties. If the Dispute is not resolved through such consultations within 30 (thirty) days (or such longer period as the Disputing Parties may agree to in writing) then either of the Disputing Parties may, by notice in writing to each other, refer the dispute to a mutually appointed sole arbitrator for arbitration. In case if the parties could not agree upon such sole arbitrator, then each Party can appoint one arbitrator each, and such appointed arbitrators shall appoint the 3rd arbitrator and these three arbitrators shall conduct arbitration proceedings. Arbitration shall be conducted in accordance with the Arbitration and Conciliation Act, 1996 or any other statutory modification (s), re-enactment thereof for the time being in force.

The arbitration shall be conducted as follows:

- (a) the arbitration proceeding shall be conducted in Mumbai, in English;
- (b) Subject to sub clause (g) here in below, the arbitration award shall be final and binding on the Disputing Parties and the Disputing Parties agree to be bound thereby and to act accordingly;
- (c) the arbitrator shall have the powers to make interim award/s, have summary powers as well as the powers to make award without giving reasons.
- (d) the arbitrator may award to a Disputing Party that prevails on the merits, its costs and expenses (including fees of its counsel);
- (e) without prejudice to and subject to the indemnification provisions in this LOI, the Parties shall equally bear the costs incurred in the arbitration unless otherwise awarded or fixed by the arbitrator; and
- (f) the Disputing Parties shall co-operate in good faith to expedite, to the maximum extent practicable, the conduct of any arbitral proceedings commenced pursuant to this LOI.

(g) The courts in Mumbai shall have the exclusive jurisdiction in case of (i) execution of arbitral awards or (ii) in case if either of the parties proceeds for injective relief and/or (iii) in case of appeals against such arbitral awards.

12. <u>Ethical View Reporting Policy and Anti Bribery & Corruption Directives (Abc Directives) of the</u> <u>Company</u>

Supplier is aware that the ACL has instituted a whistleblower policy viz. Ethical View Reporting Policy and an Anti-Bribery & Corruption Directives (ABCD), which is a part of the Code of Conduct initiated by the Company promote the highest standards of professionalism, honesty, integrity and ethical behavior within its organization. Supplier declare(s) that he / they / it has / have not paid or agreed to pay any favor either in cash or kind to any of the officials of the ACL either directly or indirectly to secure this agreement and further undertake(s) to promptly inform the ACL if any such demand is made in future by any officials of ACL directly or indirectly. The Supplier is also aware that if it is found indulged in any of fraudulent, unfair or unethical practices, the Supplier shall be liable for such action at the sole discretion of the Company including termination of this Agreement by concurrent notice and the decision of the Company in this regard shall be final and binding on the Supplier.

13. Cost of Agreement

The cost and expenses for executing this Agreement will be borne by the respective party. However, the stamp duty, registration charges and any other government charges, if any, shall be borne by the parties equally.

14. Amendment

Any amendments to this Agreement shall be in writing and will be effective after the signatures of both the parties.

15. Packing

Packing of the Product(s) will be done as per standard packaging process followed by the Supplier..

16. Consideration and property in the products

That price for the sale of the Product(s) shall be the basic selling price as per the Supplier's selling price list on ex- works basis. The property in the Product(s) will pass to the Purchaser at the factory gate of the Supplier.

- Nilo

17. Quality complaint

Complaint for quality, if any, should be intimated within seven (7) days of receipt of the Product(s) by the Purchaser. If there is any discrepancy in the quality of Products, a joint analysis will be conducted by both the parties.

18. Mode of Payment

The Purchaser will pay the consideration to the Supplier by way of NEFT / RTGS / cheques.

19. Assignments

This Agreement is personal to the parties and the same cannot be assigned to any third party without the consent of the other party, other than the assignment by the Purchaser to any of its affiliates of its group companies.

20. Compliance with laws

Both the parties agree to comply with the statutory laws as may be applicable to them from time to time for their respective areas of activities.

21. Rights of the Supplier

a. To receive orders from the Purchaser.

b. To receive the periodical reports and purchase projections from the Purchaser.

22. Rights of the Purchaser

To receive products as per specification within the prescribed time limit.

23. Non-Exclusive

The sale of the products to the Purchaser will be on non-exclusive basis. The Supplier reserves the right to sell the Product(s) to any other Proprietorship / Firm / Limited Liability Partnership / Company for similar purposes during the continuance of this Agreement.

24. Insurance

Insurance of the Products will be the responsibility of the Purchaser.

25. Confidentiality

(a) Each Party acknowledges that in the course of performance of this Agreement, the Partyhas and will come into the possession of confidential information of the other Party including, but

8

not limited to technical information, the Product specifications, price lists, reports, information concerning the Product(s) of the Supplier, results of business activities, purchase projections etc. ("Confidential Information").

- (b) The Confidential Information will remain the sole and exclusive property of the Party disclosing the same and will not be used unless with the disclosing Party's prior written consent.
- (c) The Party receiving the Confidential Information shall not use the Confidential Information after termination or expiration of this Agreement and will immediately return the Confidential Information to the disclosing Party.
- (d) Confidential Information will not include information which:
 - i. is or becomes a part of information in the public domain through no act or omission of the receiving Party;
 - ii. was in the receiving Party's lawful possession prior to the disclosure and had not been obtained by the receiving Party either directly or indirectly from the Supplier;
 - iii. is lawfully disclosed to the receiving Party by a third party without restriction on disclosure;
 - iv. is independently developed by the receiving Party;
 - v. is required to be disclosed by the applicable law.
- (e) The obligations of confidentiality set out in this Agreement shall survive the termination or expiration of this Agreement for a period 2 years from termination of this Agreement.
- (f) Each Party acknowledges that the Confidential Information may be price-sensitive information and that the use | disclosure of such information may be regulated or prohibited by applicable legislation relating to insider trading and agree to comply with the legislation.
- (g) The Supplier confirms that it is aware of the Privacy policy of the Purchaser which can be retrieved from the Purchaser's website (www.ambujacement.com). The Supplier hereby gives its consent for procurement, use, storage and disposal of personal and sensitive data, as defined in the Privacy Policy by ACL in the manner provided in the Privacy Policy.
- (h) The Supplier further undertakes to get similar consent from its employees, representatives, agents, sub-Supplier(s) (and its employees) and/or any other person (collectively referred to as "interested parties") who may be involved in or working for the execution and performance of the Supplier's obligations under this contract allowing ACL to procure, use, store, and dispose, personal and sensitive data as per the Privacy Policy. The Supplier agrees to indemnify ACL for

any claim raised by any interested parties which has resulted from failure of the Supplier to obtain consent from the interested parties.

(i) The Supplier hereby further agrees and undertakes to comply with privacy and data protection law which may be currently in force or may become enforceable in future.

26. Intellectual Property Rights

Entering into this Agreement does not grant the Purchaser a license or any other right under any patent or patent applications or any trademarks or trademark applications relating to the information which may now or hereafter be owned by the Supplier or its subsidiary companies or its associated companies.

27. Severability

Any part of the Agreement if declared or held invalid by competent court of law, or operation of law, the remainder of the Agreement shall survive and shall be binding on the parties.

28. Entire Agreement

This Agreement is entire and final Agreement between the parties and supersedes all prior oral or written Agreements or commitments on the subject matter.

29. Validity and Extension of Agreement

This Agreement will be valid from 25.09.2019 to 31/12/2020. Upon expiration of the term of this agreement, both the parties here to mutually agree for renewal on terms and conditions as decided parties mutually.

Indemnity

The Supplier, its directors, associates, employees, successors, assignees, servants or any of them, to the extent caused by them, shall also indemnify and hold ACL, its directors, employees, successors, assignees, servants or any of them harmless from:

- a. All liabilities, claims, demands, costs, charges, expenses, taxes and assessments, including penalties, direct damages, proceedings, reasonable attorney's fees and litigation expenses, arising out of any acts or omissions or resulting from any breach of Supplier's obligations under this Agreement.
- b. Any claim, demand, course of action, loss, expenses or liability on account of injury or death of persons (including the employees of ACL and the Supplier / SubSupplier) or damage to or loss of property (including Agreement Works/the property of ACL/Third

Parties) arising out of the negligent acts, errors or omissions of Supplier or its sub-Supplier/associates in performance of Supplier's obligation under this Agreement.

- c. Any claim by Government authorities/quasi-Governmental body for failure by the Supplier to pay fines, taxes, duties, fees applicable to them arising out of the Project.
- d. Any claim by third party including sub-Suppliers for failure to make payment for labour, services, equipment and materials arising out of this Project.
- e. Any claim with regard to designs, methods, process including but not limited to claims arising out of infringement of Intellectual Property legislations and amendments there to, patent, trademark, property information, know-how, copyright, unpatented inventions or any unauthorised use of work.

The Supplier shall defend at his own expenses any suit proceedings for any claim asserted against ACL. ACL shall give reasonable assistance required in defending the suit and ACL reserves the right to defend/settle the claim if Supplier fails to defend diligently any such suits or proceedings without relieving the Supplier of his obligation.

31. Language

This Agreement is executed in English language and the said version shall be binding between the parties.

32. General Terms and Conditions.

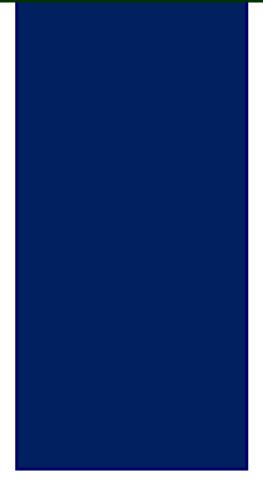
Terms and Conditions attached as per Annexure – A and Annexure –B shall be part of this agreement.

Thanking you,

For Ambuja Cements Limited,

Rajiv Malhotra Joint President

For Atul Limited.,


(Authorized Signatory)

ONSITE EMERGENCY PLAN OF M/s ATUL LTD.

P.O. ATUL - 396 020, DIST- VALSAD, GUJARAT

MARCH- 2017

CONTENTS

PREFACE4
PURPOSE
DEFINITIONS
CHAPTER- 1: ORGANIZATION INFORMATION
CHAPTER- 2: SITE DEMOGRAPHY
2.1 BRIEF HISTORY:
2.2 SITE PLAN:
2.3 KEY PLAN
2.4 LOCATION IN GUJARAT
2.5 PLOT PLAN:
2.6 ASSEMBLY POINTS:
CHAPTER- 3: INFORMATION ON THE PRELIMINARY HAZARD ANALYSIS
3.1 INTRODUCTION
3.2 PROCESS DESCRIPTION
3.3 HAZARD IDENTIFICATION
3.4 SAFETY RELEVANT COMPONENTS
3.5 OTHER HAZARDS AND CONTROLS:
3.5.1 OTHER HAZARDS & CONTROLS:
3.5.2 TRANSPORTATION HAZARDS & ITS CONTROLS:
3.5.3 TRADE WASTE HAZARDS & CONTROLS:
CHAPTER- 4: DESCRIPTION OF HAZARDOUS CHEMICALS AT PLANT SITE
4.1 STORAGE HAZARDS: (QUANTITIES AND HAZARDS):
4.2 PROCESS& VESSEL HAZARDS & CONTROLS:
CHAPTER-5: MAXIMUM CREDIBLE ACCIDENT SCENARIO & CONSEQUENCES ANALYSIS
5.1 MAXIMUM CREDIBLE ACCIDENT (MCA)46
5.2 CONSEQUENCE ANALYSIS:
5.2.1 INTRODUCTION
5.2.2 MAXIMUM ACCIDENT ANALYSIS (MCA CREDIBLE)47
CHAPTER- 6: EMERGENCY MANAGEMENT PROCEDURES AND SYSTEM65
6.1WARNING ALARM AND SAFETY / SECURITY SYSTEM:65
6.2SECURITY SYSTEM:
6.3PRECAUTIONS IN DESIGNING OF THE FOUNDATION AND LOADBEARING PARTS OF THE BUILDING:79
6.4CONTINUOUS SURVEILLANCE OF OPERATIONS:
6.5MAINTENANCE AND REPAIR WORKS ACCORDING TO THE GENERALLY RECOGNIZED RULES OF GOOD
ENGINEERING PRACTICES:
CHAPTER-7: ROLE AND RESPONSIBILITY OF KEY PERSONNEL

On-Site Emergency Plan of M/s Atul Ltd., Atul, Dist: Valsad

7.1 ROLES AND RESPONSIBILITY OF EMERGENCY RESPONSE PERSONNEL	
7.3 SITE MAIN CONTROLLERS	
7.5 ESSENTIAL PERSONS FOR FIRE FIGHTING& ERT TEAM	
7.6 EMERGENCY CONTROL CENTER:	
CHAPTER-8: FIRE FIGHTING AND OTHER ARRANGEMENTS FOR OFF-SITE EMERGENCY	
8.1 AVAILABILITY OF FIRE FIGHTING FACILITES:	
8.2AVAILABILITY OF FIRE EXTINGUISHERS:	108
CHAPTER- 9: MEDICAL ARRANGEMENTS FOR ON-SITE PLAN:	
CHAPTER- 10: EMERGENCY DUE TO NATURAL CALAMITIES	
10.1 TYPES OF NATURAL CALAMITIES& ITS ACTION PLAN:	
CHAPTER- 11: MUTUAL AID ARRANGEMENTS	
11.1 TYPES OF ACCIDENT	
11.2 RESPONSIBILITY ASSIGNED	
11.3 MUTUAL AID	
CHAPTER- 12: COMMUNICATION ARRANGEMENTS DURING EMERGENCY AND FOR OFF-SITE EMERGENCY 121	
12.1RAISING THE ALARM	
12.2DECLARING THE MAJOR EMERGENCY	
12.3TELEPHONE MESSAGES	
12.4COMMUNICATION OF EMERGENCY	
12.5 IMPORTANT INTERNAL TELEPHONE NUMBERS:	
12.6 IMPORTANT EXTERNAL TELEPHONES NUMBERS:	
CHAPTER- 13: INTEGRATION OF SITE ON-SITE EMERGENCY PLAN WITH DISTRICT OFF-SITE PLAN	
13.1 PURPOSE OF THE OFF SITE EMERGENCY PLAN:	
13.2A SCHEMATIC DIAGRAM SHOWING ACTION FROM INCIDENT PLACE TO STATE LEVEL GROUP IS SHOWN BELOW:	131

PREFACE

Our First Emergency Plan was prepared in 1990 and then after it has been regularly updated as & when required based on learning from various Mock drills and on account of expansion in the facility. Updating of the On site emergency plan was done to incorporate various elements of risks, hazards and consequences that are relevant to our Plants which were taken either from published data or derived from our own experience. Mock drills were conducted to test the plan and improve our emergency preparedness. Also, we had reviewed the potential hazards and assessment earlier done. The results of these exercises, identification and assessment of all credible scenarios, survey of various Rules, Regulations and standards were taken as basis for modifying the On Site Emergency Plan, classification of ISO 14001:2015 and OHSAS 18001:2015.

As emergencies arise suddenly the necessity to remain always alert and ready with supporting facilities to face them is of paramount importance. This document can't be said to be the complete as it only sets the broad guidelines. It is only by periodically conducting regular table top exercise and mock drills our preparedness will improve which will help us to minimize the consequences of emergencies as and when they arise.

All the key personnel are requested to study the document and become familiar with the contents and disseminate information to those working with them.

> Shri. B. N. Mohanan Whole-Time Director

· · · · · · · · · · · · · · · · · · ·	ANNEX	URE-XIV			<u>allest</u>
		ATUL LIMITED			
	ENVIRO	NMENT MANAGEMEN	T SYSTEM		
BUSINESS	VALSAD COMPLEX				Page of
TITLE	PREVENTIVE MAINTENANC	E SCHEDULE	-		· ·
DOCUMENT NO.	EF/U&S/PH-W/25/00	REVISION NO.	0	COPY NO.	1
EFFECTIVE DATE	01/04/2018	UTILITY & SERVI	CES, POWER PLANT (WEST)	REVIEW DATE	31/03/2019

1. 1

. . .

St. Description of equipment / activity Frequency	FW 2018-19
No.	Apr May Jun Jul Aug Sept Oct Nov Dec Jan Peb Mar

1.1 - Annual overhauling of Boilers

1.1.1	Annual / Semi annual overhauling of FBC boiler no. 1 (GT - 3266)	2 per year				V		
	Annual / Semi annual overhauling of FBC boiler no. 2 (GT - 8885)	2 per year	7					
	Annual / Semi annual overhauling of FBC boiler no. 3 (GT - 9047)	2 per year		V			· ·	

1.2 - Activities carried out for Boilers as per schedule 1.1.1, 1.1.2 and 1.1.3

1.2.1	Replacement of all the bed tubes.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.2	Checking of hole diameter For fluidizing air nozzles, cleaning / replacement of the same if necessary.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.3	Check condition of air preheater tubes & Economizer tubes and replacement of the same if necessary.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.4	Cleaning of gas path for air preheaters & Economizer	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.5	Checking of bearings / drive couplings for BFP, ID, PA,FD & SA fans and motors.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.

And State	, A
22111	A. S.
AND	·

		ENVIRO	ATUL LIMITED	SYSTEM	2	
BUSIN	OCUMENT NO. EF/U&S/PH-W/25/00 REVISION NO. 0 COPY NO. FFECTIVE DATE 01/04/2018 UTILITY & SERVICES, POWER PLANT (WEST) REVIEW DATE Sr. Description of equipment / activity Frequency FY 2018-19				Page of	
TITLE		PREVENTIVE MAINTENANC	E SCHEDULE			
DOCUI	MENT NO.	EF/U&S/PH-W/25/00	REVISIÓN NO.	0	COPY NO.	1
EFFECT		01/04/2018	UTILITY & SERVICE	ES, POWER PLANT (WEST)	REVIEW DATE	31/03/2019
No. 1.2.6	Checking condition of Spreader Rotors	ADE M		Aug Sept Oct	Nov Dec Ian	Feb M
1.2.7	Check of condition of drag chains / PA lines and repair / replacement of the	This activity is to	be checked / carried out	t as per frequency mentioned	against Sr. po. 1.1.1.1.1	28112

	same if necessary.	
1.2.8	Cleaning and checking of all ESPs fields (including internal parts & hoppers).	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.9.	Checking of thickness of all duct plates and replacement of the same if necessary.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.10	Checking / Testing of all the interlocks	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.
1.2.11	Overhauling, calibration and testing of all the safety valves, water level guages, Valves & motorized actuators.	This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.

Cleaning and checking of all the MCCs / PCC, starters, feeders and cable terminations. Repair / replacement of spares wherever required. This activity is to be checked / carried out as per frequency mentioned against Sr. no. 1.1.1, 1.1.2 & 1.1.3.

	· · · · · · · · · · · · · · · · · · ·	ATUL LIMITED	-		
	ENVIRO	NMENT MANAGEMEN	T SYSTEM		
BUSINESS	VALSAD COMPLEX				Page of
TITLE	PREVENTIVE MAINTENANC	CE SCHEDULE 🚽			
DOCUMENT NO.	EF/U&S/PH-W/25/00	REVISION NO.	0	COPY NO.	1
EFFECTIVE DATE	01/04/2018	UTILITY & SERVI	CES, POWER PLANT (WEST)	REVIEW DATE	31/03/2019

Sr. Description of equipment / activity	Frequency 2018-19	
No.	Apr May Jun Jul Aug Sept Oct Nov	Dec Jan Feb Mar

1.3 - Activities carried out for 5.6 MW & 23MW TG set

								1						
1.3.1	Testing of stator / rotor windings of alternator & main exciter (5.6MW TG)	2 Years	-	_	-	_	-	-	-	V		-	-	-
1.3.2	Testing of stator / rotor windings of alternator & main exciter (23MW TG)	2 Years	1	_	-	-	-	-	-	. –	-	-	-	-
	Testing of LV / HV windings of Generator transformer, 2500 KVA transformer & 1250 KVA transformer.	2 Years	_	_	-	-	_	-	-	√	-	_	-	-
	Testing of LV / HV windings of Generator transformer, 3000 KVA transformers for 23MW TG set	2 Years	_		-	-	-	-	-	-	-	-	-	-
	Servicing and testing of generator HT circuit breaker and protection relays 5.6MW TG set	2 Years	-	-	· -	-	-	_	-	√ .	-	-	-	-
	Servicing and testing of generator HT circuit breaker and protection relays 23MW TG set	2 Years	-	-	-	-	-	-	-	-	-	_ /	-	_
1.3.7	Check of insulation for 5.6MW turbine.	2 per year	-	-	-	-	-	-	-	v V	-	-	-	-
1.3.8	Check of insulation for 23MW turbine.	1 per year		٧	-	-	_	-	-	_	-	-	-	-

		ATUL LIMITED			
	ENVIRO	NMENT MANAGEMENT	SYSTEM		
BUSINESS	VALSAD COMPLEX				Page of
TITLE	PREVENTIVE MAINTENANO	CE SCHEDULE 👒	•		
DOCUMENT NO.	EF/U&S/PH-W/25/00	REVISION NO.	0	COPY NO.	1
EFFECTIVE DATE	01/04/2018	UTILITY & SERVIC	ES, POWER PLANT (WEST)	REVIEW DATE	31/03/2019
····		I			

		<u> </u>			<u> </u>								<u> </u>	
Sr.	Description of equipment / activity	Frequency	All Carlinson and Carlinson					FY-20)18-19					Constant 2
No.			Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar
1.3.9	Overhauling of HP and LP valves of 5.6MW turbine.	2 per year	-	_	-	-	-	-	-	V .	-	_	_	-
1 3 101	Overhauling of HP and , IP & LP valves of 23MW turbine.	1 per year	-	V	-	-	-	-	-		-	-	-	-
1 2 1 1 1	Checking of oil level in Lub oil tank for 5.6MW TG and 23MW TG	Monthly	v	V	V	v	V	V	V	_ √	√	v -	آ ۷	√
1.3.12	Cleaning of Cooling tower sump.	1 per year	-	√	-			-	-		· -	-	-	-
	Tube cleaning for generator radiators, Gland Vent Condenser and oil cooler 5.6MW TG	1 per year	-	_	-	-	-	-	-	V [*]	-	-	-	-
	Tube cleaning for generator radiators, Gland Vent Condenser and oil cooler 23MW TG	1 per year	-	V	-	-	-	-	-	-	-	-	-	-
1.3.15	Servicing & testing of electrical actuators of main steam inlet, exhaust and extraction valves 5.6MW TG	1 per year	-	-	-	-		-	-	V -	-	-	-	-
1.3.16	Servicing & testing of electrical actuators of main steam inlet, exhaust and extraction valves. 23MW TG	1 per year	-	v	-	-	-	_	_	-			-	-
	Checking / Testing of all the interlocks - 5.6MW TG	1 per year	-	-	-	_	. –	-	-	√	_	-	_	-
$\mathbf{I} \prec \mathbf{I} \times \mathbf{I}$	Checking / Testing of all the interlocks - 23MW TG	1 per year		√	-	-	_	-	_	_	· –	-		-

	•				
		ATUL LIMITED			
	ENVIRO	NMENT MANAGEMENT	r system		
BUSINESS	VALSAD COMPLEX				Page of
TITLE	PREVENTIVE MAINTENANO	E SCHEDULE			
DOCUMENT NO.	EF/U&S/PH-W/25/00	REVISION NO.	0	COPY NO.	1
EFFECTIVE DATE	01/04/2018	UTILITY & SERVIC	CES, POWER PLANT (WEST)	REVIEW DATE	31/03/2019

Sr. Description of equipment / activity Frequency		FY 2018-19		
No.	May Jun	Jut Aug Sept Oct	Nov Dec	c Jan Feb Mar

1.4 - Activities carried out for Coal Handling Plant

1 1 4 1	Checking / Replacement of screen cloths of Vibrating Screen.	Monthly	٧	V	V	V	V	V	V	V	V	V	٧	٧.
142	Checking / Replacement of V-belt of Vibration Screen & Crushers.	Monthly	V	V	V	V	V	V	V	V	<u>_</u> ۷	V	٧	√ .
I I 4 K	Checking / Replacement of Bearings of Vibration Screen & Crushers.	Monthly	٧		V	V	V	V	V	V	V	.√	V	. V
1 1 4 4	Checking / Replacement of Lub oil for fluid coupling for Crusher.	Monthly	٧	V	٧.	V	٧	٧	V	٧	V	√ ∕	٧	V
1145	Checking of Structure / Duct Plates of entire Coal crusher house.	1 per year	٧	V	V	V	V	V	V	V	V	V	V	٧
1.4.6	Checking of all safety interlocks.	Monthly	٧	√	√	√	√	√	. √	V	V	۷	V	V
1.4.7	Checking condition of drive pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	٧	V	V	V	V	V	V	V	V	V	٧	V
1.4.8	Condition of tail pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	٧	V	٧	V	٧	V	V	V	V	ູ້	٧	V -
1.4.9	Condition of gravity take up pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	٧	V	V	V	V	V	V	V	. V	٧	V	V [,]

Salad

3

ATUL LIMITED **ENVIRONMENT MANAGEMENT SYSTEM** BUSINESS VALSAD COMPLEX Page of TITLE PREVENTIVE MAINTENANCE SCHEDULE DOCUMENT NO. **REVISION NO.** EF/U&S/PH-W/25/00 COPY NO. 1 0 EFFECTIVE DATE 01/04/2018 UTILITY & SERVICES, POWER PLANT (WEST) **REVIEW DATE** 31/03/2019

Sr.	Description of equipment / activity	Frequency						FY 20	18-19			annes Mallanes	en e	in some finder	
No.			Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	1
11410	Checking / replacement of troughing idlers, impact idlers & return idlers.	Monthly	V	V	٧	V	V	V	V	V	V	V	V	V	
1.4.11	Checking / replacement of grating of walk ways / platforms and hand railings.	Monthly	٧	v	٧	V	٧	V	V	٧	V	V	٧	V	
1.4.12	Checking condition of Skirt board, belt hoods, discharge coal chutes & belt joints.	Monthly	٧	V	٧	V	V	V	V	V	V	V	V	V	- n. 51
1 4 1 3	Checking of lighting in coal plant and surrounding area.	Monthly	V	v	· V	√	V	V	V	V	V	∨	v	V	
1.4.14	Checking general condition of support structures.	1 per year	٧	V	٧	√	V	V	V	V	V	∨	√	V	
1.4.15	Checking operation of dust extraction system.	Monthly	. V	V	٧	√	V	V	V	V	V	v	v	V	
1.4.16	House keeping of entire coal crusher house.	Monthly	٧	V	√	√	V	V	V	V	V	V	V	V	

Frepared By: Dhaval Patel

(Plant In-charge)

Approved By: Chandrasekhar D

(GM-Infrastructure Unit)

		ATUL LIMITEI ENVIRONMENT MANAGER			2018-1	9
BUSINESS	VALSAD COMPLEX					Page of
TITLE	PREVENTIVE MAINTENANCE	RECORDS				
DOCUMENT NO.	ER/U&S/PH-W/26/00	REVISION NO.	9	0	COPY NO.	1
EFFECTIVE DATE	01/04/2018	UTILITY & SE	RVICES, POWER I	PLANT (WEST)	REVIEW DATE	31/03/2019

Ether

Sr. Description of equipment activity Frequency		FY 2015-19	
No.	or May Jun Jul Au	g Sept Oct Nov Dec	Jan Feb Mar

										-				· · · · · · · · · · · · · · · · · · ·
1.4.1	Checking / Replacement of screen cloths of Vibrating Screen.	Monthly	TEL	Ber	Har	Jet.	The	Wel?	(Jur	(SV)	A22-	Gert-	The	Bar
1.4.2	Checking / Replacement of V-belt of Vibration Screen & Crushers.	Monthly (JEL.	File	Not?	Ber .	Me -	apr	Fer-	(For	The state	Hel?	The .	AL AL
1.4.3	Checking / Replacement of Bearings of Vibration Screen & Crushers.	Monthly (Asi	Hal	Jet.	Ber .	Her	Halu	For	Front	(Her-	Alter	Jer .	CIEL 2
1.4.4	Checking / Replacement of Lub oil for fluid coupling for Crusher.	Monthly	Ner	A Lake	aller .	NE	Halr	July -	The .	JE?	Here (MEL .	Ner .	Rot
* 1.4.5	Checking of Structure / Duct Plates of entire Coal crusher house.	1 per year	ASU .	aller	Jah	West .	HErr	JEN .	The	250D	HELP	Yur	Ŧ	Net
1.4.6	Checking of all safety interlocks.	Monthly o	Jar	Hales	(Jul)	How	The	Haly	(HE)	Cho?	Re	Ary	Asp	NE
1.4.7	Checking condition of drive pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	Jahn	Jah	Ber .	Ale i	Well .	Har	Fer'		AE2	Auto	Aler	Jer
1.4.8	Condition of tail pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	Har	alaha	USP .	JEst"	afer?	Hape	W.	F	CARD-	Her	Br.	alabe
1.4.9	Condition of gravity take up pulleys (plummer blocks, oil in gear box and coupling etc.)	Monthly	alah	Valu	yan	West	TELK	False	TE-	Of the second	Mer .	The	But	USU
1.4.10	Checking / replacement of troughing idlers, impact idlers & return idlers.	Monthly	Juli	Fel	Fer	Jela	yan.	Here	MET .	Not	AP-	ager -	Fut	(Jap
1.4.11	Checking / replacement of grating of walk ways / platforms and hand railings.	Monthly	Ferr	Pelu	Alt (Nel	An	Hales	E.	E Contraction	And a	AP-	Jar	Fat
1.4.12	Checking condition of Skirt board, belt hoods, discharge coal chutes & belt joints.	Monthly o	A Ster	HEN .	Har	alor.	Aler	Halter	347	afer	B.	OF ?	Yor	HELP
1.4.13	Checking of lighting in coal plant and surrounding area.	Monthly	JEL-	Fel7	a fed	C Lyp	al we	Har -	Gr/	050%	(JE)	as	Fer	Gu/

1.4 - Activities carried out for Coal Handling Plant

* Doing on monthly basis.

ATUL LIMITED ENVIRONMENT MANAGEMENT SYSTEM 2018-19											
BUSINESS VALSAD COMPLEX											
TITLE	PREVENTIVE MAINTENANCE	PREVENTIVE MAINTENANCE RECORDS									
DOCUMENT NO.	ER/U&S/PH-W/26/00	REVISION NO.	0	COPY NO.	1						
EFFECTIVE DATE	01/04/2018	UTILITY & SERVICES,	POWER PLANT (WEST)	REVIEW DATE	31/03/2019						

Şr. No.	Description of equipment / activity	Frequency	Apr	May	Jun		Aug	FY 20 Sept	B.U Ø	Nov	Dec	Jan	Feb	Mar
A Children A	Checking general condition of support structures.	1 per year												
1.4.15	Checking operation of dust extraction system.	Monthly (The	ast	Far	Nal	Jahr .	Feb	Sel.	The	And	Fré	(Feb)	Nev Z
1.4.16	House keeping of entire coal crusher house.	Monthly (afata	Waln	Nahr .	Fut	Jah	(Jar	E all	- Ale	Aler .	Here	742-	E

Prepared By:

Dhaval Patel (Plant In-charge)

.*

Approved By: Chandrasekhar D

(GM-Infrastructure Unit)

3

ATUL LIMITED ENVIRONMENT MANAGEMENT SYSTEM									
BUSINESS	VALSAD COMPLEX					Page of			
TITLE	PREVENTIVE MAINTENANCE	RECORDS							
DOCUMENT NO.	ER/U&S/PH-W/26/00	REVISION NO.	·	0	COPY NO.	1			
EFFECTIVE DATE	01/04/2018	UTILITY & S	ERVICES, POW	VER PLANT (WEST)	REVIEW DATE	31/03/2019			

	Description of equipment / activity	Frequency					Marchines-	👋 FY 20	18:14	and the second second	marrie de s	AN MARCE		
No.			Apr	May	lun	Jul	Aug	Sept	Øct	Nov	Dec	lan 🛛	Fea	tvier 👘
1.2.9.	Checking of thickness of all duct plates and replacement of the same if necessary.	2 per year	JEN"	Fala	~	-	_	*	1	Fer	-	-	·	
1.2.10	Checking / Testing of all the interlocks	2 per year	(TER)	Wate			-	~	-	AW	-	-	-	
1.2.11	Overhauling, calibration and testing of all the safety valves, water level guages, Valves & motorized actuators.	1 per year	Her	Water	-		-	- -	~	Jul -	<i></i>		-	<u> </u>
1,2,12	Cleaning and checking of all the MCCs / PCC, starters, feeders and cable terminations. Repair / replacement of spares wherever required.	Monthly	Ter	Tento					~		~		-	

1.3 - Activities carried out for 5.6 MW & 23MW TG set

1.3.1	Testing of stator / rotor windings of alternator & main exciter (5.6MW TG)	2 Years	+-	-		-	1	-		-	-		
1.3.2	Testing of stator / rotor windings of alternator & main exciter (23MW TG)	2 Years	-	-	-	l	(-		-	~	-	
	Testing of LV / HV windings of Generator transformer, 2500 KVA transformer & 1250 KVA transformer.	2 Years	*	-	-	ł	1	~		5			
1.3.4	Testing of LV / HV windings of Generator transformer, 3000 KVA transformers for 23MW TG set	2 Years			-	Ļ	ŧ	-		~	-	-	
1	Servicing and testing of generator HT circuit breaker and protection relays 5.6MW TG set	2 Years	-	-	• 	-	*			-			

		ATUL LIMITED . ENVIRON MANAGEMENT SYSTEM			acul
BUISNESS	VALSAD COMPLEX	· · · · · · · · · · · · · · · · · · ·		<i>"</i>	PAGE OF
TITLE	PREVENTIVE MAINTENANCE REC	ORDS			
DOC.NO.	ER/U&S/PH-W/26/00	REV NO	00	COPY NO:	1
EFFECTIVE DATE	01/04/2018	······································	1.6	REVIEW DATE	31/03/2019

. .

.

Description of equipment / activity Frequency FY 2018-19 All and a state of the state of NE 2005 600 Ser al a well Aug Sept Oct Nov Dec Jan ----Feb Jun Apr May

and the second second

1.1 - Annual overhauling of Boilers

1 1.1.1	Annual / Semi annual overhauling of FBC - boiler no. 1 (GT - 3266)	2 per year	\checkmark		-		1	-		A firs	· · ·		-	<u>a</u>
1.1.2	Annual overhauling of FBC boiler no. 2 (GT - 8885)	1 per year	1	\checkmark	1	1	ł		i.	-	1	ł	-	
1 1 1 4	Annual overhauling of FBC boiler no.3 (GT - 9047)	1 per year						•	·	-	Thef		-	

1.2 - Activities carried out for Boilers as per schedule 1.1.1, 1.1.2 and 1.1.3

1.2.1	Replacement of all the bed tubes.	2 per year	* Jaby	Halm	and the second s	·	ł	-		Tetro	afeet	1	- .	
1.2.2	Checking of hole diameter For fluidizing air nozzles, cleaning / replacement of the same if necessary.	2 per year		Aler	ļ .	~ .	. I .	-		Fer	C.S.	1	· _	
1.2.3	Check condition of air preheater tubes (PA & SA) & Economizer tubes and replacement of the same if necessary.	2 per year	Haby	Hata	. Ì]	1	* .		Feb	appla	1	.	
1.2.4	Cleaning of gas path for air preheaters & Economizer	2 per year	AJulo	Fato	į		·	~		The	CIE LE	-	-	
1.2.5	Checking of bearings / drive couplings for BFP, ID, PA & SA fans and motors.	2 per month	aph	Habe		~	· -	•		The	Fut		-	
1.2.6	Checking condition of Spreader Rotors and Replacement of the same if necessary.	2 per month	Felo	Hat	-		~	-	, ,	The	Haut	Ļ	-	
1.2.7	Check of condition of drag chains and repair / replacement of the same if necessary.	Weekly	Alto	Abeton	1	· —.	·	* .		AR	Grat -	ſ	-	
1.2.8	Cleaning and checking of all ESPs fields (including internal parts & hoppers).	2 per year	Her	(Hato)	-			٣		JEN2	- Char	-	-	

IF TUBE thickness is on than tubes were not change

APPENDIX I

(See Paragraph-6)

FORM 1

Note : If space provided against any parameter is inadequate, Kindly upload supporting document under 'Additional Attachments if any' at the last part of the Form1. Please note that all such Annexures must be part of single pdf document.

(I) Basic Information

S.N	o. Item	Details
	Whether it is a violation case and application is being submitted under Notification No. S.O.804(E) dated 14.03.2017 ?	No
	Name of the Project/s	Atul Ltd
1.	Brief summary of project	Annexure-Brief summary of project
1.	Proposal Number	IA/GJ/IND/27464/2015
	Project Cost (in lacs)	1957
2.	S. No. in the schedule	5(f) Synthetic organic chemicals industry (dyes & dye intermediates; bulk
	Project Sector	Industrial Projects - 1
3.	Proposed capacity/area/length/tonnage to be handled/command area/lease area/number or wells to be drilled	6770.95 TPM ha.
4.	New/Expansion/Modernization	Expansion
	Proposal Number	IA/GJ/IND/6606/2009
	MoEFCC file number(Previous EC)	J-11011/85/2009-IA.II(I)
	Uploaded EC letter	Annexure-Uploaded EC letter
5.	Existing Capacity/Area etc.	31237.96 ha.
6.	Category of project i.e. 'A' or 'B'	А
7.	Does it attract the general condition? If yes, please specify	No
8.	Does it attract the specific	No

condition? If yes, please specify 9. Location of the project At & Post Atul DistValsad Shape of the project land Block (Polygon) Uploaded GPS file 1 Annexure-GPS file Uploaded copy of survey of India Annexure-Survey of indiatoposheet Toposheet Plot No. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, Plot/Survey/Khasra No. 84, 85, 91 Survey No. 274, 275, 276 Town / Village Atul Gujarat State of the project

Details of State of the project

S.no	State Name	D	istrict Name	Tehsil Name					
(1.)	Gujarat	Valsad		Valsad					
10.	Nearest railway station alon distance in kms Nearest airport along with d in kms	•	Atul, 2 km Daman, 15 km						
11.	Nearest Town/City/District Headquarters along with dist kms	ance in	Valsad , 8 km						
12.	Village Panchayats, ZilaPari Muncipal Corporation, Loca (Complete postal address wi telephone nos. to be given)	l body							
13.	Name of the Applicant		Dr. Sharad						
14.	Registered Address		M/s Atul Industrie 396020	s Ltd, Atul, Valsad. Atul -					
15.	Address for correspondant Name of the Company Name of the Applicant Designation (Owner/ Partne Pin code E-mail Telephone No.		ATUL LTD Dr. Sharad Corp. General Mar 396020 hriday_desai@atul 2632-233261	C					

	Fax No.	2632-233619
	Copy of documents in support of the competence/authority of the person making this application to make application on behalf of the User Agency.	NIL
16.	Details of Alternative Sites examined, if any. Location of these sites should be shown on a toposheet	No
17.	Whether part of Interlinked projects?	No
18.	Whether separate application of Interlinked project has been submitted?	N/A
19.	If Yes, MoEF file number	N/A
	Date of submission	N/A
20.	If No, Reason	N/A
21.		proval/ Clearance under: if yes, details of the
	same and their status to be given	1
	(i) Whether the proposal involves approval/clearance under the Forest (Conservation) Act,1980?	No
	(ii) Whether the proposal involves approval/clearance under the wildlife (Protection) Act,1972?	No
	(iii) Whether the proposal involves approval/clearance under the C.R.Z notification, 2011?	No
22.	Whether there is any Government Order/Policy relevant/relating to the site?	No
23.	Whether any Forest Land Involved?	
	Area of Forest land Involved (hectares)	N/A
24.	Whether there is any litigation	No

pending against the project and land in which the project is proposed to be set up?	or	
(a) Name of the Court	N/A	
(b) Name of the Sub court	N/A	
(c) Case No.	N/A	
(d) Orders/directions of the cour any and relevance with the proposed project	rt, if N/A	

(II) Activity

Construction, operation or decommissioning of the Project involving actions,
1 which will cause physical changes in the locality (topography, land use, changes in water bodies, etc.)

S.N	o Information/Checklist confirmation	Yes/I	Details there of (with approximate No quantities/rates, wherever possible) with source of information data
1.1	Permanent or temporary change in land use, land cover or topography including increase in intensity of land use (with respect to local land use plan)	No	There will not be any requirement of land as the proposed project is expansion project and to be developed in existing industrial premises & existing infrastructure.
1.2	Clearance of existing land, vegetation and buildings?	No	Not Applicable The land does not have any vegetation.
1.3	Creation of new land uses?	No	Not applicable as described in Item 1.1
1.4	Pre-construction investigations e.g. bore houses, soil testing?	Yes	As a part of civil activity, the soil testing will be carried out to confirm the soil bearing capacity before construction of proposed expansion.
1.5	Construction works?	Yes	New plant building will be constructed for addition of new products withinpremises. Layout Plan showing existing and proposed area is attached as Annexure-1.
1.6	Demolition works?	No	Not applicable
1.7	Temporary sites used for construction works or housing of construction workers?	No	Local workers will be employed for construction as well as operation phase.

1.8	Above ground buildings, structures or earthworks including linear structures, cut and fill or excavations and fill or excavations	Yes	Construction work for addition of new products shall be carried out.
1.9	Underground works including mining or tunnelling?	No	Not Applicable
1.10	Reclamation works?	No	Not Applicable
1.11	Dredging?	No	Not Applicable
1.12	Offshore structures?	No	Not Applicable
1.13	Production and manufacturing processes?	Yes	Expansion in existing capacity and addition of new products are mentioned in PFR. Manufacturing processis attached as Annexure – 2 for each product.
1.14	Facilities for storage of goods or materials?	Yes	The storage facilities for raw material has been provided within existing premises.
1.15	Facilities for treatment or disposal of solid waste or liquid effluents?	Yes	High COD concentrated effluent stream shall be incinerated in company's own well designed (as per CPCB guidelines) existing incinerator. Existing incinerator is having sufficient capacity to take additional nominal load of proposed expansion as per CPCB guidelines. Incineration ash shall be disposed off at company's own approved land fill site. High TDS effluent stream shall be evaporated in existing Multiple Effect Evaporation System. Evaporated salt shall be disposed off at Company's own appro
1.16	Facilities for long term housing of operational workers?	No	Local people will be employed as workers. The area is well developed with all infrastructure facilities as it is being a part of our existing project boundary.
1.17	New road, rail or sea traffic during construction or operation?	No	The project site is very well connected with National Highway No - 8. Hence no additional Transport infrastructure is required.
1.18	New road, rail, air water borne or	No	The area is well developed with all

	other transport infrastructure		infrastructure facilities.
	including new or altered routes and stations, ports, airports etc?		
1.19	Closure or diversion of existing transport routes or infrastructure leading to changes in traffic movements?	No	Not Applicable
1.20	New or diverted transmission lines or pipelines?	No	Not Applicable
1.21	Impoundment, damming, culverting, realignment or other changes to the hydrology of watercourses or aquifers?	No	Not Applicable
1.22	Stream crossings?	No	Not Applicable
1.23	Abstraction or transfers of water from ground or surface waters?	Yes	The fresh water requirement for the proposed expansion will be met through exsting water supply system.
1.24	Changes in water bodies or the land surface affecting drainage or run-off?	No	Not Applicable
1.25	Transport of personnel or materials for construction, operation or decommissioning?	Yes	The transport of the material will be required during the operation phase for the raw materials. However no significant adverse impacts are envisaged as the traffic will not increase considerably after the proposed expansion.
1.26	Long-term dismantling or decommissioning or restoration works?	No	Not Applicable
1.27	Ongoing activity during decommissioning which could have an impact on the environment?	No	Not Applicable
1.28	Influx of people to an area in either temporarily or permanently?	Yes	Additional 50 nos. of locally employed manpower shall be utilized.

1.29	Introduction of alien species?	No	Not Applicable
1.30	Loss of native species or genetic diversity?	No	No loss of native species.
1.31	Any other actions?	No	Not Applicable

Use of Natural resources for construction or operation of the Project (such as land,
water, materials or energy, especially any resources which are non-renewable or in short supply):

S.N	⁰ Information/Checklist confirmation	Yes/I	Details thereof (with approximate No quantities/rates, wherever possible) with source of information data
2.1	Land especially undeveloped or agricultural land (ha)	No	Not Applicable as described in Item 1.1.
2.2	Water (expected source & competing users) unit: KLD	Yes	Source: River PAR Existing: 22,569 KL/day Proposed: 5,788.70 KL/day Total: 28,357.70 KL/day
2.3	Minerals (MT)	No	Not applicable
2.4	Construction material – stone, aggregates, sand / soil (expected source – MT)	Yes	Stone, Aggregates, Sand/Soil, cement, steel will be purchased from local suppliers & the quantity shall be decided after the completion of construction drawing & designing for expansion.
2.5	Forests and timber (source – MT)	No	No forest resource or timber will be used in the project.
2.6	Energy including electricity and fuels (source, competing users) Unit: fuel (MT),energy (MW)	Yes	Power requirement: Existing sources: 1. 34 MW Captive power plant 2. D.G. set – 3100 KVA Proposed: 15 MW from Captive power plant
2.7	Any other natural resources (use appropriate standard units)	No	Not applicable

Use, storage, transport, handling or production of substances or materials, which 3 could be harmful to human health or the environment or raise concerns about actual or perceived risks to human health

S.No	Information/Checklist confirmation	Yes/No	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
------	---------------------------------------	--------	--

3.1	Use of substances or materials, which are hazardous (as per MSIHC rules) to human health or the environment (flora, fauna, and water supplies	Yes	List of hazardous chemicals, storage quantity, state, etc. are mentioned in PFR.
3.2	Changes in occurrence of disease or affect disease vectors (e.g. insect or water borne diseases)	No	Not Applicable
3.3	Affect the welfare of people e.g. by changing living conditions?	No	The project will not affect the welfare of people. However, Social upliftment programs will have a positive effect on the local people.
3.4	Vulnerable groups of people who could be affected by the project e.g. hospital patients, children, the elderly etc.	No	Not Applicable
3.5	Any other causes	No	Not Applicable

4 Production of solid wastes during construction or operation or decommissioning (MT/month)

	(iiiiiiiiiiii)		
S.N	⁰ Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
4.1	Spoil, overburden or mine wastes	No	Not Applicable
4.2	Municipal waste (domestic and or commercial wastes)	Yes	Domestic effluent will be treated in Septic Tank/soak pit system.
4.3	Hazardous wastes (as per Hazardous Waste Management Rules)	Yes	Detail of Hazardous waste is given in the PFR.
4.4	Other industrial process wastes	Yes	Detail of process waste is given in the PFR.
4.5	Surplus product	No	
4.6	Sewage sludge or other sludge from effluent treatment	No	ETP sludge shall be disposed off through own TSDF site of Atul.
4.7	Construction or demolition wastes	Yes	Only construction waste and debris will be generated and shall be used for filling the low lying areas in the premises and area

	dressing.
4.8 Redundant machinery or equipment	No Not Applicable
4.9 Contaminated soils or other materials	No Not Applicable
4.10 Agricultural wastes	No Not Applicable
4.11 Other solid wastes	No Not Applicable

5 Release of pollutants or any hazardous, toxic or noxious substances to air(Kg/hr)

S.N	⁰ Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
5.1	Emissions from combustion of fossil fuels from stationary or mobile sources	Yes	Emissions from Boilers and D. G. Set will be well within GPCB/CPCB norms after providing of adequate APC devices. From Boilers and D.G.Set PM: <150 mg/Nm3 SO2: <100 ppm NOx: <50 ppm Chimney height of 80 meters shall be provided. Detail of existing and proposed Stack with APC device are mentioned in PFR.
5.2	Emissions from production processes	Yes	Details of process stack and APC for the same is mentioned in PFR.
5.3	Emissions from materials handling including storage or transport	Yes	Fugitive emission shall be generated due to coal handling and boiler ash handling. The same will be controlled by Dust Extraction System and by using closed trucks for transportation. Detail EMP is prepared for Coal loading, unloading, transportation and handling during the operation phase. All liquid raw materials shall be procured in tankers and shall be transferred through a closed circuit pipe lines. Solid raw material are dissolved in water and charged through close pipeline into reacto
5.4	Emissions from construction activities including plant and equipment	Yes	Fugitive emission shall be generated due to construction activities and vehicular emission in the construction phase only which will be mitigated by implementing

			adequate EMP.
5.5	Dust or odours from handling of materials including construction materials, sewage and waste	No	All the waste shall be stored in designated places and shall be transported to their own TSDF or Incineration Site in their own closed vehicles.
5.6	Emissions from incineration of waste	Yes	APC device attached with incinerator have sufficient capacity to take care of proposed load.
5.7	Emissions from burning of waste in open air (e.g. slash materials, construction debris)	No	No open burning of waste shall be done in the premises.
5.8	Emissions from any other sources	No	Not Applicable

S.N	o Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
6.1	From operation of equipment e.g. engines, ventilation plant, crushers	Yes	Noise will be generated fromBoiler but will be restricted to the plant area only and will maintain within prescribed limit. Proper environment plan shall be in place to mitigate the noise. Vibrating pads and acoustic enclosures will be provided for noise generating equipments as per the requirements. Workmen exposed to high noise shall be provided with PPE.
6.2	From industrial or similar processes	Yes	All machinery / equipment shall be well maintained, proper foundation with anti vibrating pads wherever applicable.
6.3	From construction or demolition	Yes	Construction activities will be allowed only for day time to achieve the prescribed norms of noise. No demolition work will be carried out.
6.4	From blasting or piling	No	Not Applicable
6.5	From construction or operational traffic	Yes	During construction phase, noise due to vehicular movement and construction equipments vehicles shall be done to ensure

6 Generation of Noise and Vibration, and Emissions of Light and Heat:

			noise level within the prescribed norms.
6.6	From lighting or cooling systems	No	Not Applicable
6.7	From any other sources	No	Not Applicable

7 Risks of contamination of land or water from releases of pollutants into the ground or into sewers, surface waters, groundwater, coastal waters or the sea:

S.N	⁰ Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
7.1	From handling, storage, use or spillage of hazardous materials	Yes	Hazardous material shall be stored in designated storage areawith concrete flooring and no spillage is likely to occur.
7.2	From discharge of sewage or other effluents to water or the land (expected mode and place of discharge)	Yes	Domestic effluent will be treated septic tank /Soak pit system. The waste water generated from the proposed expansion will be treated in adequate MEE, Incinerator and full fledged ETP.
7.3	By deposition of pollutants emitted to air into the land or into water	No	Treated effluent shall be discharged into 4 km long pipeline constructed by all companies of Atul complex which finally discharged the treated effluent into tidal zone of river Par.
7.4	From any other sources	No	Not Applicable
7.5	Is there a risk of long term build up of pollutants in the environment from these sources?	No	Not Applicable

8 Risk of accidents during construction or operation of the Project, which could affect human health or the environment

S.N	o Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
8.1	From explosions, spillages, fires etc from storage, handling, use or production of hazardous substances	Yes	All standard safety measures and guidelines of Factory Act are being followed to minimize the accidents and same shall be continued after proposed expansion. Fire accidents will be controlled with fire hydrant system installed within the plant to

- 6				
				attend any emergency. PPE are provided to workers. The risk assessment has been carried out and all mitigative measures are taken to avoid accidents.
	8.2	From any other causes	No	Safety awareness trainings are given to the employees and shall be imparted from time to timeand same shall be continued after proposed expansion.
	8.3	Could the project be affected by natural disasters causing environmental damage (e.g. floods, earthquakes, landslides, cloudburst etc)?	No	There is no history of flood in Valsad District. The buildings are designed considering seismic zone III. The land is plain terrain – no scope of landslide. This area is having moderate rainfall and there is no history of cloudburst.However, adequate Disaster Management and Damage control plan is already formulated and implemented and will be updated time to time.

Factors which should be considered (such as consequential development) which
could lead to environmental effects or the potential for cumulative impacts with other existing or planned activities in the locality

S.N	⁰ Information/Checklist confirmation	Yes/N	Details thereof (with approximate quantities/rates, wherever possible) with source of information data
	Lead to development of supporting utilities, ancillary development or development stimulated by the project which could have impact on the environment e.g.:		
9.1	Supporting infrastructure (roads, power supply,waste or waste water treatment, etc.) housing development extractive industries supply industries Other	No	Site is having existing road infrastructure, power supply, which are to be utilized, thus it will not lead to considerable impact on environment.
9.2	Lead to after-use of the site, which could have an impact on the	No	Not Applicable

	environment		
9.3	Set a precedent for later developments	No	Not Applicable
9.4	Have cumulative effects due to proximity to other existing or planned projects with similar effects	No	Not Applicable

(III) Environmental Sensitivity

S.N	0 Areas	Name/Ide	ntity	Aerial distance (within 15km.) Proposed project location boundary
1	Areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value	No		
2	Areas which are important or sensitive for ecological reasons - Wetlands, watercourses or other water bodies, coastal zone, biospheres, mountains, forests	No		
3	Areas used by protected, importan or sensitive species of flora or fauna for breeding, nesting, foraging, resting, over wintering, migration	ıt No		
4	Inland, coastal, marine or underground waters	No		
5	State, National boundaries	No		
6	Routes or facilities used by the public for access to recreation or other tourist, pilgrim areas	No		
7	Defence installations	No		
8	Densely populated or built-up area	a Yes	Vals	adtown at ~8 km
9	Areas occupied by sensitive man-	No		

	made land uses (hospitals, schools, places of worship, community facilities)		
10	Areas containing important, high quali water resources,surfaceresources,forestry,age	•	No
11	Areas already subjected to pollution or environmental damage.(those where existing legal environmental standards are exceeded)	No	
12	Areas susceptible to natural hazard which could cause the project to present environmental problems (earthquakes, subsidence, landslides, erosion, flooding or extreme or adverse climatic conditions) similar effects	No	All possible measures & precautions are considered and implemented to overcome the issues of hazards of any Natural Calamity.

(IV) Proposed Terms of Reference for EIA studies

1	Uploaded Proposed TOR File	Annexure-TOR file
2	Uploaded scanned copy of covering letter	Annexure-scanned copy of covering letter
3	Uploaded Pre-Feasibility report(PFR)	Annexure-PFR
4	Uploaded additional attachments(only single pdf file)	Annexure-Additional attachments

(V) Undertaking

I hereby give undertaking that the data and information given in the application and enclosures are true to be best of my knowledge and belief and I am aware that if any part of the data and information found to be false or misleading at any stage, the project will be rejected and clearance given, if any to the project will be revoked at our risk and cost.

V.(i)	Name of Applicant	Dr. Sharad
	Designation	Corp. General Manager-EHS
	Name of Company (Applicant Name should not be given here)	ATUL LTD
	Address	M/s Atul Industries Ltd, Atul, Valsad. Atul -

396020

Print

Survey No. 274,275 & 276, At & Post: Atul- 396 020, Dist: Valsad, Gujarat

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

FOR

INSTALLATION OF PROPOSED 22 MW CPP

Prepared By:

Eco Chem Sales & Services

A-wing, Ashoka Pavilion, Office floor, Opp. Kapadia Health Club, New Civil Road, Surat-001

Survey No. 274,275 & 276, At & Post: Atul- 396 020, Dist.: VALSAD Gujarat

ENVIRONMENTAL IMPACT ASSESSMENT REPORT

FOR

PROPOSED EXPANSION OF CAPTIVE POWER PLANT (CPP) FROM 34 MW TO 56 MW BY INSTALLING ADDITIONAL 22 MW CPP

Prepared By:

ECO CHEM SALES & SERVICES

(NABET ACCREDITED CONSULTANT) A-Wing, Ashoka Pavilion, Office Floor, Opp. Kapadia Health Club, New Civil Road, Surat- 395001.

PREFACE

Environmental Impact Assessment is a multidisciplinary activity to be incorporated at the planning phase of a project. EIA study integrates the environmental concerns of developmental activities into the process of decision-making so as to satisfy the need of Sustainable Development. It identifies, predicts and signifies the environmental impacts of the proposed project likely to appear at the consequent stages of the development activity (Pre- commissioning, Commissioning and Post-commissioning). These impacts can either be Positive or Negative, Detrimental or Incremental, Direct or Indirect, etc.

EIA has emerged as one of the successful policy innovations of the 20th Century in the process of ensuring sustained development. The EIA process in India was made mandatory and was also promoted a legislative status through a Notification issued by the Ministry of Environment, Forests and Climate Change (MoEFCC) in January 1994.

The proposed project is an expansion project proposed by Atul Ltd., which is an integrated chemical company manufacturing about 1350 products and formulations serving about 4000 customers across the globe. The proposed expansion envisages a new additional 22 MW CPP to meet the power and steam requirements of the additional production capacity of Atul. The project site is located at Survey No. 274,275 & 276, At & Post Atul. As a part of the proponent's long term environmental commitment, the company has initiated the study of Environment Impact Assessment (EIA) within the proposed plant site and its neighboring area of 10 km radius. The company has appointed Eco Chem Sales & Services, a registered Environmental Consultancy to carry out the work of Environmental Impact Assessment Study.

The applicability of the SO 1533 for the proposed project was explored by considering different possibilities & provisions made in the said EIA notification, SO 1533 amended on 14th September 2006. Considering the products, the proposed project falls under Category 1 (d) – B.

The proposed project falls under category-B project, hence it is to be considered at the State level and requires EIA study as per TORs awarded by SEAC, Gandhinagar and needs to undergo a public hearing.

Thus, the proponent has decided to undergo a systematic EIA study for proposed project to plan its project activities in accordance with the application of sustainable development. SEAC has approved the Terms of Reference (ToRs) proposed for the study against the submission of Form-I along with Pre-Feasibility Report at the SEAC, Gandhinagar. With reference to the ToRs, the EIA study for the proposed project was conducted during the period of Dec 2014 to Feb 2015. Eco Chem Sales & Services has conducted a thorough EIA Study for the proposed project by following the guidelines of MoEF sited in Notification SO 1533 & EIA Manual. This report is prepared to enlighten all the aspects of the study with all the essential data & information. The report has been prepared with utmost care to cover maximum details of the study and relevant facets of the project to comply with the approved TORs. Any errors/ deviation detected in the report are due to oversight and are purely unintentional. All efforts have been made to cover-up the shortcomings and remove the errors from the reports.

At the moment of release of the EIA Report, we would like to express our gratitude to the management & Staff of Atul Ltd. for their valuable support & co-operation. We are also thankful to SEAC-Gandhinagar, various Govt. Departments; members of EIA Team and all other associated persons as well as organizations for their direct or indirect support, assistance & co-operation.

Place: SURAT

National Accreditation Board for Education and Training

May 11, 2015

NABET/EIA/RA037/104 The Chief Executive Officer Eco Chem Sales & Services Office Floor, Ashoka Pavillion-A, Opp. Kapadia Health Club, New Civil Road, Surat – 395001 (Kind Attention: Mrs. Rekha Shah)

Dear Madam,

Sub: Re-Accreditation

This has reference to your application to QCI-NABET for re-accreditation (RA) as EIA Consultant Organization and the assessment carried for same in your organization from Mar. 11-12-13-14, 2014.

The Accreditation Committee has approved renewal of accreditation given to your organization for a period of three years from Mar. 14, 2014 to Mar. 13, 2017 subject to coverage of balance Functional areas and specific response to NCs/Obs./Alerts issued, if applicable (Refer Annexure III) with the following details:

- 1. Annexure I Scope of accreditation
- 2. Annexure II Non-Conformances/ Observations/ Alerts (NCs/ Obs./ Alerts)
- 3. Annexure III Terms and conditions of accreditation
- 4. Annexure IV Result of assessment
- 5. Annexure V Guidelines for addressing Major Non-Conformances/ Observations/ Alerts
- Annexure VI Format to be followed for mentioning the names of the experts involved in EIA reports prepared by Eco Chem Sales & Services.

Result of RA including Non-Conformances/ Observations/ Alerts (NCs/ Obs./ Alerts) applicable to your organization as per RA are posted on QCI website vide minutes of the Accreditation Committee meetings dated Apr. 11, Nov. 19 and Nov. 26, 2014.

You are requested to submit closure action for the NCs/ Obs. as per guidelines by June 11, 2015. Continuation of this accreditation of your organization is subject to the clearance of all dues by your organization, satisfactory compliance to Non-Conformances/ Observations/ Alerts (NCs/ Obs./ Alerts).

With best regards,

Yours sincerely

(Abhay Sharma) Assistant Director

00

Scope of Accreditation

Annexure I

				Category
<u>SI.</u> No.			Name of Sector	
1.	1 (a) (i)	1	Mining of minerals including Open cast/ Underground mining	Α
2.	1 (d)	4	Thermal Power Plants	Α
3,	3 (a)	8	Metallurgical industries (ferrous & non ferrous) – both primary and secondary	A
4.	3 (b)	9	Cement Plants	В
5.	5 (a)	16	Chemical Fertilizers	В
6.	5 (b)	17	Pesticides industry and pesticide specific intermediates (excluding formulations)	A
7.	5 (d)	19	Textile - cotton and manmade fibers	А
8,	5 (f)	21	Synthetic organic chemicals industry (dyes & dye intermediates; bulk drugs and intermediates excluding drug formulations; synthetic rubbers; basic organic chemicals, other synthetic organic chemicals and chemical intermediates)	
9.	5 (i)	24	Pulp & paper industry excluding manufacturing of paper from wastepaper and manufacture of paper from ready pulp without bleaching	A
10,	6 (a)	27	Oil & gas transportation pipeline (crude and refinery/ petrochemical products), passing through national parks/ sanctuaries/ coral reefs/ ecologically sensitive Areas including LNG terminal	A
11.	7 (e)	33	Ports, harbours, jetties, marine terminals, break waters and dredging	В
12.	7 (f)	34	Highways, Railways, transport terminals, mass rapid transport systems	
13.	- 8 (a)	38	Building and large construction projects including shopping malls, multiplexes, commercial complexes, housing estates, hospitals, institutions	в

40

(Abhay Sharma) Assistant Director

National Accreditation Board for Education & Training

Quality Council of India

CERTIFICATE OF ACCREDITATION

(CONDITIONAL)¹

M/s Eco Chem Sales & Service

Office Floor, Ashoka Pavilion 'A', Opp. Kapadia Health Club, New Civil Road, Surat - 395001

are hereby accorded conditional accreditation under the QCI-NABET Scheme for Accreditation of EIA Consultant Organizations (Rev. 09, August 2011) for the following scope/s:

S.No.	Name of the Sector ²	Category
1	Thermal Power Plants	В
2	Metallurgical industries (ferrous & non ferrous) - both primary and secondary	A
3.	Cement Plants	A
4.	Chemical fertilizers	В
5,	Pesticides industry and pesticide specific intermediates (excluding formulations)	A
6	Textile Cotton and manmade fibers	A
7.	Synthetic organic chemicals industry etc.	A
8	Pulp & paper industry etc.	A
9	Oil & gas transportation pipeline etc.	A
10.	Industrial estates/ parks/ complexes/ areas, export processing zones (EPZs), Special Economic Zones (SEZs) etc.	A
11.	Ports, harbours, jettles, marine terminals, break waters and dredging	В
12.	Common Effluent Treatment plants (CETPs)	В
13.	Building and large construction projects including shopping malls, multiplexes, commercial complexes, housing estates, hospitals, institutions	8
14.	Food Processing	

1-Coverage of 5 core Functional areas viz AP, WP, SHW, SE and EB. 2-Details are given in Annexure IA

Accreditation to the above Sectors is subject to the EIA reports being prepared by the experts (EIA Coordinators & Functional Area Experts) mentioned in Annexure IB and compliance to the Terms and Conditions mentioned in Annexure IC.

Final certificate of Accreditation shall be issued on fulfilment of the following condition:

1. Arronging in-house/emponelled expert/s for vibrotion, Geology and Soil Conservation.

Certificate No: NABET/ EIA/ 1114/ SA037

Valid up to:Feb. 01, 2014"

Subject to

Cantinual compliance to NABET Scheme and any updation, if applicable.

Updated status of accreditation should be verified from QCI website (www.qcin.org).

Declaration by Experts contributing to the EIA of Atul Limited., AT & POST: ATUL -396 020, Dist.: VALSAD, Gujarat. 1, hereby, certify that I was a part of the EIA team in the following capacity that developed the above EIA.

Name of EIA Coordinator	ŝ.	Mr. Dhaval Jnaveri
Signature	1.1	Stan
Date	1	10/07/2015
Period of Involvement	÷.	December 2014 to February 2015
Contact Information	11	eco@ecoshripad.com and rsshah06@yahoo.com

Functional Area Experts:

No.	Functional Areas	Name of Experts	Involvement (Period & Task)	Signature
1	AP	Rekha Shah	Selecting ambient air monitoring locations, review of AAQM data, review of existing stack monitoring data & Air pollution control measures, suggested APC for proposed expansion	Robbert
2	WP	Kirtan Patel	Identifying water monitoring locations, review of existing wastewater treatment facility, suggested water reusing options	4102
3	SHW	Rekha Shah	Inventory of Hazardous/solid waste, suggested waste disposal	R.M.et
4	HG	Rekha Shah	Identifying the sources of surface and ground water Review analysis reports of SW, GW & Soil Samples Giving suggestions in EMP & Post Project	Ristlate

(Format of first inside page for EIA reports mentioning the names of the experts involved)

			Monitoring Plan as well as Preventive/Mitigation Measures.	
5	SE	Ghanshyam Patel	Generated primary data, livestock inventory/impacts, identified village-wise amenities/needs.	Gentertel
6	EB	Dipti Patel	Conducting site survey and visiting the surrounding area for collection of primary data, secondary sources for generating primary data of study/core area.	AR-
7	AQ	Dhaval Jhaveri	Meterological & Air Pollution dispersion studies, suggesting environmental management plan for air pollution control measures	Dente
8	NV (Noise only)	Dipti Patel	Selecting the noise monitoring locations, identification of impacts and mitigation measures & EIA documentation	And .
9	LÜ	Nirzar Lakhia	Prepare 10 km radius landuse map using Geocoded False Colour Composite scene of IRS- IC LISS III / LISS IV images along with Survey of India (SOI) Toposheets	1- in say
10	RH	Kirtan Patel	Identification of process & storage area, Fire accidents from Coal and Diesel storage and lethality damages, DMP and EPP for onsite & offsite were provided.	KIL

(Format of first inside page for EIA reports mentioning the names of the experts involved)

Declaration by the Head of the Accredited Consultant Organization

I, Rekha S. Shah, hereby, confirms that the above mentioned experts prepared the EIA of Atul Limited .I also confirm that I shall be fully accountable for any mis-leading information mentioned in this statement.

Signature	3	Ryghal
Name	11	Rekha S. Shah
Designation	18	CEO
Name of the EIA Consultant Organization	4	Eco Chem Sales & Services, Office floor, Ashoka Pavillion – A, Opp. Kapadia Health club, Surat – 395 001
NABET Certificate No. & Issue Date	ł	Listed in Sr. no. 35 of QCI List (Rev. 33, August, 2015)

(Format of first inside page for EtA reports mentioning the names of the experts involved)

No	Name of Members	Signature
1	Foram Desai	Peres
2	Hemlatta Patel	HBter
3	Sunilkumar Pandey	Maller
4	Dhaval Shah	Danal
5	Jinal Mistry	This by
6	Rajat Gondaliya	Quip
7	Sunil Patel	for
8	Deepak Maru	Prost A. Marry

EIA Team (Supporting Members)

Infrastructure

ATUL LTD

Atul 396020, Gujarat, India Telephone: +91 2632 230000, 233261 Telefax: +91 2632 233027, 233619 F-mail: atul_infra@atul.co.in Website: www.atul.co.in

Undertaking letter for Owing EIA & EMP report

Dated: 24/10/2015

The Member Secretary, State Level Expert Appraisal Committee (SEAC), Gujarat Pollution Control Board, 4th floor, Sector – 10 A, Paryavaran Bhavan, Gandhinagar.

Respected Sir,

Subject: Undertaking letter for ownership of EIA and EMP and other documents of our proposed expansion of Captive Power Plant (CPP) of ATUL LIMITED located at Survey No.: 274, 275 & 276, at & post: Atul – 396 020, Dist: Valsad, Gujarat.

Reference: MoEF & CC office memorandum vide letter No: J-11013/41/2006 (A.II (I), Dated: 05/10/2011

We hereby give you an undertaking for owing the contents and information provided in EIA and EMP report submitted to SEAC, Gandhinagar for Environmental Clearance for proposed expansion of Captive Power Plant (CPP) from 34 MW to 56 MW by installing additional 22 MW CPP within the existing premises of ATUL LIMITED located at Survey No.: 274, 275 & 276, at & post: Atul – 396 020, Dist: Valsad, Gujarat.

Yours Sincerely,

Registered Office: Ashoka Chambers, Rasala Marg, Ahmedabad 380006, Gujarat, India Telephone: +91 79 26461294, 26460520 Fax: -91 79 26404111

Dated: 24/10/2015

The Member Secretary, State Level Expert Appraisal Committee (SEAC), Gujarat Pollution Control Board, 4th floor, Sector – 10 A, Paryavaran Bhavan, Gandhinagar.

Respected Sir,

Subject: Undertaking on the compliance of Terms Of Reference issued by the SEAC, Gandhinagar for proposed expansion of Captive Power Plant (CPP) of ATUL LIMITED located at Survey No.: 274, 275 & 276, at & post: Atul – 396 020, Dist: Valsad, Gujarat.

O CHE

POLLUTION CONTROL CONSULTANT ENGINEERS & CONTRACTORS

Reference: MOEF & CC office memorandum vide letter No: J-11013/41/2006 IA.II (I), Dated: 04/08/2009.

We hereby give you an undertaking that the Terms Of Reference (ToR) issued by the SEAC, Gandhinagar for carrying out Environmental Impact Assessment (EIA) & Environmental management Plan (EMP) studies for proposed expansion of Captive Power Plant (CPP) from 34 MW to 56 MW by installing additional 22 MW CPP within the existing premises of ATUL LIMITED have been address and incorporated in the final EIA & EMP report submitted to SEAC, Gandhinagar.

Yours Sincerely,

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Contents

LIST OF TABLES11
LIST OF FIGURES15
LIST OF ANNEXURE17
ABBREVIATIONS
TOR ISSUED BY SEAC, GUJARAT
TOR COMPLIANCE
CHAPTER – 1 INTRODUCTION
1.1 GENERAL
1.2 INTRODUCTION OF PROJECT PROPONENT
1.3 DETAILS OF THE PROJECT SITE
1.4 EXISTING SCENARIO & PROPOSED EXPANSION
1.5 JUSTIFICATION OF THE PROPOSED EXPANSION
1.6 DEMAND SUPPLY GAP
1.7 REGULATORY FRAMEWORK & NEED OF EIA STUDY
1.8 SCOPE & OBJECTIVES OF THE EIA STUDY
1.9 THE EIA CYCLE AND PROCEDURES
1.9.1 Screening
1.9.2 Scoping
1.9.3 Baseline data collection
1.9.4 Impact prediction
1.9.5 Mitigation measures and Environmental Management Plan (EMP)
1.9.6 Risk Assessment and Disaster Management Plan
1.10 EIA REVIEW AND APPLICATION FOR EC
1.11 STRUCTURE OF EIA REPORT
CHAPTER – 2 PROJECT DESCRIPTION
2.1 GENERAL

2.2 PROJECT LOCATION
2.2.1 Site selection criteria
2.2.2 Alternative Site Selection
2.2.3 Connectivity and Salient features of the Project Site
2.3 PROJECT LOCATION DESCRIPTION
2.3.1 Climate Conditions
2.4 DESCRIPTION OF THE EXISTING FACILITIES
2.5 RESOURCES REQUIREMENT
2.5.1 Land requirement
2.5.2 Water requirement
2.5.3 Power & Fuel requirement
2.5.4 Man Power requirement
2.5.5 Raw Material requirement & Product
2.6 DESCRIPTION OF PROPOSED CPP
2.6.1 Components of CPP70
2.7 AUXILIARY SYSTEM
2.7.1 Coal Handling System
2.7.2 Lime Dosing system (If Lignite is used as main Fuel)
2.7.3 Fly Ash Handling System
2.7.4 Bed Ash Handling System
2.7.5 Raw Water Treatment System
2.8 POLLUTION POTENTIAL AND ITS CONTROL MEASURES
2.8.1 Water Environment
2.8.2 Air Environment
2.8.2 Air Environment 88 2.8.3 Solid/Hazardous Waste 92

2.10GREEN BELT DEVELOPMENT	
CHAPTER – 3 BASELINE ENVIRONMENTAL STATUS	96
3.1 INTRODUCTION	96
3.2 METHODOLOGY	
3.2.1 Study Period and Frequency of Sampling	99
3.2.2 Method of Environmental Sampling & Analysis	101
3.3 BASELINE ENVIRONMENTAL STATUS	
3.4 MICROMETEOROLOGY	
3.4.1 Source of Meteorological Data	
3.4.2 Temperature	
3.4.3 Humidity	
3.4.4 Wind Velocity	
3.4.5 Wind Rose	111
3.5 AIR ENVIRONMENT	
3.5.1 Selection of Sampling Locations	124
3.5.2 Frequency and Parameters for Sampling	
3.5.3 Instrument for Sampling	
3.5.4 Quality of Ambient Air	
3.5.5 Summary of Ambient Air Quality	
3.6 NOISE ENVIRONMENT	
3.6.1 Source of Noise Pollution	134
3.6.2 Noise Level in the Study Area	134
3.7 LAND ENVIRONMENT	139
3.7.1 Land Use Pattern	139
3.8 SOIL QUALITY	142
3.8.1 Summary of Soil Quality	146

3.9 WATER ENVIRONMENT	147
3.9.1 Reconnaissance	
3.9.2 Water Quality	
3.9.3 Sampling & Analysis	
3.9.4 Ground Water Resources	
3.9.5 Summary of Ground Water Quality	
3.9.6 Surface Water	
3.9.7 Summary of Surface Water Quality	
3.10 ECOLOGY	161
3.10.1 Methodology Adopted for the Study of Flora & Fauna	161
3.11 SOCIO-ECONOMIC ENVIRONMENT	
3.11.1 Socio-Economic Survey Methodology	167
3.11.2 Demography	
3.11.3 Population Density	
3.11.4 Sex Ratio	
3.11.5 Literacy Rate	
3.11.6 Economic Aspects	174
CHAPTER – 4 PROBABLE IMPACT & MITIGATION MEASURES	
4.1 INTRODUCTION	
4.2 IDENTIFICATION OF ENVIRONMENTAL ATTRIBUTES	
4.3 IDENTIFICATION OF IMPACT ACTIVITY	
4.3.1 Construction phase	
4.3.2 Operation phase	
4.4 ENVIRONMENTAL FACETS & PARAMETERS	
4.5 TYPES & NATURE OF IMPACTS CONSIDERED	
4.6 ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASURES	

4.6.1 Air Environment	
4.6.2 Water Environment	192
4.6.3 Land Environment	195
4.6.4 Noise Environment	198
4.6.5 Ecological Environment	199
4.6.6 Socio-Economic Environment	201
4.7 RENEWABLE RESOURCES DURING CONSTRUCTION & OPERATION PHASE	
4.8 IMPACT DUE TO INCREASE IN TRAFFIC DENSITY	
4.9 IMPACT ANALYSIS BY MATRIX METHOD	
CHAPTER – 5 ENVIRONMENTAL MONITORING PLAN	210
5.1 GENERAL	210
5.2 ENVIRONMENTAL MONITORING PLAN	210
5.3 ENVIRONMENTAL ASPECTS TO BE MONITORED	211
5.3.1 Ambient Air Quality	212
5.3.2 Stack Emissions Monitoring	213
5.3.3 Solid / Hazardous Waste Generation & Utilization	213
5.3.4 Green Belt Development	214
5.3.5 House Keeping	214
5.3.6 Occupational Health and Safety	214
5.3.7 Socio-Economic Development	215
5.3.8 Effluent Quality	215
5.3.9 Work Zone Air Quality& Noise	215
5.4 FREQUENCY OF MONITORING PARAMETERS	216
5.5 MONITORING METHODOLOGIES	217
5.6 LABORATORY FACILITIES	217
PHOTOGRAPHS OF R&D LAB	

5.7 DOCUMENTATION & RECORDS	
5.8 BUDGETARY PROVISION FOR ENVIRONMENTAL MANAGEMENT SYSTEM	
CHAPTER – 6 ADDITIONAL STUDIES	220
6.0 GENERAL	
6.1 SCOPE OF THIS STUDY	
6.2 GENERAL	
6.3 OBJECTIVES OF RISK ASSESSMENT	
6.4 METHODOLOGY ADOPTED	
6.5 RISK MATRIX	224
6.6 DETAILS OF STORAGE FACILITIES	224
6.7 QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES	
6.7.1 Boilers	228
6.7.2 DG Set	232
6.7.3 Material Handling/Transportation	235
6.7.4 Storage of Combustible Material (HSD & Coal & lignite)	236
6.8 RECOMMENDATIONS	
6.8.1 For Boilers	237
6.8.2 For DG Set	238
6.8.3 for Material Handling/Transportation/Storage	239
6.8.4 Personnel Safety Measures:	239
6.8.5 Noise Environment:	
6.8.6 Coal Handling System:	
6.9 SYSTEMS FOR FIRE FIGHTING:	
6.10 NATURE OF THE EMERGENCY	
6.10.1 Objectives of Emergency Management System	247
6.11 ONSITE EMERGENCY PLAN	

6.11.1 Purpose:
6.11.2 Types of Emergencies:
6.11.3 Control Room
6.11.4 Organisation for Tackling Emergency:248
6.11.5 Telephone Communication Guide Line
6.11.6 Fire:
6.11.8 Injury:
6.11.9 Declaration of Major Emergency
6.11.10 Giving all clear signal:
6.12 OFF SITE EMERGENCY:
6.12.1 Communication In Case Of Major Emergency
6.12.2 MUTUAL AID
6.13 GENERAL
6.13.1 Accident Investigation A\and Reporting*259
6.13.2 Public Relation
6.13.3 Plant Evacuation Procedure:
6.13.4 Personal Protective / Emergency Equipments
6.13.5 Revision & Updating:
6.13.6 MOCK DRILLS & TRAINING
6.14 GENERAL
6.15 OCCUPATIONAL HEALTH
6.15.1 Construction and Erection
6.15.2 Operation and Maintenance
6.16 SAFETY PLAN DURING PROJECT EXECUTION STAGE (CONSTRUCTION & COMMISSIONING)
CHAPTER – 7 PROJECT BENEFITS269

8.9 ENVIRONMENTAL MANAGEMENT CELL	308
8.10 UPDATING OF EMP	309
8.11 IMPLEMENTATION OF EMP AND RESPONSIBILITY	309
8.12 SOCIAL WELFARE & UPLIFTMENT PLAN	309
CHAPTER – 9 SUMMARY & CONCLUSION	311
9.1 GENERAL	311
9.2 PROJECT LOCATION	312
9.2.1 Project Site:	312
9.2.2 Salient Features of the Project Site	312
9.3 RESOURCE REQUIREMENT	314
9.4 RAW MATERIALS	315
9.5 PRODUCTS & CAPACITY	315
9.6 BASELINE ENVIRONMENTAL STATUS	316
9.7 IMPACTING ACTIVITIES	322
9.8 IMPACT PREDICTION	323
9.9 ENVIRONMENTAL MANAGEMENT PLAN	325
9.10 ADDITIONAL STUDIES	331
9.10.1 Risk Assessment	331
9.10.2 Disaster Management System	331
9.11 OCCUPATIONAL HEALTH, SAFETY & HOUSEKEEPING	332
9.12 GREENBELT DEVELOPMENT PLAN	332
9.13 RAIN WATER HARVESTING PLAN	333
9.14 ENVIRONMENTAL MANAGEMENT CELL	333
9.15 SOCIAL WELFARE AND UPLIFTMENT PLAN	334
9.16 PUBLIC HEARING	336

9.17 CONCLUSION
CHAPTER – 10 DISCLOSURE OF CONSULTANT ENGAGED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

LIST OF TABLES

Table No. 1.1 – Structure of EIA report 51
Table No. 2.1 – Salient Features of the Project site
Table No. 2.2 – Land area breakup
Table No. 2.3 – Land area breakup for proposed CPP 64
Table No. 2.4 – Water Consumption details
Table No. 2.5 – Details of Fuel consumption with various options 66
Table No. 2.6 – Technical specification of Boiler and Auxiliaries 70
Table No. 2.7 – Technical specification of Steam Turbine
Table No. 2.8 – Water Treatment Plant capacity
Table No. 2.9 – Cooling tower make up water requirement
Table No. 2.10 – Details of Coal handling system 76
Table No. 2.11 – Water Consumption & Wastewater Generation details 83
Table No. 2.12 – Summary of fuel consumption with different option and stack height
Table No. 2.13 – Flue gas emissions and air pollution control measures for existing and proposed
scenario
Table No. 2.14– Technical Specification of existing & proposed ESP
Table No. 2.15 – Calculation of Ash collected per day 92
Table No. 2.16 – Details of solid/hazardous waste
Table No. 2.17 – Project Cost break up 94
Table No.3.1.1 Environment Monitoring Locations in the study region
Table No 3.2.1: Frequency of Environmental Monitoring 100
Table No. 3.2.2: Method of Environmental Sampling & Analysis 101
Table No.3.4.1 Details of Temperature Nr. Project site (Dec'14 to Feb'15)
Table No 3.4.2: Details of Humidity Nr. Project site (Dec'14-Feb'15) 105

Table No. 3.4.3 Details of Wind speed Nr. Project site (Dec'14-Feb'15))8
Table No.3.4.4 Frequency Count Chart (December, 2014)	2
Table No. 3.4.5 Frequency Distribution Chart (December, 2014) 11	13
Figure No. 3.4.6 Wind rose diagram for the month of December, 2014	5
Table No. 3.4.7 Frequency Count Chart (January, 2015) 11	6
Table No. 3.4.8 Frequency Distribution Chart (January, 2015) 11	17
Table No. 3.4.11 Frequency Count Chart (February, 2015)	20
Table No. 3.4.12 Frequency Distribution Chart (February, 2015) 12	21
Table No 3.5.1 Air Quality Monitoring Location Details 12	25
Table No 3.5.2 Details of Analysis Method 12	28
Table No.3.5.3 Percentile Value of PM_{10} & $PM_{2.5}$ (Dec'14 to Feb'15)	29
Table No. 3.5.4 Percentile Value for ambient air analysis (SO ₂ & NO _x) (Dec'14 to Feb'15)	29
Table No3.5.5 Results of CO (Dec'14 to Feb'15) 13	30
Table No. 3.5.7 Ambient Air Quality Standards 13	
	32
Table No. 3.5.7 Ambient Air Quality Standards 13	32 34
Table No. 3.5.7 Ambient Air Quality Standards 13 Table No. 3.6.1 Noise Sampling Locations 13	32 34 37
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13	32 34 37 38
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13	32 34 37 38 40
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13Table 3.7.1: Land use Statistics (10 km)14	 32 34 37 38 40 42
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13Table 3.7.1: Land use Statistics (10 km)14Table No.3.8.1: Sampling Locations14	 32 34 37 38 40 42 45
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13Table 3.7.1: Land use Statistics (10 km)14Table No.3.8.1: Sampling Locations14Table No.3.8.2: Average Results of Soil Samples (Dec'14 to Feb'15)14	 32 34 37 38 40 42 45 46
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13Table 3.7.1: Land use Statistics (10 km)14Table No.3.8.1: Sampling Locations14Table No.3.8.2: Average Results of Soil Samples (Dec'14 to Feb'15)14Table No.3.8.3: Soil Texture analysis (Dec'14 to Feb'15)14	 32 34 37 38 40 42 45 46 48
Table No. 3.5.7 Ambient Air Quality Standards13Table No. 3.6.1 Noise Sampling Locations13Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)13Table No 3.6.2: Noise Level Standards13Table 3.7.1: Land use Statistics (10 km)14Table No.3.8.1: Sampling Locations14Table No.3.8.2: Average Results of Soil Samples (Dec'14 to Feb'15)14Table No.3.8.3: Soil Texture analysis (Dec'14 to Feb'15)14Table No.3.9 Sampling Locations14	 32 34 37 38 40 42 45 46 48 51

Table No. 3.9.4 Details of Surface Water Sampling Locations 155
Table No. 3.9.5 Surface water Analysis Report (Dec'14 to Feb'15)
Table No. 3.9.6 Surface water Analysis Report (Dec'14 to Feb'15)
Table No.3.9.7 Bacteriological Analysis of surface Water (Dec'14 to Feb'15)
Table No.3.9.8 Inland Surface Water Classification (CPCB Standards)
Table No. 3.10.1 Details of Flora 162
Table No. 3.10.2 Details of Wild Life 164
Table No. 3.10.3 Details of Fishes
Table No. 3.11.1 Details of Population in Study Area 169
Table No. 3.11.2: Details of Sex Ratio in Study Area 171
Table No. 3.11.4 Details of Literacy Rate in Study Area 172
Table No. 3.11.5 Details of Occupational Structure 175
Table No.3.11.6 Key infrastructure available 177
Table No: 4.1 Flue gas emissions and air pollution control measures at existing and proposed scenario 185
Table No. 4.2 – Hazardous/Solid Waste Generation Details
Table No. 4.3 – Environmental Impact Assessment Matrix without Mitigation Measures(Construction Phase)
Table No. 4.4 – Environmental Impact Assessment Matrix with Mitigation Measures (Construction Phase)
Table No. 4.5 – Environmental Impact Assessment Matrix without Mitigation Measures (Operation Phase) 207
Table No. 4.6 – Environmental Impact Assessment Matrix with Mitigation Measures (Operation Phase)
Table No. 5.1 – Locations of Ambient air monitoring carried out by Atul Limited
Table No. 5.2 – Frequency of Environmental Monitoring Parameters

Table No. 5.3 – Method of Environmental Sampling & Analysis	217
Table No. 5.4 – Budgetary Provision for Environment Management System	219
Table 6.1-A: Storage Details of Raw Material	226
Table 6.1-B: Raw Materials Consumption details	227
Table 6.1-C: Products details	227
Table 8.1: Budgetary Provision for Environmental Management	307
Table No. 9.1 – Salient Features of the Project site	313
Table No 9.2: Frequency of Environmental Monitoring	316
Table No 9.3: Method of Environmental Sampling & Analysis	317
Table 9.4: Baseline Status of the study area	318
Table 9.5 Major Activities & Associated Potential Impacts	323

EXPANSION IN EXISTING CAPTIVE POWER PLANT

LIST OF FIGURES

Figure No. 1.1 – Location of the Project Site
Figure No. 1.2 – Flowchart of EIA activities carried out for EIA report
Figure No. 2.1 Google Map
Figure No. 2.2 Layout Plan showing Existing and Proposed Location
Figure No. 2.3 – Mass Balance Flow Diagram75
Figure No. 2.4 – Raw water treatment Diagram
Figure No. 2.5 – Water Balance Diagram (Expansion)
Figure No. 2.6 – Flow Diagram of Existing ETP
Figure No. 2.7 – Discharge point location of existing treated effluent
Figure No. 3: Map showing the study region
Figure No .3.4.1 Temperature Variation during December, 2014
Figure No 3.4.2 Temperature Variation during January, 2015104
Figure No.3.4.3 Temperature Variation during February, 2015
Figure No. 3.4.4 Month wise Humidity Variation in % (December, 2014)
Figure No. 3.4.5 Month wise Humidity Variation in % (January, 2015)
Figure No 3.4.6: Month wise Humidity Variation in % (February, 2015)
Figure No.3.4.7 Wind Speed Variation in km/hour (December, 2014)110
Figure No. 3.4.8 Wind Speed Variation in km/hour (January 2015)110
Figure No. 3.4.9: Wind Speed Variation in km/hour (February, 2015)111
Figure No.3.4.10 Wind class frequency distribution (December, 2014)
Figure No. 3.4.11 Wind class frequency distribution (January, 2015)
Figure No. 3.4.12 Wind rose diagram for the month of January, 2015
Figure No. 3.4.13 Wind class frequency distribution (February, 2015)
Figure No. 3.4.14 Wind rose diagram for the month of February, 2015

Figure No. 3.5.1 Ambient Air Monitoring locations	126
Figure No.3.5.2 Ambient Air Monitoring Photographs	127
Figure No. 3.5.3 PM ₁₀ Conc. Variation in study Area	130
Figure No. 3.5.4 PM _{2.5} Conc. Variation in Study Area	131
Figure No. 3.4.5 Variation in SO ₂ Conc. In study area	131
Figure No. 3.5.6 Variation in NO _x Conc. In study area	132
Figure No. 3.6.1 Map Showing the Noise Sampling Locations	135
Figure No. 3.6.2 Noise Monitoring Photographs	136
Figure No. 3.6.3 Variation in Noise Level during day time	137
Figure No. 3.6.4 Variation in Noise Level during night time	138
Figure 3.7.1: Land use Map	141
Figure No.3.8.1: Soil Sampling Locations	143
Figure No.3.8.2: Soil Sampling Photographs	144
Figure No 3.9.1 Map Showing Ground Water Sampling Locations	149
Figure No 3.9.2 Ground Water Sampling Photographs	150
Figure No.3.9.3 Map showing the locations for Surface water	155
Figure No.3.9.4 Surface water sampling Photographs	156
Figure 3.11.1 Socio-economic survey Photographs	168
Figure No. 3.11.2: Graph of Literacy Rate	174
Figure No. 3.11.3 Occupational Structure of Study Area	177
Figure No: 6.2 Firefighting Layout	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

LIST OF ANNEXURE

EXPANSION IN EXISTING CAPTIVE POWER PLANT

ABBREVIATIONS

- 1. NH National Highway
- 2. CPP Captive Power Plant
- 3. EC Environmental Clearance
- 4. SEIAA State Level Environment Impact Assessment Authority
- 5. CC&A Consolidated Consent & Authorization
- 6. GPCB Gujarat Pollution Control Board
- 7. SFB Stoker Fired Boilers
- 8. ESP Electrostatic Precipitator
- 9. AFBC Atmospheric Fluidized Bed Combustion
- 10. EIA Environmental Impact Assessment
- 11. SEAC State level Expert Appraisal Committee
- 12. MoEF Ministry of Environment & Forest
- 13. TOR Terms of Reference
- 14. APH Air Pre Heater
- 15. MGF Multi Grade Filter
- 16. MB Membrane Filter
- 17. UF Ultra Filtration
- 18. SMBS Sodium Meta Bisulphite
- 19. ETP Effluent Treatment Plant
- 20. PPEs Personnel Protective Equipments
- 21. GLC Ground Level Concentration
- 22. ISCST3 Industrial Source Complex Short Term dispersion model
- 23. RSPM Respirable Suspended Particulate Matter
- 24. SPM Suspended Particulate Matter

- 25. SO_2 Sulphur Dioxide
- 26. NOx Oxides of Nitrogen
- 27. APHA American Public Health Association
- 28. EMP Environmental Management Plan
- 29. CPCB Central Pollution Control Board
- 30. FMO Factory Medical Officer
- 31. OHC Occupational Health Centre
- 32. PEL Permissible Exposure Limit
- 33. CSR Corporate Social Responsibility
- 34. EMS Environmental Management System
- 35. EMC Environmental Management Cell
- 36. KLD-Kilo liter per day
- 37. RO-Reverse osmosis plant
- 38. DM-De Mineralized plant
- 39. BMCR-Boiler Max. continuous rating
- 40. PRDS- Pressure reducing & de superheating station
- 41. TPH-Tonne per Hour
- 42. PLC- programmable logic controller
- 43. MOU- memorandum of understanding
- 44. SOP-Standard Operating Procedure
- 45. MSRL-Mild Steel Rubber Lined
- 46. NA-Not Applicable

EXPANSION IN EXISTING CAPTIVE POWER PLANT

TOR ISSUED BY SEAC, GUJARAT

SECRETARY State Level Expert Appraisal Committee STATE LEVEL EXPERT APPRAISAL COMMITTEE, GUJARAT. Office : Gujarat Pollution Control Board, "Paryavaran Bhavan", Sector 10-A. Gandhinagar-382010, GUJARAT Phone : 079 -23232152, Fax : 079 -23222784. Email ; ms-gpcb@gujarat.gov.in

Ref. No.: EIA-10-2014-6886-E_9.51/

To, Dr. G I Dave Atul Limited, At & Post: Atul- 396020 Dist.: Valsad \$2/05/2015

Sub: Environment Clearance under the EIA Notification 2006 for your proposed project at Atul Limited, Valsad.

Dear Sit,

This refers to your application on the subject mentioned above and the meeting held with the State Level Expert Appraisal Committee, Gujarat, on 5th Dec 2014. The relevant information liumished in Form I, Prefeasibility report and presentation made before the SEAC was considered and the additional TOR required was communicated to you by the SEAC immediately after the said presentation. However, a copy of the same is attached herewith for further necessary action at your end. You may please furnish the desired information / documents to enable us to process the application further.

With regards,

Yours sincerely,

(K C Mistry) Secretary, State Level Expert Appraisal Committee

Encl : As above.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Project / Act	tivity No	• 1(d)			
1. D. Col			and a second	and a second second	
 Project 	t Propon	ient submitted Application vide	their letter ca	ted 21/08/201/	4
Project statu	us: Expa	Insign			
Project / Act					
This is an e	xisting a	chemical manufacturing compl	ex and unit	has applied fo	r additional CF
		chemical manufacturing compl	ex and unit	has applied fo	tr additional CF
	low:				
	low: Sr	Product Name		has applied fo	
	low:				
	low: Sr		. 6	roduction Cap	acity After
	low: Sr. no	Product Name	P	roduction Cap Proposed	acity After Expansion
This is an e: abulated bel	low: Sr		. 6	roduction Cap	acity After
abulated bel	low: Sr no 1.	Product Name	Existing 34 MW	roduction Cap Proposed	acity After Expansion 56 MW

Expected project cost is Rs. 96.82 Crores. The proposed power plant is within the existing premises. No additional land required for proposed expansion. Existing plot area is 45079 sq. meters. Area for green belt is 16500 sq. meter, Requirement of fresh water will be 2904 KL/day for the proposed project, which will be sourced from the existing water system. Effluent generation from the entire Atul complex is 19873 KLPD, which is treated in Effluent Treatment Plant of 20 MLD capacity consists of conventional primary, secondary and tertiary stage treatment units. Final treated affluent from the ETP is collected in guard pond and then discharged through closed pipeline to estuary zone of river Par via a diffuser. The waste water generated from the proposed expansion will be 565 KLPD. Effluent generation will be mainly from utilities i.e. Pretreatment plant for water, blow down from boilers, cooling tower & condensate from turbine. The condensate will be recycled and reused. Effluent will be collected in a collection sump of 1500 KL capacity and will be used for ash and dust suppression, gardening, Hence, there will be no additional load of effluent on the existing 20 MLD ETP. Domestic wastewater generation from the proposed activity will be 1 KL/day, which will be treated with the existing sewage (937 KLPD). Existing coal consumption is 20200 MT/Month. Total coal consumption after proposed expansion will be 34138 MT/month. i.e. Additional 13938 MT/Month. There are 3 AFBC boilers, one AFBC and two Stoker fired Boilers. In place of two stoker fired boilers it is proposed to set up two no.s of new Boilers having capacity 50 TPH each. ESP is proposed as air pollution control measures. Existing Diesel & FO consumption for starting up of Boiler is 340 Lifers/hr & 1100 KL/Month respectively. Natural gas is used to the tune of 200000 SCM/Month. Online stack monitoring facilities are available provided for existing stacks and will be provided for the proposed stacks. In addition to existing DG set of 3100 KVA unit has proposed one DG set with capacity 1500 KVA Generation of fly ash and bottom ash will be 6019.2 MT/Month & 1504.8 MT/Month respectively. Fly ash will be supplied to Gement Manufacturing & company's own brick manufacturing plant. Hazardous waste collection, storage and disposal will be carried out as per Hazardous Waste Management Rules.

Technical presentation by the project proponent included general information, location map, plant layout, project synopsis, power generation process, water & fuel consumption details, proposed

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Terms of Reference etc.

As the ESP has been proposed as an APCM to the proposed CPP, the project proponent was asked to run the ESP efficiently to achieve the norms, to provide online stack monitoring system with tripping an argement, to employ the trained personals for running the ESP. On asking about SO₂ emission, project proponent informed that they proposed time dosing for control of SO₂ from the flue gas. After detailed discussion regarding the project, the following additional Terms of Reference were prescribed for EIA study to be done covering 10 Km radius from the project boundary.

- 1. Need for the proposed expansion shall be justified in detail.
- 2. Present land use pattern of the study area shall be given based on satellite imagery.
- 3. Demarcation of proposed activities in lay out of the existing premises. Provision of continuous unoostructed peripheral open path within the project area for unoostructed easy movement of the emergency vehicle / fire tenders without reversing back. Mark the same in the plant layout.
- Explore feasibilities to go for air cooled concensers instead of water cooled concensers in order to reduce the raw water requirement and thus stress on ground water.
- 5. Technical details of the proposed power plant along with details of strategy for implementation reuse / recycle and other cleaner production options for reduction of wastes. Generation of waste gases and utilization of waste heat have to be set out.
- Details of the ETP units including its capacity, size of each unit, retention time and other technical parameters
- 7. Work out the complete treated wastewater_reuse_plan within the Atui Complex-instead of discharging waste water into the existing ETP Submit action plan for complete reuse/ recycle of treated waste water and no increase in effluent load on existing ETP. Submit undertaking in this regard.
- 8 Application wise break-up of treated effluent quantity to be recycled / reused in various applications like sprinking on roads, coal storage yard and green belt development etc. Details about availability of open land for utilizing increased quantum of effluent due to the proposed power plant for plantation / gardening.
- 9. Assessment of source of the water supply with adequacy of the same to meet with the requirements for the project. Copy of letter of permission obtained from the concerned authority for supply of additional raw water for the proposed activities.
- 10 Detailed water balance (including reuse-recycle, if any) alongwith qualitative and quantitative analysis of each waste stream to be generated from all sources including Boilers, Cooling Towers, D.M. Plant etc. Details of methods to be adopted for the water conservation.
- 11. Details of the treatment facilities proposed for the effluent to be generated from the power plant Details of the ETP units including its capacity, size of each unit, retention time and other technical parameters and details about up-gradation in the existing ETP/Central ETP (if any proposed) to take care of the wastewater to be generated from the proposed activities.
- 12. Characteristics of untreated and treated wastewater. A detailed effluent treat ability study visvis the adequacy and efficacy of the treatment facilities proposed for the wastewater to be generated alongwith adequacy and efficacy report. The characteristic on which treatability is based shall also be stated.
- 13 Site-specific meteorological data including temperature, relative humidity, hourly wind speed and direction and rainfall shall be provided.
- 14 Anticipated environmental impacts due to the proposed project/production may be evaluated for significance and based on corresponding likely impacts VECs (Valued Environmental Components) may be identified Baseline studies may be conducted within the study area of 10 km for all the concerned/identified VECs and likely impacts will have to be assessed for their magnitude in order to identify mitigation measures.
- 15 One complete season AAQ data (except monsoon) to be given along with the dates of

EXPANSION IN EXISTING CAPTIVE POWER PLANT

monitoring. The parameters to be covered shall be in accordance with the revised National Ambient Air Quality Standards. The location of the monitoring stations should be so decided as to take into consideration the pre-dominant downwind direction, population zone and sensitive inceptors including reserved forests. There should be at least one monitoring station in the upwind direction. There should be at least one monitoring station in the pre-dominant downwind direction at a location where maximum ground level concentration is likely to occur.

- 16 Impact of the project on the AAQ of the area. Details of the model used and the input parameters used for modelling should be provided. The air quality contours may be plotted on a location map showing the location of project site, habitation, sensitive receptors, if any. The wind roses should also be shown on this map. Air quality modelling to be carried out considering the partial and complete failure of the ESP.
- 17 Quantity of the fuel requirement, its source and transportation, storage, handling and management along with the environmental management to be adopted for this. Fuel analysis to be provided (sulphur, ash content and heavy metals including Pb. Cr. As and Hg).
- A confirmed fuel linkage along with the supportive documents of long term supply of coal for the project requirements should be provided.
- 19 Specific details of (i) Details of the utilities required (ii) Quantity and characteristics of each fuel along with analysis report and its source (iii) Flue gas emission rate from each utility (iv) Air Pollution Control Measures proposed to each of the utility along with its adequacy.
- 20. Technical details of ESP proposed to be installed as air pollution control system along with its adequacy, details of its operational controls with DCS, system for online monitoring of the pollutants from the stack etc. Details of provisions to be kept in ESP to ensure that in any case the air emission does not cross the GPCB norms including provision of standby field in the ESP, preventive maintenance, failure / tripping control system, guarantee from the ESP supplier, alternative arrangements in case of the failure / tripping of the ESP etc. ESP should be designed to achieve GPCB norms at the outlat.
- 21 List of all the sources of fugitive emission. Detailed plan for prevention and control of fugitive emission / dusting at each and every stage of fuel handling including unloading / loading at port, transportation from port to plant, unloading / loading / stacking / conveyance / transfer at plant etc. Detailed specifications and schematic diagram of water sprinkling system including number of sprinklers to be installed, pipe diameter and nozzle diameter of the sprinklers, quantity of water to be consumed by sprinklers etc.
- 22 Impact on local transport infrastructure due to the project such as transportation of fuel, ash etc. Base line status of the existing traffic, projected increase in truck traffic as a result of the project in the present road network, impact on it due to the project activities, carrying capacity of the existing roads and whether it is capable of handling the increased load. Arrangement for improving the infrastructure like road etc. if any should be covered. Whether any additional infrastructure would need to be constructed and the agency responsible for the same with time frame.
- 23. Details and time bound program for installation of online monitoring system in the existing as well as proposed plants for monitoring of the pollutants from the stacks and process vents with a software and an arrangement to reflect the online monitored data on the company's server, which can be accessed by the GPCB on real time basis.
- 24 Provision of Continuous Ambient Air Quality Monitoring Station within premises, with an arrangement to reflect monitored data on the company's server, which can be accessed by the GPCB on real time basis.
- 25 Details of measures proposed for the noise pollution abatement and its monitoring.
- 26 Details of management of the hazardous wastes to be generated from the project stating detail of storage area for each type of waste, its handling, its utilization and disposal etc. How the manual handling of the nazardous wastes will be minimized.
- 27. Detailed plan of ash evacuation, handling, storage and utilization should be provided. Undertaking stating that ash pond shall not be constructed and it shall be stored in closed silos only should be incorporated.

- 28. Details of selsmic design aspects to be adhered to in the project.
- Technical details of conveyor belts and mitigation measures to ensure that there will be no dust emission from conveyor belts.
- 30. Details of proposed disposal of solid wastes that may generate due to spillage of materials.
- 31. Specific safety measures proposed at storage yard / warehouse and conveyor belts
- 32. Datails of fire fighting system including provision for flame detectors, temperature actuated heat detectors with aranns, automatic sprinkler system, location of fire water tanks & capacity, separate power system for fire fighting, details of qualified and trained fire personnel & their job specifications, nearest fire station & time required to reach the proposed site. Submit line diagram of the fire hydrant network.
- 33 Copy of membership certificate of Common Environmental Infrastructure like TSDF, if any taken, should be incorporated
- 34 Details of 100% fly ash utilization plan as per latest fly ash Utilization. Notification of GOI along with firm agreements / MoU with contracting parties including other usages etc. shall be submitted. The plan shall also include disposal method / mechanism of bottom ash.
- 35. A detailed EMP including the protection and miligation measures for impact on human health and environment as well as detailed monitoring plan and environmental management cell proposed for implementation and monitoring of EMP. The EMP should also include the concept of waste-minimisation, recycle/reuse/recover techniques, energy conservation, and natural resource conservation. Total capital cost and recurring cost/annum earmarked for environment pollution control measures.
- 36 Occupational health impacts on the workers and miligation measures proposed to avoid the human health hazards along with the personal protective equipment to be provided to the workers. Provision of industrial hygienist and monitoring of the occupational injury to workers as well as impact on the workers. Plan for periodic medical check up of the workers exposed. Details of work zone ambient air quality monitoring plan as per Gujarat Factories Rules.
- 37. Risk assessment including prediction of the worst-case scenario and maximum credible accident scenario related to fire and explosion issues due to storage and use of fuel should be carried out. The worst-case scenario should take into account the maximum inventory of storage at site at any point in time. The risk contours should be plotted on the plant layout map clearly showing which of the activities would be affected in case of an accident taking place. Based on the same, proposed safeguard measures including On-Site / Off-Site emergency plan should be provided. Measures to guard against fire hazards including details of automatic fire detection and control system & detailed fire control plan showing hydrant pipeline network, provision of DG Sets, fire pumps, jockey pump, toxic gas detectors etc, should also be provided.
- 38 Provisions for water supply, fuel (kerosene or cooking gas). Ighting, sanitation etc. to the construction work force so as to avoid felling of trees/mangroves and pollution of water and the surroundings. Details of personal protective equipments to be provided to construction workers at the site.
- 39. Submit checklist in the form of Do's & Don's of preventive maintenance, strengthening of HSE, manufacturing utility staff for safety related measures.
- 40 Detailed five year greenbeit development program including annual budget, types & number of trees to be planted, area under green belt development [with map], budgetary cutlay, along with commitment of the management to carry out the tree plantation activities outside the premises at appropriate places in the nearby areas and elsewhere.
- 41 Proposal for socio-economic development activities including community welfare program most useful in the project area for the overall improvement of the environment. Submit a detailed plan for social corporate responsibilities, with appropriate budgetary provisions for the next five years and activities proposed to be carried out: specific to the current demographic status of the area.
- 42. Plan for compliance of the EP Rules and CREP guidelines for the proposed power plant.
- 43. Compliance status of the existing unit with respect to various conditions given in the Environmental Clearance and CC&A orders obtained for the existing plants. Records of any

EXPANSION IN EXISTING CAPTIVE POWER PLANT

legal breach of Environmental laws i.e. details of show- cause notices, closure notices etc. served by the GPCB to the existing unit in last three years and actions taken then after for prevention of pollution.

- 44 Copy of Environmental Clearance obtained for the existing project and a certified report of the status of compliance of the conditions stipulated in the environmental clearance for the existing operation of the project by the Regional Office of the MoEF.
- 45 Details of fatal / non-fatal accidents, loss of life or man hours, if any, occurred in the existing unit in last three years and measures proposed to be taken for avoiding reoccurrence of such accidents in future.
- 46. A tabular chart for the issues raised and addressed during public hearing/consultation and commitment of the project proponent on the same should be provided. An action plan to address the issues raised during public hearing and the necessary allocation of funds for the same should be provided.
- 47. Any litigation pending against the project and / or any direction / order passed by any Court of Law against the project, if so, details thereof.
- 48 Does the company, have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions ? If so, it may be detailed in the EIA.
- 49. What is the hierarchical system or administrative order of the company to deal with the environmental issues and for ensuring compliance with the EC conditions. Details of this system may be given.
- 50. Does the company have a system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism should be detailed in the EIA Report.
- Certificate of accreditation issued by the NABET, QCI to the environmental consultant should be incorporated in the EIA Report.

These additional TORs shall be considered for the preparation of the draft EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006. The draft EIA report shall be submitted to the Gujarat Pollution Control Board for conducting the public consultation process as per the provisions of the EIA Notification, 2006. The project shall be appraised on receipt of the final EIA report

The TORs prescribed shall be valid for a period of two years for submission of the EIA-EMP reports along with Public Hearing Proceedings (wherever stipulated).

EXPANSION IN EXISTING CAPTIVE POWER PLANT

TOR COMPLIANCE

Sr. No.	TOR Points	Compliance of TOR
1.	Need for the proposed expansion shall be justified in detail.	Complied. Justification of the proposed expansion is mentioned in Section: 1.5, Page No: 41 of Chapter – 1.
2.	Present land use pattern of the study area shall be given based on satellite imagery.	Complied. Land use study of the project site has been carried out by NABET approved FAE. The LU maps have been prepared from geocoded false color composite scene of IRS-IC LISS III/LISS IV images alongwith toposheet of survey of India. Refer Section: 3.7.1, Page No: 138-140 of
3.	Demarcation of proposed activities in lay out of the existing premises. Provision of continuous unobstructed peripheral open path within the project area for unobstructed easy movement of the emergency vehicle / fire tenders without reversing back. Mark the same in the plant layout.	Chapter – 3. Complied. Demarcation of proposed activities in lay out of the existing premises is mentioned in Figure No: 2.2, Page No: 57 of Chapter – 2.
4.	Explore feasibilities to go for air cooled condensers instead of water cooled condensers in order to reduce the raw water requirement and thus stress on ground water.	 Complied. The water source for the proposed project is river Par, hence there shall not be any stress on ground water. The proponent has explored out the possibility of Air cooled condensers instead of water cooled condensers, but they have not been found viable due to the following reasons: More Power Consumption More Space requirement Steam generation costs are higher Economically not viable
5.	Technical details of the proposed power plant along with details of strategy for	Complied. Technical details of power plant discussed in

Sr. No.	TOR Points	Compliance of TOR
	implementation reuse / recycle and other cleaner production options for reduction of wastes. Generation of waste gases and utilization of waste heat have to be set out.	Refer Section 2.6, Page No: 68-73 of Chapter – 2. Options for implementing Cleaner Production already considered in the proposed expansion project. Refer Section 8.4, Page No. 298 of Chapter -8.
		Proposed power plant is not designed for using fuel other than Coal & Lignite. For utilization of waste hot gases, the CPP has already incorporated Economiser & APH in Gas Circuits.
6.	Details of the ETP units including its capacity, size of each unit, retention time and other technical parameters	Complied. The wastewater generated due to the proposed expansion will not be treated in ETP, it will be utilized for Coal quenching, Dust Suppression and Fire Hydrant. However, details of the existing ETP units, its capacity, size of each unit, retention time and other technical parameters are mentioned in Section: 8.3.2, Page No: 283-288 of Chapter – 8.
7.	Work out the complete treated wastewater reuse plan within the Atul Complex instead of discharging waste water into the existing ETP. Submit action plan for complete reuse/ recycle of treated waste water and no increase in effluent load on existing ETP. Submit undertaking in this regard.	Complied. After the proposed expansion, wastewater will be generated from Pretreatment Plant, Cooling Tower, etc. This wastewater having low TDS in the range of 400-500 ppm. Hence, the wastewater generated due to the proposed expansion will not be treated in ETP, it will be utilized for Coal quenching, Dust Suppression and Fire Hydrant. Undertaking for the same is attached as Annexure – 11.
8.	Application wise break-up of treated effluent quantity to be recycled / reused in various applications like sprinkling on roads, coal storage yard and green belt	Complied. The generated wastewater for the proposed expansion will be utilized for Coal quenching, Dust Suppression and Fire Hydrant.

Sr. No.	TOR Points	Compliance of TOR
	development etc. Details about availability of open land for utilizing increased quantum of effluent due to the proposed power plant for plantation / gardening.	Refer Section 2.8.1, Page No. 83-84 of Chapter -2.
9.	Assessment of source of the water supply with adequacy of the same to meet with the requirements for the project. Copy of letter of permission obtained from the concerned authority for supply of additional raw water for the proposed activities.	Complied. Water will be withdrawn from Par River. The existing unit has obtained permission of the same from Irrigation Department, which shall also suffice the additional water requirement due to the proposed expansion. Permission of the same is attached as Annexure -3 .
10.	Detailed water balance (including reuse- recycle, if any) alongwith qualitative and quantitative analysis of each waste stream to be generated from all sources including Boilers, Cooling Towers, D.M. Plant etc. Details of methods to be adopted for the water conservation.	Complied. Water Balance including Water Consumption and Wastewater Generation is given in Section 2.8.1 of Chapter – 2, page no. 82-84.
11.	Details of the treatment facilities proposed for the effluent to be generated from the power plant. Details of the ETP units including its capacity, size of each unit, retention time and other technical parameters and details about up-gradation in the existing ETP/Central ETP (if any proposed) to take care of the wastewater to be generated from the proposed activities.	Complied. The wastewater generated due to the proposed expansion will not be treated in ETP, it will be utilized for Coal quenching, Dust Suppression and Fire Hydrant. However, details of the existing ETP units, its capacity, size of each unit, retention time and other technical parameters are mentioned in Section: 8.3.2, Page No: 285-287 of Chapter – 8.
12.	Characteristics of untreated and treated wastewater. A detailed effluent treat ability study vis-àvis the adequacy and efficacy of the treatment facilities proposed for the wastewater to be generated along with adequacy and	Complied Characteristics of untreated and treated wastewater are given in Section 8.3.2 of Chapter – 8, page no. 285

Sr. No.	TOR Points	Compliance of TOR
	efficacy report. The characteristic on which treatability is based shall also be stated.	
13.	Site-specific meteorological data including temperature, relative humidity, hourly wind speed and direction and rainfall shall be provided.	Complied Site specific micrometeorological data is collected for the period Dec 2014 - February 2015. Details of the same provided in Section 3.4 of Chapter – 3, page no. 101-122
14.	Anticipated environmental impacts due to the proposed project/production may be evaluated for significance and based on corresponding likely impacts VECs (Valued Environmental Components) may be identified. Baseline studies may be conducted within the study area of 10 km for all the concerned/identified VECs and likely impacts will have to be assessed for their magnitude in order to identify mitigation measures.	A baseline study has been conducted for the period December 2014-February 2015 within the study area of 10 km. Anticipated environmental impacts due to the proposed project/production may have been evaluated for likely impacts. Mitigation measures for the identified impacts have also been suggested to be implemented for the proposed expansion.
15.	One complete season AAQ data (except monsoon) to be given along with the dates of monitoring. The parameters to be covered shall be in accordance with the revised National Ambient Air Quality Standards. The location of the monitoring stations should be so decided as to take into consideration the pre-dominant downwind direction, population zone and sensitive receptors including reserved forests. There should be at least one monitoring station in the upwind direction. There should be at least one monitoring station in the pre dominant downwind direction at a location where maximum ground level concentration is likely to occur.	Complied. AAQ data for the study period December 2014- February 2015 has been generated based on the sampling, monitoring and analysis. AAQ monitoring has been carried out in surrounding villages for 8 locations. 2 locations in Upwind and Downwind direction each were selected, which were Chanvai and Chichvada and are Rentlav and Udwada respectively. Details of the same are given in Section 3.5 of Chapter – 3, page no. 123-132.
16.	Impact of the project on the AAQ of the	Complied

Sr. No.	TOR Points	Compliance of TOR
	area. Details of the model used and the input parameters used for modelling should be provided. The air quality contours may be plotted on a location map showing the location of project site, habitation, sensitive receptors, if any. The wind roses should also be shown on this map. Air quality modelling to be carried out considering the partial and complete failure of the ESP.	For impact prediction of Air pollutant due to proposed expansion on existing ambient air quality, ISCST3 model has been used. Guidelines and Methodology prescribed by CPCB have been followed for measurement of GLC. Contours of the same have been plotted, shown in Section 4.6.1, Chapter – 4, page no. 182-190
		Complied.
	Quantity of the fuel requirement, its source and transportation, storage, handling and management along with the environmental management to be adopted for this. Fuel analysis to be provided (sulphur, ash content and heavy metals including Pb, Cr, As and Hg).	Details of fuel requirement is given in Section 2.5.3 of Chapter – 2, page no. 65.
17.		EMP for fuel handling is given in Section 8.3.1 of Chapter – 8, page no. 280-282.
		Fuel analysis reports area attached as Annexure – 7.
18.	A confirmed fuel linkage along with the supportive documents of long term supply of coal for the project requirements should be provided.	Complied. Coal Linkage been attached as Annexure – 4.
	Specific details of: (i) Details of the utilities required (ii) Quantity and characteristics of each fuel along with analysis report and its source (iii) Flue gas emission rate from each utility (iv) Air Pollution Control Measures proposed to each of the utility along with	Complied. Details of Utility requirements, flue gas emission and APC are given in Section 4.6.1 (b) of Chapter – 4, page no. 182-190
19.		Details of fuel a requirement is given in Section 2.5.3 of Chapter – 2, page no. 65.
		Fuel analysis reports area attached as Annexure – 7.
	its adequacy.	Technical Specification of APC is given in Section 2.8.2 of Chapter – 2, page no. 87-90 .
20.	Technical details of ESP proposed to be	Complied.

Sr. No.	TOR Points	Compliance of TOR
	installed as air pollution control system along with its adequacy, details of its operational controls with DCS, system for online monitoring of the pollutants from the stack etc. Details of provisions to be kept in ESP to ensure that in any case the air emission does not cross the GPCB norms including provision of standby field in the ESP, preventive maintenance, failure / tripping control system, guarantee from the ESP supplier, alternative arrangements in case of the failure / tripping of the ESP etc. ESP should be designed to achieve GPCB norms at the outlet.	Technical Specification of APC is given in Table no. 2.14 and Section 2.8.2 of Chapter – 2, page no. 89-90.
21.	List of all the sources of fugitive emission. Detailed plan for prevention and control of fugitive emission / dusting at each and every stage of fuel handling including unloading / loading at port, transportation from port to plant, unloading / loading / stacking / conveyance / transfer at plant etc. Detailed specifications and schematic diagram of water sprinkling system including number of sprinklers to be installed, pipe diameter and nozzle diameter of the sprinklers, quantity of water to be consumed by sprinklers etc.	Complied. All the sources are identified and mitigation measures for the same are incorporated in Section 8.3.1 (b) of Chapter – 8, page no. 281- 282.
22.	Impact on local transport infrastructure due to the project such as transportation of fuel, ash etc. Base line status of the existing traffic, projected increase in truck traffic as a result of the project in the present road network, impact on it due to the project activities, carrying capacity of the existing roads and whether it is capable of handling the increased load. Arrangement for improving the	Complied. According to fuel quantity and solid waste generation, transportation requirement has been calculated for proposed expansion and described in Section 8.5 page no. 299-300 of Chapter -8. The fuel will be transported by means of railways till Atul Railway Station which is located at a distance of approx. 2 km. From here,

Sr. No.	TOR Points	Compliance of TOR
	infrastructure like road etc. if any should be covered. Whether any additional infrastructure would need to be constructed and the agency responsible for the same with time frame.	the fuel will be transported through trucks upto the project site.
23.	Details and time bound program for installation of online monitoring system in the existing as well as proposed plants for monitoring of the pollutants from the stacks and process vents with a software and an arrangement to reflect the online monitored data on the company's server, which can be accessed by the GPCB on real time basis.	Complied. Online Monitoring System is installed at the Existing Stacks for monitoring of pollutant parameters. Online monitoring system is also planned to be attached with the proposed stacks after the proposed expansion.
24.	Provision of Continuous Ambient Air Quality Monitoring Station within premises, with an arrangement to reflect monitored data on the company's server, which can be accessed by the GPCB on real time basis.	Complied. 10 locations have been identified for monitoring of Ambient Air Quality over the site, out of which 6 are near the CPP and coal shade.
25.	Details of measures proposed for the noise pollution abatement and its monitoring.	Complied.Measureshavebeenproposedforcontrol/abatementofnoisepollutioninSection8.3.5 ofChapter – 8, page no. 290-291.
26.	Details of management of the hazardous wastes to be generated from the project stating detail of storage area for each type of waste, its handling, its utilization and disposal etc. How the manual handling of the hazardous wastes will be minimized.	Complied. Details of management of the hazardous wastes to be generated from the project with details of storage area for each type of waste, its handling, its utilization and disposal are given in Section 4.6.3 (b) of Chapter – 4, page no. 195-196.
27.	Detailed plan of ash evacuation, handling, storage and utilization should be provided. Undertaking stating that ash pond shall not be constructed and it shall be stored in closed silos only should be incorporated.	 Complied. A detailed Ash Handling Plan has been proposed for the proposed expansion project which is given in Section 2.7.4 of Chapter – 2, page no. 77-78 Ash will be stored in closed Silo and no Ash Pond shall be constructed. Undertaking for the

Sr. No.	TOR Points	Compliance of TOR
		same is attached as Annexure - 11
28.	Details of seismic design aspects to be adhered to in the project.	Complied. The proposed expansion shall be carried out considering Seismic design aspects.
29.	Technical details of conveyor belts and mitigation measures to ensure that there will be no dust emission from conveyor belts.	Complied. Closed Conveyor Belts shall be provided and details of the same is described in Section 2.7.1 of Chapter – 2, page no. 75-76. A systematic diagram of coal handling is attached as Annexure – 5.
30.	Details of proposed disposal of solid wastes that may generate due to spillage of materials.	Complied. Only Ash will be generated as a solid waste for the proposed project, which shall be stored in Silos and conveyed through a 'Dense Phase Conveyance System'. Hence, chances of spillage of solid wastes are NIL.
31.	Specific safety measures proposed at storage yard / warehouse and conveyor belts.	Complied. For safety measures at the storage yard & warehouse, refer Section 6.7.4 of Chapter – 6, page no. 235.
32.	Details of fire-fighting system including provision for flame detectors, temperature actuated heat detectors with alarms, automatic sprinkler system, location of fire water tanks & capacity, separate power system for fire-fighting, details of qualified and trained fire personnel & their job specifications, nearest fire station & time required to reach the proposed site. Submit line diagram of the fire hydrant network.	Complied. A Fire Fighting System has been proposed for the proposed expansion in Section 6.9 Chapter – 6, page no. 241.
33.	Copy of membership certificate of Common Environmental Infrastructure like TSDF, if any taken, should be incorporated.	NA Since, no hazardous wastes shall be generated due to the proposed expansion.
34.	Details of 100% fly ash utilization plan as	Complied.

Sr. No.	TOR Points	Compliance of TOR
	per latest fly ash Utilization. Notification of GOI along with firm agreements / MoU with contracting parties including other usages etc. shall be submitted. The plan shall also include disposal method / mechanism of bottom ash.	Unit has MOU with Ambuja Cement for fly ash utilization. Also, the unit has its own Brick Manufacturing Unit for fly ash utilization. MOU with Ambuja Cement is attached as Annexure - 10
35.	A detailed EMP including the protection and mitigation measures for impact on human health and environment as well as detailed monitoring plan and environmental management cell proposed for implementation and monitoring of EMP. The EMP should also include the concept of waste-minimisation, recycle/reuse/recover techniques, energy conservation, and natural resource conservation. Total capital cost and recurring cost/annum earmarked for environment pollution control measures.	Complied. A detailed EMP including the protection and mitigation measures for impact on human health and environment as well as detailed monitoring plan and environmental management cell proposed for implementation and monitoring of EMP is given in Chapter – 8 of EIA report. Total capital cost and recurring cost/annum earmarked for environment pollution control measures is given in Section 8.8 of Chapter – 8 , page no. 306 .
36.	Occupational health impacts on the workers and mitigation measures proposed to avoid the human health hazards along with the personal protective equipment to be provided to the workers. Provision of industrial hygienist and monitoring of the occupational injury to workers as well as impact on the workers. Plan for periodic medical check up of the workers exposed. Details of work zone ambient air quality monitoring plan as per Gujarat Factories Rules.	 Complied. Occupational health impacts on the workers have been identified and mitigation measures for the same have been proposed. Details of the same given in Section 8.3.6 of Chapter – 8, page no. 292-294. Atul Ltd. has its own Medical Centre with a full time Doctor for monitoring of Occupational health of the employees. Regular medical check-up of the employees is carried out and shall be carried out for the proposed expansion also.
37.	Risk assessment including prediction of the worst-case scenario and maximum credible accident scenario related to fire and explosion issues due to storage and use of fuel should be carried out. The	Complied. A detailed Risk Assessment Study (RA) has been carried out for the proposed expansion project which is described in Chapter – 6 of the EIA report.

Sr. No.	TOR Points	Compliance of TOR
	worst-case scenario should take into account the maximum inventory of storage at site at any point in time. The risk contours should be plotted on the plant layout map clearly showing which of the activities would be affected in case of an accident taking place. Based on the same, proposed safeguard measures including On-Site / Off-Site emergency plan should be provided. Measures to guard against fire hazards including details of automatic fire detection and control system & detailed fire control plan showing hydrant pipeline network, provision of DG Sets, fire pumps, jockey pump, toxic gas detectors etc. should also be provided.	Based on the RA, Onsite and Offsite Emergency Plan has been prepared which shall safeguard in case of any emergency arising within the plant.
38.	Provisions for water supply, fuel (kerosene or cooking gas), lighting, sanitation etc. to the construction work force so as to avoid felling of trees/mangroves and pollution of water and the surroundings. Details of personal protective equipments to be provided to construction workers at the site.	Complied. Provisions for water supply, fuel (kerosene or cooking gas), lighting, sanitation etc. to the construction work force will be provided through the existing facilities of the existing unit. Details of PPE is provided in Section 8.3.6 of Chapter – 8, page no. 292-297.
39.	Submit checklist in the form of Do's & Don'ts of preventive maintenance, strengthening of HSE, manufacturing utility staff for safety related measures.	Complied. Refer Section 8.3.6 of Chapter – 8, page no 296-297.
40.	Detailed five year greenbelt development program including annual budget, types & number of trees to be planted, area under green belt development [with map], budgetary outlay; along with commitment of the management to carry out the tree plantation activities outside the premises at appropriate places in the nearby areas and elsewhere.	Complied. A detailed Greenbelt Development & Management Plan alongwith map showing greenbelt for proposed expansion is described in Section 8.6 of Chapter – 8, page no. 301-304.

Sr. No.	TOR Points	Compliance of TOR
41.	Proposal for socio-economic development activities including community welfare program most useful in the project area for the overall improvement of the environment. Submit a detailed plan for social corporate responsibilities, with appropriate budgetary provisions for the next five years and activities proposed to be carried out; specific to the current demographic status of the area.	Complied A budget of Rs. 6.35 Crores is allocated for welfare activities to be undertaken for the proposed expansion. Moreover, detailed CSR plan is described in Section 8.12 of Chapter – 8, page no. 308-309.
42.	Plan for compliance of the EP Rules and CREP guidelines for the proposed power plant.	Complied. Attached as Annexure 12 and 13 respectively.
43.	Compliance status of the existing unit with respect to various conditions given in the Environmental Clearance and CC&A orders obtained for the existing plants. Records of any legal breach of Environmental laws i.e. details of show- cause notices, closure notices etc. served by the GPCB to the existing unit in last three years and actions taken then after for prevention of pollution.	Complied. Compliance report of EC and CC&A is attached as Annexure – 14 & Annexure – 12 respectively. There have been no legal breaches by the proponent, hence no notices have been served to the proponent by GPCB in the last three years.
44.	Copy of Environmental Clearance obtained for the existing project and a certified report of the status of compliance of the conditions stipulated in the environmental clearance for the existing operation of the project by the Regional Office of the MoEF.	Complied. Copy of EC is attached as Annexure – 1. Six monthly report has been submitted to MoEF Bhopal for verification. Letter of the same is attached as Annexure – 14.
45.	Details of fatal / non-fatal accidents, loss of life or man hours, if any, occurred in the existing unit in last three years and measures proposed to be taken for avoiding reoccurrence of such accidents in future.	Complied. No fatal/non-fatal accidents have taken place in the industry in the last three years. Adequate safety measures have been incorporated in the EIA report for avoiding accidents for the proposed expansion as well.

Sr. No.	TOR Points	Compliance of TOR
46.	A tabular chart for the issues raised and addressed during public hearing/consultation and commitment of the project proponent on the same should be provided. An action plan to address the issues raised during public hearing and the necessary allocation of funds for the same should be provided.	Agreed. Issues raised and addressed during public hearing/consultation shall be provided alongwith the Final EIA report. Also, an action plan shall be prepared for addressing the issues raised during public hearing.
47.	Any litigation pending against the project and / or any direction / order passed by any Court of Law against the project, if so, details thereof.	NA No litigations are pending against the project or proponent.
48.	Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report. Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions? If so, it may be detailed in the EIA.	Complied. The company has a well-developed Environment Policy which is attached as Annexure - 15 .
49.	What is the hierarchical system or administrative order of the company to deal with the environmental issues and for ensuring compliance with the EC conditions. Details of this system may be given.	Complied. The company has developed a Hierarchal system for dealing with the environmental issues and for ensuring compliance with the EC conditions. Details of the same are given in Section 8.9 of Chapter - 8, page no. 307.
50.	Does the company have a system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism should be detailed in the EIA Report.	Complied. The company has developed a Hierarchal system for reporting of non-compliances / violations of environmental norms to the higher management. Details of the same are given in Section 8.9 of Chapter - 8, page no. 307.

Sr. No.	TOR Points	Compliance of TOR
51.	Certificate of accreditation issued by the NABET, QCI to the environmental consultant should be incorporated in the EIA Report.	Complied. Consultant Profile of NABET, QCI approved Environmental Consultant is enclosed as Chapter – 10 of the EIA report.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER – 1 INTRODUCTION

1.1 GENERAL

Electricity is the key to all development. Sustainable power supply is a major precondition for the socioeconomic development of country. Electricity is an essential requirement for all parts of our life. It has been recognized as a basic human need. It is a critical infrastructure on which the socio-economic development of the country depends. Supply of electricity at reasonable rate to rural India is essential for its overall development. Equally important is availability of reliable and quality power at competitive rates to Indian industry to make it globally competitive and to enable it to exploit the tremendous potential of employment generation.

The chemical manufacturing industry depends heavily on power and steam for process applications. Uninterrupted power and steam is a principle energy source for chemical industrial processes. Steam provides energy for process heating, pressure control, mechanical drives, and component separation, and is also a source of water for many industrial operations and chemical reactions.

The proposed project is an expansion project proposed by Atul Ltd, which is an integrated chemical company manufacturing about 1350 products and formulations serving about 4000 customers across the globe. The proposed expansion envisages a new 22 MW CPP to meet the power and steam requirements of the existing and additional production capacity of Atul.

1.2 INTRODUCTION OF PROJECT PROPONENT

Atul was founded by a legendary Indian, Mr Kasturbhai Lalbhai, on September 15, 1947, exactly a month after India became independent with the dream to generate large-scale employment, create wealth in rural India and make the country self-sufficient in its requirements of chemicals.

Atul Limited became the first private sector company of India to be inaugurated by Jawaharlal Nehru, the first Prime Minister of the country. The Company thus commenced its business with just a few dyestuffs, the know-how of which was brought from foreign companies. Atul Limited is a member of Lalbhai Group, one of the oldest business houses of India, with interests mainly in textiles and chemicals. The Group is strongly committed to serve the society in the fields of education, health as well as culture.

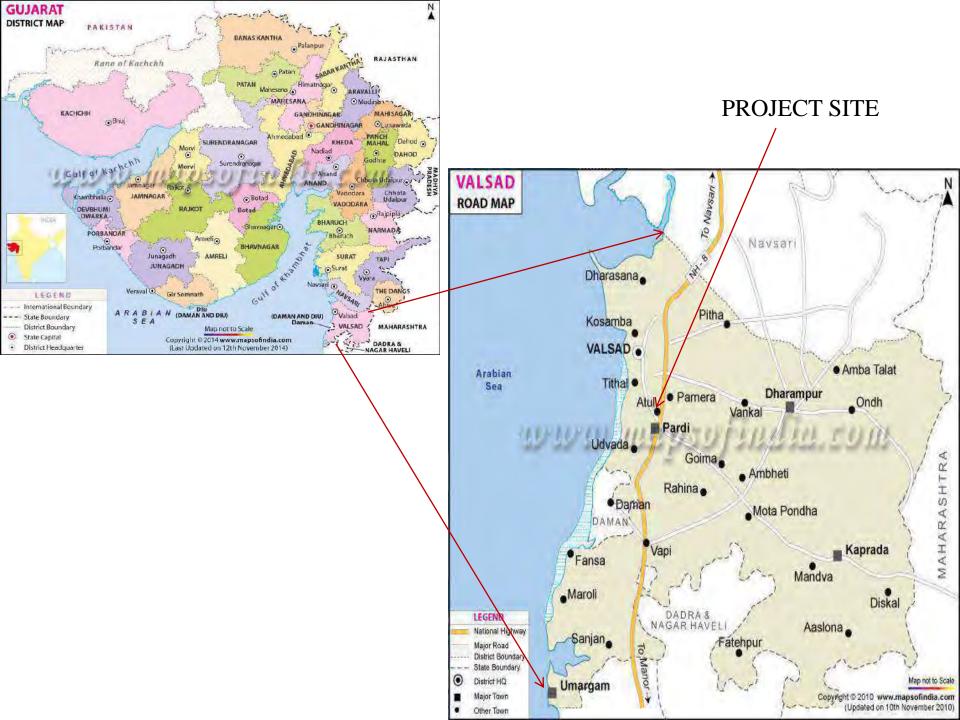
EXPANSION IN EXISTING CAPTIVE POWER PLANT

Over the years, Atul Limited joined hands with world-renowned multi-national companies namely American Cyanamide Company (now a part of BASF AG and Pfizer Inc) in 1947, Imperial Chemical Industries plc (now a part of Akzo Nobel and Astra Zeneca plc) in 1955 and Ciba-Geigy Ltd. (now a part of BASF AG and Huntsman Corporation) in 1960 to form three joint venture companies, namely, Cyanamid India Ltd., Atic Industries Ltd. and Cibatul Ltd. respectively. Consequent to worldwide divestment of dyes and polymers business by ZENECA plc (formerly a part of ICI plc) and Ciba Ltd. respectively, Atic Industries Ltd. and Cibatul Ltd. were merged into Atul Limited in 1995 and 1998 respectively.

Atul's registered office is in Ahmedabad whereas its corporate headquarters are located in Atul, Gujarat. The Company is listed on the NSE in India and has over 35,000 shareholders. Atul Limited is an improvement driven, integrated chemical company serving about 4,000 customers belonging to 27 industries across the world. The Company has established subsidiary companies in the USA (1994), the UK (1996), Germany (1998), China (2004) and Brazil (2012) to serve its customers and thus enhance breadth and depth of its business. From a small beginning (one dyestuff and one manufacturing plant), Atul has grown into a diversified chemical conglomerate, with about 1,350 products and formulations with 13 subsidiary and associate companies. The Company has taken small, but firm steps to grow its business with larger purpose.

1.3 DETAILS OF THE PROJECT SITE

The company is located at & post: Atul, Valsad District, Gujarat. The latitude & longitude of the project site is 20°32'10.61"N and 72°56'23.56"E respectively. The project site falls in Valsad district of Gujarat. The site is connected by road with National Highway (NH) No. 8 which is at around 2 km from the project site in East-East-North direction. The nearest town is Valsad which is at around 7 km from the project site in North direction. The nearest railway station is Atul which is at around 1.5 km from the project site in North-West direction whereas Valsad railway station is at around 7 km from the project site in North direction. Location of the project site is mentioned in **Figure No. 1.1.** Atul Limited is an existing chemical manufacturing complex with existing Captive Power Plant (CPP) of 34 MW and is now planning to expand their existing CPP by installing new 22 MW Coal based CPP with latest technology.



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 1.1 – Location of the Project Site

ECO CHEM SALES & SERVICES

PAGE 41

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.4 EXISTING SCENARIO & PROPOSED EXPANSION

Atul Complex is self-sufficient in meeting continuous and uninterrupted steam demand for all its chemical manufacturing processes and it also meets more than 85% of electricity demand for its housing colonies. Atul Limited is having an existing CPP of 34 MW capacity. Atul Limited holds Environmental Clearance (EC) from Ministry of Environment & Forests (MoEF), Delhi vide File No. J-11011/85/2009-IA II (I) dated 13th May, 2009 and also obtained valid Consolidated Consent & Authorization (CC&A) from Gujarat Pollution Control Board (GPCB) vide no. AWH-67717 dated 04/11/2014. Copy of the EC and CC&A are attached as **Annexure – 1** and **Annexure – 2** respectively. Atul Limited is planning to expand the existing facilities and existing production capacity in near future. To meet the future requirement of captive power and steam, Atul Limited is proposed coal based captive power plant with 22 MW capacity in the existing premises of Atul Complex, Valsad, Gujarat.

1.5 JUSTIFICATION OF THE PROPOSED EXPANSION

- Atul Limited is planning to expand the existing facilities & infrastructure in near future.
- Atul Limited is proposing expansion in current manufacturing capacity, which will in turn increase the power and steam requirement.
- In the existing unit, two numbers of Stoker Fired Boilers (SFB) are provided with Scrubbers for dust collection. As, it is old technology and not feasible to provide ESP with these boilers, the SFBs will be replaced with higher efficiency boilers with adequate APC facility.
- Thus, Atul Ltd. is planning expansion in the unit and replacing the old low efficient SFBs boilers with highly efficient boilers which would be having ESP not only to maintain GPCB norms but also to cater future requirement of captive consumption.
- It is proposed to install 2×50 TPH Boilers of Atmospheric Fluidized Bed Combustion (AFBC) type and it will be having highly efficient ESP which can cater dust up to 99.9%.
- The proposed Boilers will be having Dust Extraction System in coal handling plant and pneumatic System for Bed Ash as well as for Fly Ash.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.6 DEMAND SUPPLY GAP

Currently, the power & steam requirement to meet the demand for existing production is given below, which is being fulfilled by existing east and west side CPP.

Power and Steam requirement for existing production:

Steam Generation Capacity					
FBC-1	FBC-2	FBC-3	FBC (W)	Total steam TPH	
30 30 50 40 150					

	Captive power generation / drawl					
Top up 1	Top up 2	TG set (W)	Grid drawl	Total power MW		
1.5	13.5	3.6	1.5	20.1		

Now, Atul Limited is planning to expand the existing production capacity. Hence for the proposed expansion in production capacity it will require additional steam and power as below:

	P	Power (MW)		
	2.5 Bar	7 Bar	19 Bar	Peak
Additional demand 14-15	4	3	1	1.5
Additional demand 15-16	17	15	5	6
Total additional demand	21	18	6	7.5
Present consumption	50	20	12	20.1
Grand total	71	38	18	27.6
Total steam required	127			27.6

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Equipment		Steam f	low TPH		Power generation
	Turbine inlet flow @65 Bar	Exhaust flow @2.5 Bar	Exhaust extraction @7 Bar	Extraction flow @19 Bar	(MW)
TOP UP 1 - East (Upgradation)	50	5(TFP)	35	10	4
TOP UP 2 - East	60	5	0	0	13.5
5.6 MW TG - West	40	36	0	0	4
Total	150	46	35	10	21.5
Demand by 15-16 (peak)		74	50	18	35.5
Shortage By 1	5-16	28	15	8	14
In-house consumption for new power plant		12	-	-	3
Total requiren	nent	40	15	8	17.0
Additional steam/Power required		63+ (1	7-6.3) X 4.1	= 106.87 TPH	18 MW
Boiler capacity reco	Boiler capacity recommended)0 TPH	Shortage	7 TPH
Turbine capacity required			22 MW	V	1

Owing to the additional steam and power requirement to meet the demand of additional production, Atul limited proposes 22 MW Captive Power Plant with 2 x 50 TPH boilers.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.7 REGULATORY FRAMEWORK & NEED OF EIA STUDY

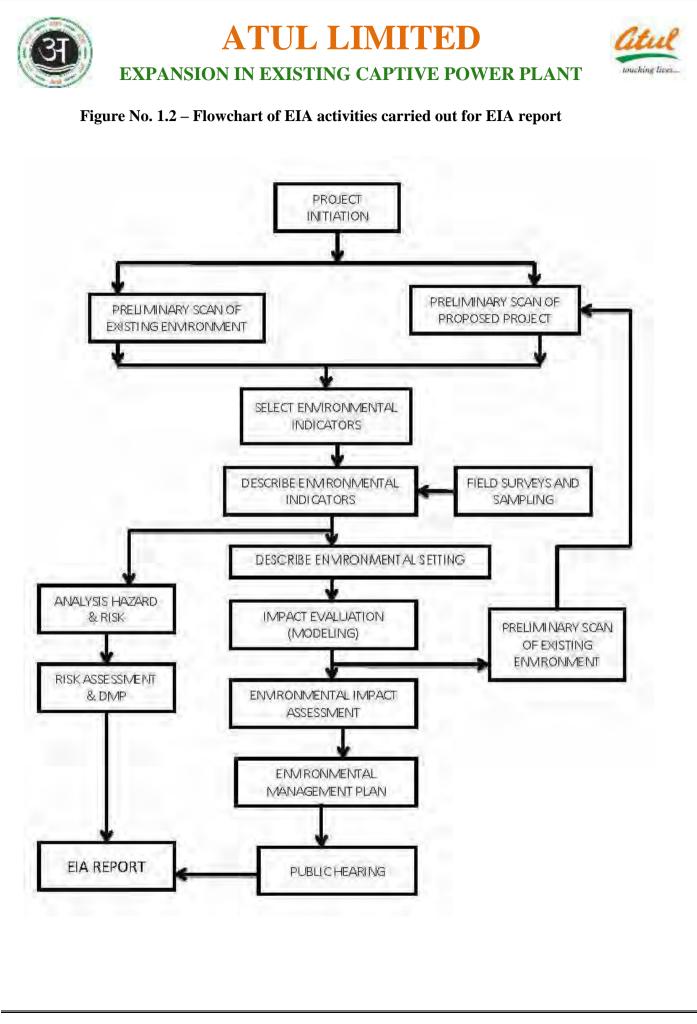
Environmental Impact Assessment (EIA) report is a formal report to be provided by the project proponent and prepared by an independent environmental consultant. The EIA summarizes process and results of baseline environmental monitoring to identify the potential for significant and diverse impacts. The Government of India, as per its policy has given emphasis on Sustainable Development as a part of any developmental activity. Along with industrial growth, environmental protection is an integrated criterion for this concept. In line with this policy, MoEF has defined EC framework under the Environmental Protection Act, 1986. As per the EIA Notification – 2006, prior EC is required for establishing/expanding the industry/development projects.

The applicability of the S. O. 1533 for the proposed expansion project was explored by considering different possibilities and provision made in the said notification. Considering the products and capacity, it is noticed that the proposed expansion project falls under Category 1 (d) - B < 500 MW (coal/lignite/naphtha and gas based) of the schedule of EIA notification 2006, S. O. 1533.

As per the provision of the S. O. 1533, it is necessary to get EC for the proposed expansion project prior to commissioning of the project activities. Hence it is necessary to seek EC by applying to State Level Expert Appraisal Committee (SEAC) along with the EIA study report as per Terms of Reference (TOR) awarded by SEAC, Gandhinagar and needs to undergo a public hearing. Eco Chem Sales & Services has carried out the EIA studies as per TOR and EIA guidelines. A mitigation plan has been prepared and a detailed Environmental Management Plan (EMP) is drawn to effectively mitigate or minimize potentially adverse environmental impacts and the details are presented in the chapters.

1.8 SCOPE & OBJECTIVES OF THE EIA STUDY

This EIA Report is prepared to comply with TOR given by the SEAC, Gandhinagar as per the guideline. The scope of study includes detailed characteristics of environmental components. For the purpose of environmental assessment, the villages in the surrounding 10 km area have been surveyed and relevant data has been collected.



EXPANSION IN EXISTING CAPTIVE POWER PLANT

The objectives of this EIA are:

- To describe the project and associated works together with the requirements for carrying out the expansion.
- To identify and describe the elements of the community and environment likely to be affected by the project, and/or likely to cause impacts by the project, including both the natural and man-made environment.
- To identify and quantify any environmental impacts associated with the proposed expansion and recommend appropriate mitigation measures.
- To identify existing landscape and visual quality in the study area so as to evaluate the landscape and visual impacts of the proposed expansion project.
- To propose mitigation measures to minimize pollution, environmental disturbance and nuisance during construction and operation of the project.
- To identify, assess and specify methods, measures and standards, to be included in the detailed design, construction and operation of the project which are necessary to mitigate these impacts and reduce them to allowable levels within established standards/guidelines.
- To identify and justify the need for environmental monitoring to define the scope of the requirements necessary to ensure the implementation and the effectiveness of the environmental protection and pollution control measures adopted.
- To identify constraints associated with the mitigation measures recommended in this EIA.
- To identify any additional studies necessary to fulfill the objectives to the requirements of this EIA Study.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.9 THE EIA CYCLE AND PROCEDURES

The EIA process in India is made up of the following phases:

1.9.1 Screening

Screening is done to see whether proposed expansion requires environmental clearance as per the statutory notifications. Screening Criteria are based upon the following:

- 1. Scales of investment.
- 2. Type of development.
- 3. Location of development.

1.9.2 Scoping

Scoping is a process of detailing the TOR of EIA. It has to be done by the consultant in consultation with the project proponent and guidance, if need be, from Impact Assessment Agency. The MoEF has published guidelines for different sectors, which outline the significant issues to be addressed in the EIA studies. Quantifiable impacts are to be assessed on the basis of magnitude, prevalence, frequency & duration and significance of non-quantifiable impacts are commonly determined through the socio-economic criteria. After the areas, where the project could have significant impact, are identified, the baseline status of these should be monitored and then the likely changes in these on account of the construction and operation of the proposed expansion project should be predicted.

1.9.3 Baseline data collection

A baseline study illustrates the original status of the environment in the area before implementation of the proposed expansion. The site-specific primary data should be monitored for the identified parameters and supplemented by secondary data if available. The study serves the purpose of a base reference against which the changes due to implementation of the proposed expansion are measured.

For the proposed expansion project, baseline data have been collected for Air Environment, Water Environment, and Land Environment within 10 km radius of the project site. The site-specific primary data has been monitored for the identified parameters and supplemented by secondary data if available.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

A. Air Environment

Existing status of ambient air quality at 8 locations in the vicinity of the site for parameters namely PM_{10} , $PM_{2.5}$, SO_2 , NOx, & CO have been described. Maximum number of sampling stations was selected considering the prominent wind direction of the region. Micro-meteorological data like wind speed, wind direction, temperature, relative humidity etc., were collected by using the wind monitor as per CPCB guideline. Data were collected on hourly basis for the period December 2014 to February 2015. This weather station was installed near the project site.

B. Noise Environment

Noise level monitoring was carried out from selected 8 locations for day and night time by sound level meter to assess the present scenario of noise environment.

C. Water Environment

Ground & Surface Water samples were collected from various locations within 10 km radius from the project site for the study of existing water resources with respect to water quality. Physical, chemical and micro biological parameters were analyzed to assess the water quality. Water quality is being assessed with drinking water standards.

D. Land Environment

Soil samples were collected from 7 selected locations within the impact zone and analyzed for relevant parameters like texture, pH, conductivity, ESP, Copper, Total Nitrogen, Chromium, Magnesium, Moisture, etc.

The study of mapping land use and land cover for the area covering 10 km radial distance from site was conducted using Geocoded False Colour Composite scene of IRS-IC LISS III / LISS IV images along with Survey of India (SOI) Toposheets.

E. Ecology & Socio-Economic Environment

Secondary Data for flora and fauna were collected from various literature published by forest department. Data were verified with primary data collected during survey and discussion with local public. Socio Economic data was collected by conducting survey and interaction with local people. Primary data has been collected and generated by in-house FAE by conducting survey and

EXPANSION IN EXISTING CAPTIVE POWER PLANT

interaction/discussion with the local public. Secondary data has also been obtained from the Census 2011 for comparing the data.

1.9.4 Impact prediction

Impact prediction is a way of 'mapping' the environmental consequences of the significant aspects of the project and its alternatives. Environmental impact evaluation actually grows out of scoping and baseline study of the project. Environmental impact can never be predicted with absolute certainty and this is all the more reason to consider all possible factors and take all possible precautions for reducing the degree of uncertainty. EIA assigns various quantified values to different levels of all the impacts affecting the environment. For the proposed expansion project, detailed impacts were predicted during the construction and operation phase for any change in physical, biological, cultural and/or socio economic environment that can be attributed to activities related to alternatives under study for meeting the project needs.

1.9.5 Mitigation measures and Environmental Management Plan (EMP)

Efficient mitigation plan has been drawn up for the identified impacts and is supplemented with an Environmental Management Plan (EMP) to guide the proponent towards environmental improvements. An EIA report should provide clear information to the decision-maker on the different environmental scenarios without the project, with the project and with alternatives. Uncertainties should be clearly reflected in the EIA report.

- Delineation of mitigation measures including prevention and control for each environmental component.
- Delineation of monitoring scheme for compliance of conditions.
- Delineation of implementation plan including scheduling and resource allocation.

1.9.6 Risk Assessment and Disaster Management Plan

EIA requires inclusion/coverage of all significant Risks & Hazards and their mitigation measures. Depending on nature, location & scale of the project, report should contain components as follows:

- Hazard identification taking recourse to hazard indices, inventory analysis, Natural Hazard Probability etc.
- Consequence analysis of failures and accidents resulting in fire, explosion, hazardous releases etc.
- Assessment of risk on the basis of the necessary evaluations
- Preparation of an Onsite/Off site Emergency Plan and Disaster Management Plan

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.10 EIA REVIEW AND APPLICATION FOR EC

The EIA report prepared as per ToR given by SEAC, Gujarat vide letter no. EIA-10-2014-6886-E.762 dated 02/05/2015 for proposed expansion project should be reviewed at different level (From Management to Technical Expert) and then necessary changes & modification shall be made for imperative version of EIA report for submission/further application. After careful review of all the details, the application & report is to be made for EC for the proposed expansion project.

1.11 STRUCTURE OF EIA REPORT

The generic structure of the EIA report as per the guideline provided by MoEF is illustrated in the following tabulated format.

No.	EIA Structure	Contents
1.	Introduction	 Purpose of the report Identification of project & project proponent Brief description of nature, size, location of the project and its importance Scope of the study – details of regulatory scoping carried out (As per Terms of Reference).
2.	Project Description	 Condensed description of those aspects of the project (based on project feasibility study), likely to cause environmental effects. Description contains the details of the following: Type of project Need for the proposed expansion. Location details showing general location, specific location, project boundary and project site layout Technology and process description Project description including drawings showing project layout, components of project, etc., schematic representations of the feasibility drawings which give

Table No. 1.1 – Structure of EIA report

EXPANSION IN EXISTING CAPTIVE POWER PLANT

No.	EIA Structure	Contents
		 information important for EIA purpose. Description of mitigation measures incorporated into the project to meet environmental standards.
3.	Description of the Environment	 Study area, study period, components & methodology. Establishment of baseline for valued environmental components, as identified in the scope. Study Period: December 2014 to February 2015 Base maps of all environmental components. Land use Map Frequency of monitoring. Summary of each environmental component.
4.	Anticipated Environmental Impacts & Mitigation Measures	 Details of investigated environmental impacts due to project location, possible accidents, project design project construction, regular operations. Measures for minimizing and/or offsetting adverse impacts identified. Irreversible and Irretrievable commitments of environmental components. Assessment of significance of impacts (Criteria for determining significance, Assigning significance) Mitigation measures.
5.	Environmental Monitoring Program	 Technical aspects of environmental monitoring for the effectiveness of mitigation measures (Incl. Measurement methodologies, frequency, location, data analysis, reporting schedules, emergency procedures, budget & procurement schedules)
6.	Additional Study	 Hazard Identification Risk Assessment & control/prevention Measures Disaster Management plan

EXPANSION IN EXISTING CAPTIVE POWER PLANT

No.	EIA Structure	Contents		
		• MOM of Public Hearing		
7.	Project Benefits	• Detail of the Socio-Economic & other tangible benefits of the project.		
8.	Environment Management Plan	 Description of the administrative aspects of ensuring that mitigation measures are implemented and their effectiveness monitored, after approval of the Clearance. The Chapter consist of: Mitigation measures for impacts Pollution Prevention Plan Greenbelt Development Plan Waste management plan Environment Management Cell Budgetary Provisions for EMS 		
9.	Summary & Conclusion	Description of EIA report in brief and Conclusion		
10.	Disclosure of Consultant Engaged	• Detail of the EIA Consultant		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Chapter – 2 Project Description

2.1 GENERAL

Atul Limited is a member of Lalbhai Group, one of the oldest business houses of India, with interests mainly in textiles and chemicals. The Group is strongly committed to serve the society in the fields of education, health as well as culture. Atul Ltd. operates through six business divisions, namely, Agrochemicals, Aromatics, Bulk Chemicals & Intermediates, Colors, Pharmaceuticals & Intermediates and Polymers. The bulk chemicals and Intermediates division of Atul Ltd. commenced its manufacturing of bulk chemicals in 1960 and intermediates in 1963. The proponent now proposes to expand its existing capacity of existing Captive Power Plant (CPP) of 34 MW by addition of new 22 MW coal based CPP with latest technology

2.2 PROJECT LOCATION

The Atul limited is located at Survey No. 274,275 & 276, At & Post Atul. The project site falls in Valsad district of Gujarat. Valsad district is surrounded by Vapi in the south, Valsad in the north, Dharampur in the east and Atar village in the west. The project location is well connected with road, rail and air route for transportation activities. The salient features of the project site are mentioned in **Table No. – 2.1**. The location of the proposed project site on Google map is shown in **Figure No. – 2.2**. Layout plan showing the existing and expansion location is given in **Figure No. – 2.2**.

Project Co-ordinate				
Corner	Corner Latitude Longitude			
А	20°32'20.48"N	72°56'50.19"E		
В	20°32'4.29"N	72°56'50.23"E		
С	20°31'56.79"N	72°55'37.86"E		
D	20°32'26.09"N	72°55'39.12"E		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.2.1 Site selection criteria

- The land for the proposed expansion is already in the possession of Atul Limited as the proposed expansion will be carried out within the existing premises. All the infrastructure facilities are available with the existing premises of Atul Limited.
- Valsad district is well connected by road & rail to the rest of India. The site is also well connected by NH No. 8 which is a part of the Golden Quadrilateral.
- Valsad district is a thriving belt of industrial activity surrounded by many scattered small and medium scale industries.
- The human resource required for the proposed expansion project will be easily available.

2.2.2 Alternative Site Selection

As the proposed expansion project is to be setup for the captive requirement of power for the existing & future expansion within Atul premises, alternative site has not been considered. Since, by nature, the project is an expansion project, the existing premises of operational unit is the only convenient site for the proposed expansion project of power generation of additional power by installation of a CPP.

2.2.3 Connectivity and Salient features of the Project Site

Valsad district is located between $20^{0} 07$ " to $21^{0} 05$ " North latitude and between $72^{0} 43$ " to $73^{0} 00$ " East longitude. The Geographical location of the plant site is approximately at latitude of $20^{\circ}36'36''$ N, and longitude of $72^{\circ}55'33''$ E. The nearest town Valsad is located about 7 kms away from the project site. Project site is well connected by Road and Rail line.

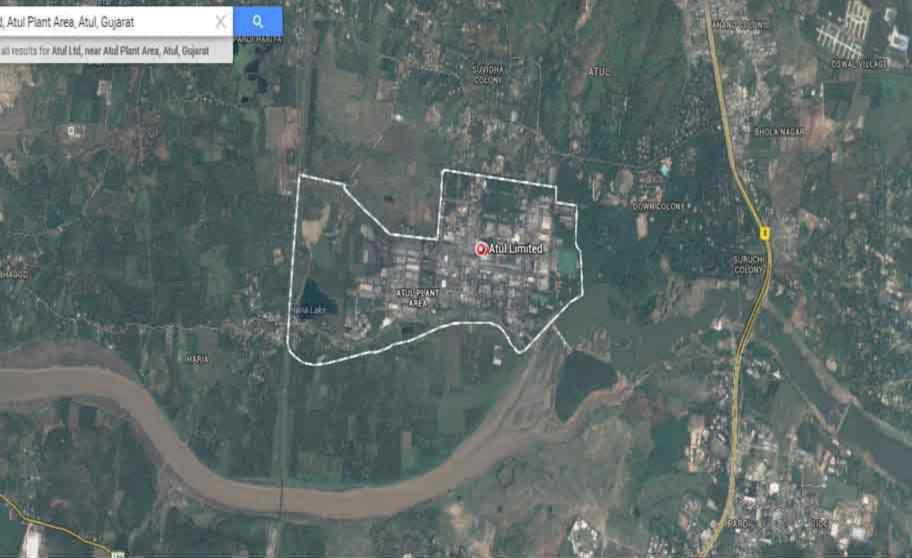
The salient features mentioned below, indicate favorable conditions for industrial development at the project location.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 2.1 – Salient Features of the Project site

Sr. No.	Particulars	Name	Aerial distance from the Project Site
1.	Nearest village	Hariya	@ 2.10 km in NW direction.
2.	Nearest Town	Valsad	@ 7.00 km in N direction.
3.	Nearest River	Par River	@ 700.00 m in SE direction.
4.	Nearest National Highway	N. H. No. 8	@ 2.00 km in EEN direction.
5.	Nearest Railway station	Atul	@ 1.50 km in NW direction.
6.	Nearest Airport	Daman	@ 15.20 km in SW direction.
7.	Nearest Tourist Places	Tithal	@ 7.70 km in NW direction.
8.	Protected areas (National parks/ sanctuaries)		None within 10 km radial periphery
9.	Defense installations		None within 10 km radial periphery
10.	Sites of Historical / Archaeological Importance		None within 10 km radial periphery

Note: All the above – mentioned distance are the aerial distances from project site.

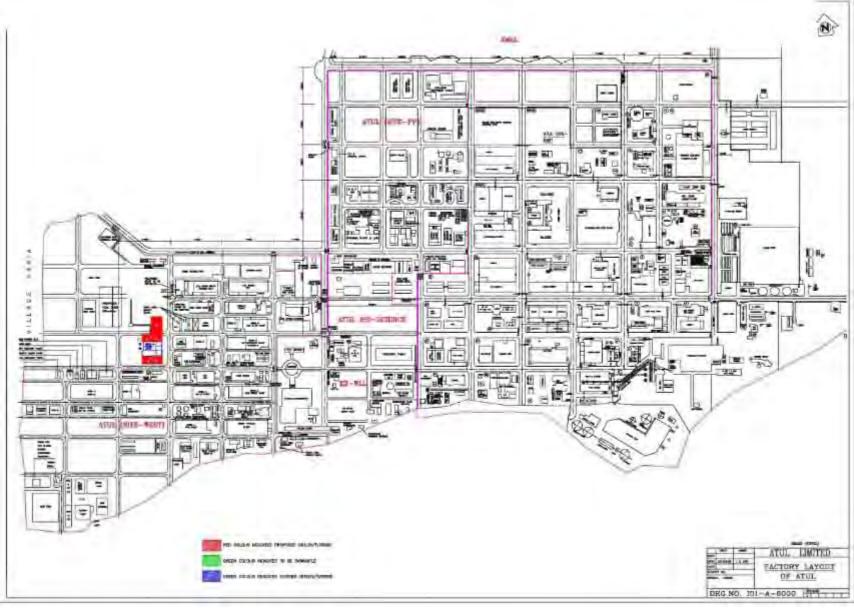


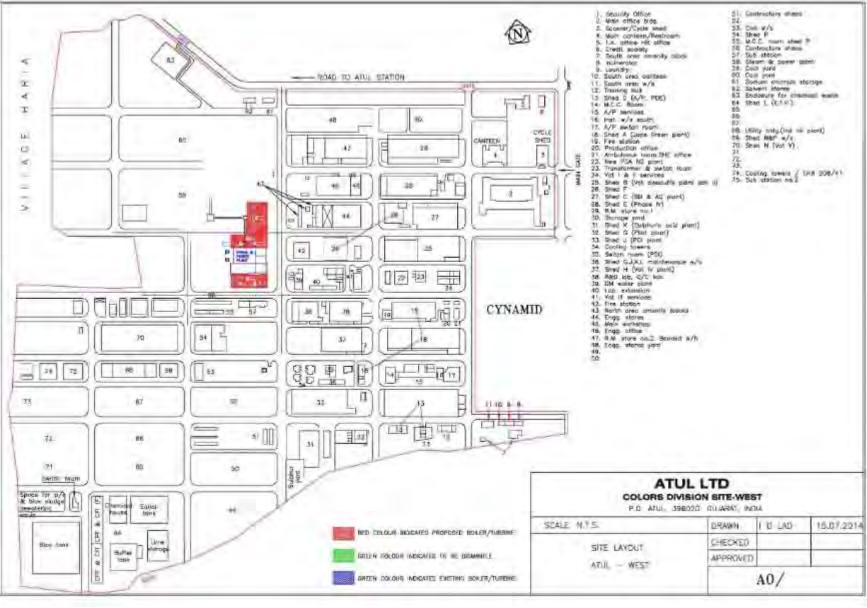
EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.1 Google Map

ECO CHEM SALES & SERVICES

PAGE 57





EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.2 Layout Plan showing Existing and Proposed Location

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.3 PROJECT LOCATION DESCRIPTION

2.3.1 Climate Conditions

A. General

The climate of this region is governed by its location in the tropics and by the monsoon. Annually recurring monsoon divide the year in to three seasons as follows:

- The pre-monsoon period from March to May, a time of the year having hot climate.
- The southwest monsoon prevailing from June to September.
- The post monsoon period from October to February.

B. Rainfall

About 95% of the annual rainfall is received in the months of June to September. The total annual rainfall observed from the historical data of year 1951-2010 is 2467 mm. There was no rain or showers during the study period.

C. Temperature

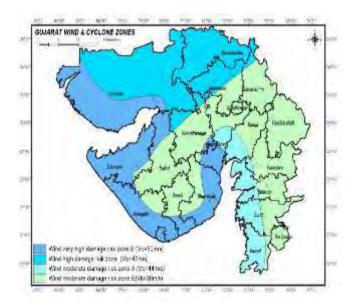
The summer season from March to May experiences continuous increase in temperatures which decreases during monsoons, increases slightly during the post-monsoon season and again decreases during the winter. During the study period minimum temperature was recorded 13.4° C in the month of January, 2014 and maximum temperature was recorded 41.0° C in the month of February, 2015.

D. Relative Humidity

The climate of Valsad region is characterized by a humid summer because of the closeness to coastline. Humidity is usually high during the monsoon months and decreases gradually during the post-monsoon months. Humidity was observed between 08 to 93 %. Visibility - The general visibility in the area is good. Visibility in the monsoon normally deteriorates during rains and occasional squalls.

E. Wind

The annual resultant vector for wind direction shows winds blowing from WSW. During summer and monsoon, the winds blow mostly from the sea direction. The post-monsoon & winter seasons experience a change in direction, with the winds blowing from NE, ENE or NNE. The wind speed is high during monsoon and post monsoon seasons, slightly moderate during summer and winter seasons. Data were


EXPANSION IN EXISTING CAPTIVE POWER PLANT

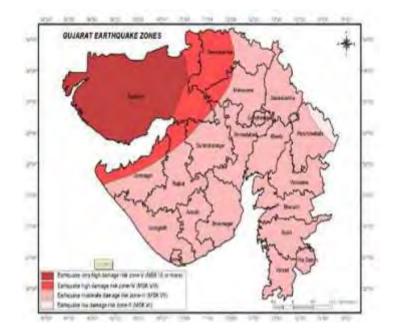
collected for the Period of December 2014 to February 2015. The wind speed was in the range of 0 to 12.0 km/hr during study period. It was maximum in the month of December, 2015.

F. Cyclone

Cyclones are huge revolving storms caused by winds blowing around a central area of low atmospheric pressure. Cyclone is a storm accompanied by the high speed wind. It brings torrential rains and creates several dangers for people living around tropical areas. These winds are strong enough to easily topple fences, sheds, trees, power poles and caravans, while hurling helpless people through the air.

It is observed that Valsad lies under very moderate damage risk zone (Vb = 44 m/s). It has been estimated that the probability of the cyclonic depression is very less.

Source: BMTPC, India (This map was collated based on the data compiled by the ministry of Urban Development & poverty alleviation)


G. Earthquake

An Earthquake is a sudden, rapid shaking of the earth caused by the breaking and shifting of rocks beneath the earth surface. It is observed that project lies very moderate damage risk zone. Atul Limited has experienced earthquakes very rarely with low intensity.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Source: BMTPC, India (This map was collated based on the data compiled by the ministry of Urban Development & poverty alleviation).

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.4 DESCRIPTION OF THE EXISTING FACILITIES

Atul Limited is having an existing coal based CPP of 34 MW capacity at Atul Complex, Valsad, Gujarat. To meet the future captive power and steam requirement, Atul Limited is now proposing a new coal based CPP of 22 MW in the existing premises. Thus, total production capacity of CPP after proposed expansion will be 56 MW. No additional land will be purchased/procured for proposed CPP expansion. Total Plot area for the existing CPP is 45,079 m² and open space of 10,000 sq. meter near existing CPP area will be utilized for proposed expansion.

PHOTOGRAPHS OF THE EXISTING UNIT

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.5 RESOURCES REQUIREMENT

Resources such as Land, Power, Water, Manpower, etc. are required for the proposed expansion. Each of the resources is briefly described in the following sections.

2.5.1 Land requirement

The proposed expansion shall be developed within existing premises by using existing infrastructure. No additional land will be purchased/procured for proposed expansion. Total occupied plot area for existing CPP is $45,079 \text{ m}^2$ and an additional $10,000 \text{ m}^2$ open space is available in existing plant, which will be utilized for proposed expansion. Area Break up for existing and proposed facilities is mentioned in the following table:

Sn No	Decemintion		Area (m ²)	
Sr. No.	Description	Existing	Proposed	Total
1.	Process Area	10,000	7,000	17,000
2.	Utilities	7,000	1,500	8,500
3.	Administration & Lab	1,000	80	1,080
4.	Ware House	10,579	00	10,579
5.	Green belt	16,500	1,420	17,920
	TOTAL	45,079	10,000	55,079
6.	Additional Open Land	10,000	-10,000 (Utilized for proposed CPP)	00

T 111	NT.	2.2	т. 1		1 1	
Table	NO.	2.2 –	Land	area	breal	kup

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Description	Proposed
1.	Boiler	900
2.	Bunker	120
3.	ESP	320
4.	Chimney	60
5.	Fly Ash Silo	80
6.	Bed Ash Silo	60
7.	Panel Room	80
8.	Cooling Tower	1000
9.	Coal Yard	5400
10.	Coal Crushing plant	400
11.	RO Plant	80
	TOTAL	8500

Table No. 2.3 – Land area breakup for proposed CPP

2.5.2 Water requirement

The additional water requirement for proposed expansion will be fulfilled by existing source i.e. Par River during the construction as well as operation phase. Ground water is not being extracted for the existing operation nor it will be extracted for proposed expansion. The unit has already obtained permission from irrigation department, which accommodates additional water requirement for proposed CPP expansion. Copy of the letter is attached as **Annexure – 3.** Total water requirement on 100% existing production load is 22,569 KLD (21,632 KLD for Industrial purpose + 937 KLD for domestic purpose). Water requirement for existing CPP is 3,905 KLD and additional 2,094 KLD water will be required for proposed expansion. Additional 1 KLD water will be required for additional man power generated due to proposed expansion.

Water consumption during operation phase for existing and proposed expansion project is mentioned in the Table No. -2.4.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 2.4 – Water Consumption details

Sr.		Water Consumption (KL/Day)			
No.	Particulars	Existing	Proposed	Total	
А.	Domestic	5.00	1.00	6.00	
B.		Industr	rial		
1.	Process	0.00	0.00	0.00	
2.	Boiler	1,170.00	414.00	1,584.00	
3.	Cooling	2,735.00	1,680.00	4,415.00	
4.	Washing	0.00	0.00	0.00	
	Total (B)	3,905.00	2,094.00	5,999.00	
	Total (A+B)	3,910.00	2,095.00	6,005.00	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.5.3 Power & Fuel requirement

Existing:

- Power requirement: 34 MW Co-Gen. CPP.
- D. G. Set 3100 KVA (In case of emergency)
- Fuel:
 - a. Coal/Lignite 20,200 MT/Month
 - b. Diesel oil: 340 lit/hr

Proposed:

- Power requirement: 22 MW Co-Gen. CPP.
- D.G. set 1500 KVA (In case of emergency)
 Note: 10.00 MW DGVCL grid power as standby for initial startup of power plant.
- Fuel:
 - a. Details of fuel consumption with various options are mentioned in below table
 - b. Diesel Oil: 300 lit/hr

Table No. 2.5 – Details of Fuel consumption with various options

No.	Type of Fuel	Option No.	Fuel Consumption (TPH)	Fuel Consumption (TPM)
1.	100 % Imported coal	Ι	14.12	10,166
2.	100 % Indian coal	II	23.23	16,725
3.	50 % Indian coal + 50 % Imported coal	III	18.95	13,644
4.	100 % Lignite (By adding limestone)	IV	20	14,400
5.	70 % Indian Coal + 30 % Lignite (By adding limestone)	V	22.15	15,948

Atul Limited had applied for the long term coal linkage for proposed CPP to the Ministry of Coal. Copy of the same is attached as **Annexure – 4.** Existing coal linkage is also attached as **Annexure-4.**

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.5.4 Man Power requirement

The company employs around 80% of the existing man-power from the nearby area. Same policy of local employment will be followed for the proposed expansion project as well.

The existing unit has total manpower of 3,900 nos. (Including contractor) and in existing CPP around 50 persons are employed. Additional Manpower shall be employed during the construction & operation phase directly and indirectly through contracts for Civil Construction, Mechanical erection, Electrification, Piping Works and Associated Amenities for proposed CPP expansion.

During construction phase, it is expected to generate direct & indirect employment of about 200-500 people of various skills. Local businessmen will get opportunity to supply construction materials. This will increase local business of the area.

In order to operate and maintain the proposed CPP additional 10-20 manpower will be required during the operation phase.

2.5.5 Raw Material requirement & Product

Raw Material requirement:

No raw materials other than fuel & water will be required for the existing as well as proposed CPP. Details of the fuel requirement and water requirement are mentioned in power & fuel requirement and water requirement respectively.

Sr. No.	Raw Material	Unit	Existing	Proposed	Total
1	IndianCoaland/orImportedcoaland/orLignite	MT/month	20,200	Max. 16,725	36,925
2	Water Requirement	KL/day	3,905	2,094	5,999

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Detail of Product:

Sr. No.	Product Name	Unit	Existing	Proposed	Total
1	Captive Power Plant (CPP)	MW	34	22	56

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.6 DESCRIPTION OF PROPOSED CPP

Atul Ltd. has an existing CPP of 34 MW at the existing premises. Also, an additional Cogeneration CPP is proposed to be installed to achieve electric power and steam for continuous production. A CPP will also be beneficial for uninterrupted power supply, which will also help in minimization of production loss and power transmission losses from the grid.

A high pressure AFBC Power Boiler of 2x50 TPH Capacity shall be installed to generate and supply superheated steam to drive the steam turbine and associated plant viz. cooling tower, switch yard, HT/LT switch gears, power transformers, load dispatch centers etc. The raw material for boiler shall be water, Indian coal and/or Imported Coal and/or lignite. The boiler feed water shall be of specified quality which will be treated raw water from RO/DM plant. The purpose of Economizer is to preheat the feed water before it enters the steam drum and thus to recover some heat from the flue gas leaving the boiler. The fuel shall be fired in presence of combustion air in the boiler, where hot flue gases will be evolved and the liberated heat associated with the flue gases shall be removed continuously. The steam shall be generated continuously due to feed water. Steam from power boiler shall be fed to a condensing cum double extraction Turbine. The extraction of steam shall be used for various operations of the plant. The balance steam shall be condensed and the condensate shall be recycled to boiler feed tank. The Electrical distribution system shall include H.T. & L.T. distribution panels, motors, starters, circuit breakers, switch gears, plant protection devices like lightening arrestors, earthing and cables etc. During power generation, the energy transformation in the entire cycle shall be from thermal energy to mechanical energy and then to electrical energy. The flue gases from the economizer shall be taken to ESP, thereby discharging the clean flue gases in to open atmosphere through a Chimney. Ash collected from Boiler and bottom silo shall be subjected to conditioning, which is proposed to be used in an ancillary unit to make fly ash bricks which will be used in the construction of buildings or will be sold to cement manufacturing unit.

A connection of 10.0 MW is also proposed to be taken from grid as a second backup source for start-ups of power plant to meet emergency situations.

The mass balance flow diagram is mentioned in Figure No. 2.3.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.6.1 Components of CPP

Deaerator:

The deaerator will supply feed water at 155^oC at 100% BMCR. The steam for deaerator will be supplied from Turbine Bleed. At low load to maintain minimum deaerator outlet temperature, pegging steam will be supplied from main steam line through PRDS station.

The deaerator with a direct intimate contact type heat exchanger will be placed before boiler feed pump in the feed water cycle to remove the dissolved corrosive gases from the feed water which will go to the boiler. The deaerator will consist of vertical deaerating chamber called header and horizontal feed storage tank. The oxygen will be reduced to 0.005 cm³/lit and carbon dioxide to untraceable limits, in the condensate leaving deaerator.

The condensate and make up water will enter the deaerating chamber and will be broken into fine particles by the spray nozzles. The sprayed water will fall through tray stack for heat and mass transfer. Condensate will be divided into fine droplets and comes in contact with the steam resulting in release of non-condensate gases which will be carried by the steam moving upwards. Part of the steam will be condensed in the deaerating chamber while some escapes along with the Non-condensable gases whose quantity will be negligible. The condensate after leaving deaerating header will enter into feed storage tank from where it will be taken by the boiler feed pumps.

Sr. No.	Description	Parameters/Values		
А.		Boiler		
1.	Superheater outlet steam flow	100 TPH (2 x 50 TPH)		
2.	Steam pressure at SH outlet	65 ata		
3.	Steam temperature at SH outlet	$485 \pm 5^{\mathrm{O}}\mathrm{C}$		
4.	Feed water temp. Entering Eco	150 ^o C		
5.	Flue gas outlet temperature	140 ^o C		
6.	Efficiency at MCR	Around 86 ~ 88%		
7.	Excess air (at 100% MCR)	20 %		
8.	Superheat temperature control	By spray + excess air adjustment		
9.	Safety valves	As per system requirement on drum, Superheater steam, etc.		
10.	Soot blowers	As per manufacturers design		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Description	Parameters/Values		
11.	Ambient air temperature	32°C		
B.	Boiler Feed Pump (Typical)			
1.	Number of pumps	3 x 100% (2W+ 1S) Capacity Electrical driven pump.		
2.	Туре	Multistage barrel type horizontal with shaft driven booster pump		
3.	Capacity	65 m ³ /hr		
4.	Liquid handled (for design)	Feed water at 170 ^o C		
5.	Drive	Electrical driven		
C.	Deaerat	tor & Feed Water Storage Tank		
1.	Number	One (1)		
2.	Туре	Spray cum tray with horizontal feed water tank.		
3.	Normal operating pressure	6.0 kg/cm ² g @ MCR condition		
4.	Feed water tank capacity	20 minutes storage at normal water level to low water level		

Steam Turbine:

The steam turbine will be a horizontally split, single cylinder 3000 rpm Single stage, double extraction cum condensing type unit with uncontrolled extractions for regenerative feed heating. The turbine will be designed for main steam parameters of 63 ata $480 \pm 50^{\circ}$ C at emergency stop valves turbine. The turbine will exhaust against condenser pressure of about 0.10 ata. The Turbo-generator set will be designed for a maximum throttle steam flow at Turbine Valve Wide Open condition of about 105% of Turbine MCR condition. The turbine will be rated for a minimum of 22 MW and shall be capable of both constant variable pressure operations as well as with HP heater out.

A fully automatic gland sealing system will be provided which will have provision to receive necessary steam from auxiliary steam heaters during start-up and low load operation.

The turbine will be equipped with the following:

- a. Electro-hydraulic governing system backed up by Hydro-mechanical system ensuring stable operation under grid fluctuation, control oil supply unit.
- b. Electric motor driven rotor turning gear.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- c. Self-contained lubricating oil system on AC and DC motor driven lube oil pump for supplying oil to turbine and Generator bearings to the governing and control system.
- d. Oil coolers, lube oil purifier, oil vapour extractor etc.

All essential controls and safety interlocks will be provided. The turbine will be complete with 2 x 100% condensate pumps, air ejectors or vacuum pumps with standby system motor operated vacuum breaker valve, gland steam condenser, deaerating heater, 2 x 100% boiler feed pumps oil coolers, steam and other miscellaneous piping and valves associated with the boilers and the steam turbines, including all control stations and all instrumentation.

Sr. No.	Description	Parameters/Values	
А.	Turbine		
1.	Type of Turbine	Double Extraction cum condensing Turbine	
2.	Number of cylinders	Single	
3.	Type of governing	Electro-hydraulic	
4.	Speed	3000 rpm	
5.	Maximum continuous rating	18,000 kW	
6.	Steam pressure before ESV	63 ata	
7.	Steam temperature before ESV	$480 \pm 5^{\circ}$ C at inlet of Turbine ESV	
8.	Turbine Exhaust pressure	0.10 ata	
В.	Circulating Water Pumps		
1.	Condenser cooling water Pumps	Two (2) x 100% (1W+1S)	
2.	Rated capacity required	4000 m ³ /hr	
3.	Auxiliary cooling water Pumps	Two (2) x 100% (1W+1S)	
4.	Water inlet temp.	32°C	
5.	Duty	Continuous	
6.	Lubrication	Self, water lubrication	
7.	Motor design ambient temp	50 ^o C	

Table No. 2.7 – Technical specification of Steam Turbine

EXPANSION IN EXISTING CAPTIVE POWER PLANT

• **Boiler make-up water stream:** Two (1 Working + 1 Stand by) x 100 % clarifier water transfer pumps for boiler make-up shall be horizontal centrifugal type with CI casing with BZ impeller. The capacity of the water treatment plant has been calculated as follows:

Sr. No.	Description	Capacity
1.	Boiler capacity	50 TPH
2.	Nos. of Boilers	2
3.	Total Capacity of Boilers	100 TPH
4.	Bolier losses (Blow down, Vent etc.)	5 %
5.	Blow down Water Quantity	5 m ^{3/} hr
6.	Operating Hours of water treatment plant	20
7.	Required Water Treatment Plant Capacity	66 m ^{3/} hr

Table No. 2.8 – Water Treatment Plant capacity

• **Cooling Water Make-Up System:** Separate 2 x 100 % cooling tower make-up pumps will be provided to MGF from clarified water storage tank for pretreatment. The cooling tower make up water required has been calculated as follows:

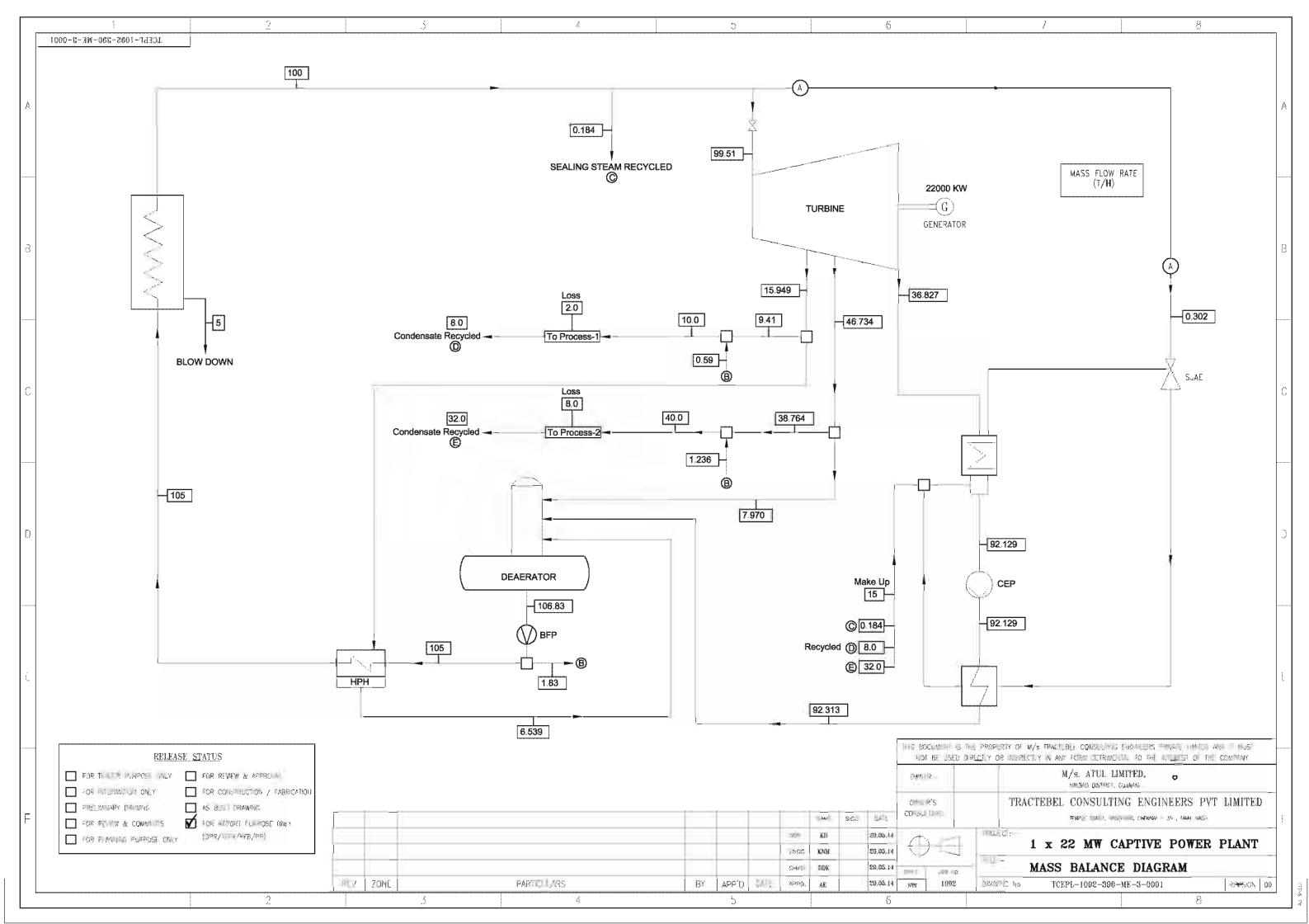
Table No. 2.9 – Cooling tower make up water requirement

Sr. No.	Description	Parameter/Values
1.	Cooling water requirement	4000 m ³ /hr
2.	Cooling range	9.5 ^o C
3.	Evaporation loss	66.64 m ³ /hr
4.	Cycles of concentration for the cooling water system	5
5.	Blow down	16.66 m ³ /hr
6.	Drift loss	$2 \text{ m}^3/\text{hr}$
7.	Total Losses	85.3 m ³ /hr
8.	Operating hours of cooling tower	24
9.	Cooling Tower make-up water Requirement	85.3 m ³ /hr

• **Cooling Tower:** The One no. of 4100 m3/hr FRP type Induced Draft cooling tower is envisaged with 3 x 120 % (3W + 1S) Cells to meet the condenser cooling water requirement and auxiliary equipments. The cooling towers will discharge the re-cooled circulating water to cooling water pump house circulating water sumps.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Description	Parameter/Values
1.	Number of cooling tower	One (01)
2.	Number of cells	04 (3W+1S)
3.	Type of cooling tower	Induced Draft
4.	Design inlet circulating water flow rate	4100 m ³ /hr
5.	Capacity of each cell	1400 m ³ /hr per cell
6.	Cooling range of circulating water	9.5 ^o C
7.	Ambient wet bulb temperature for Design	28.5 ^o C
8.	Circulating water make up	Clarified water


• Suitable arrangement for shock & continuous dozing of chlorine to curb organic growth and chemical dozing i.e. scale / corrosion inhibitor and biocide dozing for maintaining 5 C.O.C. will be made.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.3 – Mass Balance Flow Diagram

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.7 AUXILIARY SYSTEM

2.7.1 Coal Handling System

A standard coal handling system with screening, coal crushing, conveying system and dust extraction system is already installed for existing CPP and similar practice shall be implemented for proposed expansion. In addition to the existing coal yard, additional area of 5400 m² shall be allotted for coal storage yard for the proposed expansion. Indian/Imported Coal and/or Lignite is/shall be transported by Trucks from Atul Railway station to coal stock yard. The size of the coal generally made available from the sources will be less than 150 mm size. The coal from the coal yard will be transferred to the proposed underground grizzly hoppers using front-end loaders and further will be conveyed to the crusher house through conveyor system, where coal will be screened and crushed to (-) 6 mm. Coal crusher will be of impactor type. Ferrous un-crushable material will be removed during crushing and screening by magnetic separator. Sized coal from crusher house will be conveyed to the boilers through the feeding system.

Dust extraction system will be provided in the crusher house and bunker house as per existing practice. Dust suppression system will be provided at loading & unloading point, stockyard area etc. Ventilation will be provided in MCC, all buildings etc. The system will be provided with maintenance hoist, belt weighers, Traveling tippers, samplers, metal detectors, magnetic separators, bunker level indicators (ultrasonic type) etc. Coal handling plant will be designed to incorporate single stream, rated for 50 TPH for operating 12 hr/day.

Sr. No.	Description	Existing	Proposed
1.	Crusher		
a.	Туре	Impact Blade	Impact Blade
b.	Feed material	Indian/Imported Coal and/or Lignite	Indian/Imported Coal and/or Lignite
с.	Maximum feed size	< 150 mm	< 150 mm
d.	Product size	(-) 6.00 mm	(-) 6.00 mm
e.	Bulk density (minimum)	0.7 Ton/m^3	0.7 Ton/m ³

Table No. 2.10 – Details of Coal handling system

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Description	Existing	Proposed
f.	Bulk density (maximum)	0.8 Ton/m ³	0.8 Ton/m ³
g.	Capacity (rated)	50 TPH	135 TPH
h.	Operation hours per day	12 hr/day	12 hr/day
i.	Capacity (designed)	82 TPH	150 TPH
2.	Rotor Specification		
a.	Rotor diameter	1200 mm	1000 mm
b.	Rotor width	1200 mm	1600 mm
с.	Rotor speed	448 rpm	400 rpm
3.	Material of construction		
a.	Frame & Body	MS Fabricated	MS Fabricated
c.	Roller liners (Impact bars & casing liners)	MN Steel Gr	MN Steel Gr
d.	Bearing blocks	Spherical Roller	Spherical Roller
e.	Lubrication method	Manual	Manual
f.	Housing opening mechanism	Manual Mechanical	Manual Mechanical
4.	Motor Specification		
a.	Motor power	120 hp	150 hp
b.	Motor rpm	1440 rpm	1440 rpm
c. Drive transmission details		Fixed speed through fluid coupling V belt drive	Fixed speed through fluid coupling V belt drive
d.	Quantity	1 No.	1 No.

The schematic diagram of Coal Handling System is attached as **Annexure - 5**. Plant elevation layout for fuel handling system is attached as **Annexure – 6**. Analysis report of Indian Coal, Imported Coal and lignite are attached as **Annexure – 7**.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.7.2 Lime Dosing system (If Lignite is used as main Fuel)

Proponent shall use lignite with low sulfur content. However, practice of lime dosing is proposed for the proposed expansion to control SO_x emissions on using lignite as fuel. Limestone of size (-) 5 mm size will be received at the site. This shall be unloaded into above ground dump hopper by trucks. The limestone shall be fed to the screen via vibrating feeder and belt conveyor. At the screen, (-) 3 mm size limestone shall be separated and fed to the limestone silo. Oversize particles of size (+) 3 mm shall be fed to the crusher for reducing the size to (-) 3 mm. Crushed limestone shall be fed to the silo. The silo is proposed to have adequate storage capacity for 24 hr storage. However as a safety measure, it is proposed to have Boiler designed for feeding/charging lime stone for SO_x control. This will reduce the SOx emission level. Online dosing of good quality lime stone arrangement shall be provided along with separate bunker in line with boiler fuel feeding so that suitable quantity of lime stone can be added if and when required. At present, lime dosing is carried out manually for the existing CPP whereas in the proposed expansion, the quantity of lime stone will be controlled through DCS system according to the limit of SO_x in stack automatically.

2.7.3 Fly Ash Handling System

The existing unit has a well-designed Fly Ash Collection & Handling system with storage silos. For the proposed expansion, fly ash collected from various Economizers, Air Pre Heater (APH), ESP hoppers along the flue gas path, will be automatically and sequentially collected in air locked feeders in dry form to the proposed fly ash RCC silo through pressure conveying system. Fly ash will be collected in RCC silos having adequate storage capacity of 2 days storage from where it will be unloaded into trucks for ash utilization facilities. Provision will be also made to dispose of fly ash in wet form to ash disposal area in case of emergencies. Fly ash piping stream of adequate capacity is envisaged during specification/detailed engineering stage will be provided and will be connected to respective air lock feeders. Fly ash will be reused in company's own brick manufacturing unit and/or sold to cement manufacturer.

2.7.4 Bed Ash Handling System

The proponent has already designed Bed Ash handling System for collection of bed ash arising from the existing CPP. For the proposed expansion, ash will be extracted from bed ash hopper through air cooler and transported to bed ash silo with capacity of 2 days storage through collectors with 100 NB pipe. The collectors separate most of the dust and carryover are passed through a bag filter, thus ensuring that

EXPANSION IN EXISTING CAPTIVE POWER PLANT

practically no dust is carried to the mechanical exhauster. For unloading and conditioning of the ash from silo to the truck, a hydromix dust conditioner complete with a metering cut-off gate will be provided. The requirement of conditioning water shall be met from the HDC water supply pumps, which will draw cooling tower blow down water. The system will be complete with requisite piping, fittings, valves, silo blowers, slide valves, vacuum breakers, instruments, control panel etc. Dry ash will be reused in company's own brick manufacturing unit and/or sold to cement manufacturer.

BRICK MANUFACTURING UNIT

2.7.5 Raw Water Treatment System

Water requirement for the proposed CPP will be fulfilled from the same source. The unit has already obtained permission for water withdrawal from Irrigation Department which is adequate for the additional water requirement for the proposed CPP expansion, which is attached as Annexure -3.

The exiting unit has well-designed Raw Water Treatment system. For the proposed expansion, the same system shall be utilized with certain modifications/upgradation. Raw water from the water storage tank is pumped to a pre-treatment plant to cater the requirements for Boiler make-up water stream, Potable & Service water & cooling make-up water stream.

- The water treatment plant consists of two sub system as follows:
 - o Pre- Treatment Plant
 - Post Treatment Mixed Bed System

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PRE-TREATMENT SYSTEM

Pretreatment system is common for both boiler make-up and cooling water makeup stream. Raw water pre-treatment system mainly consists of the following systems:

- o Coagulant dosing system (1x100%)
- Polymer dosing system (1x100%)
- High rate solid conduct clarifier (1x100%)
- o Acid (HCL) dosing system (1x100%)
- Chlorine dosing system (1x100%)

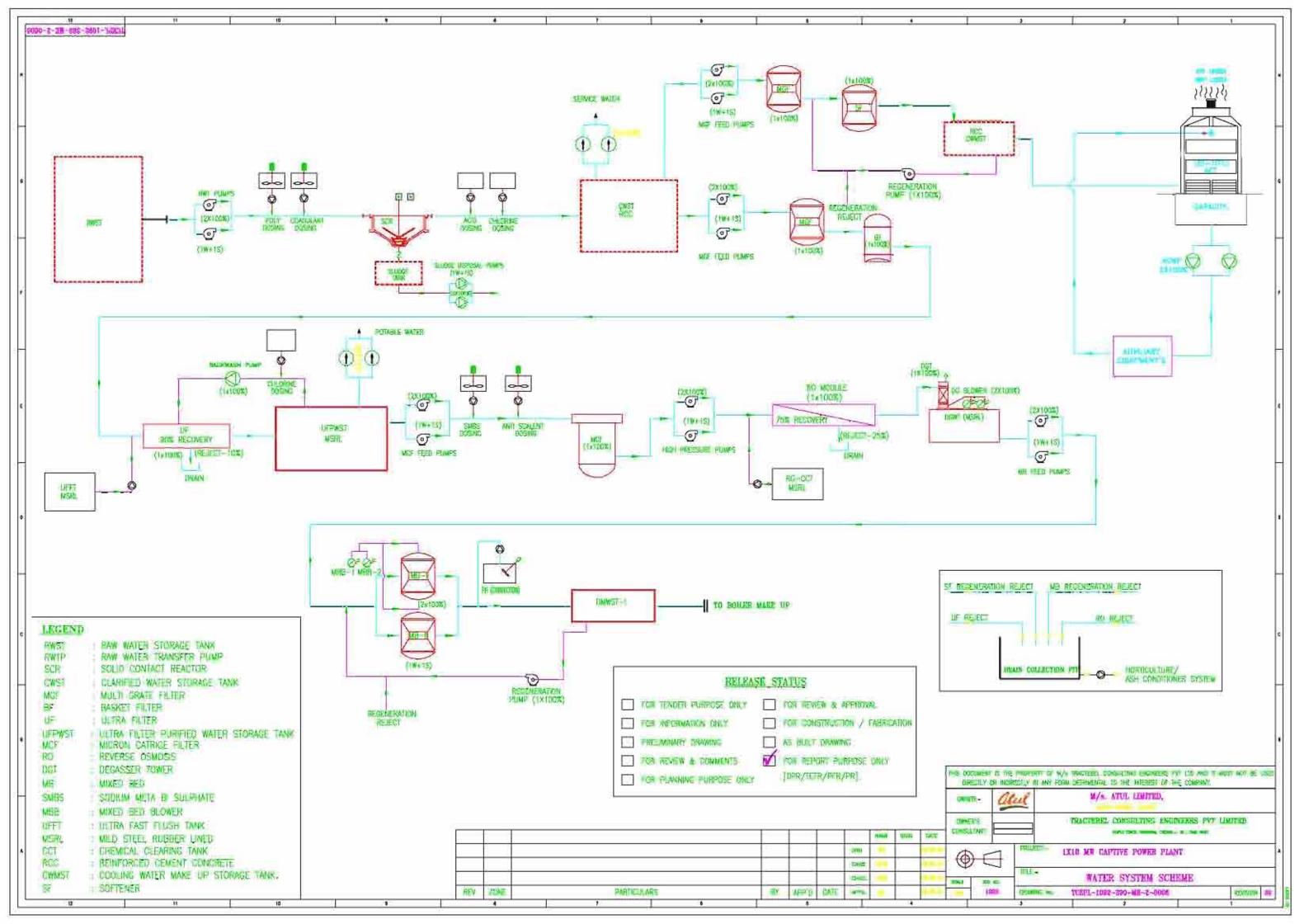
After pretreating the raw water, it is stored in Clarified Raw Water Storage tank form where, the water will be diverted to Multi Grade Filter.

- Multi Grade Filter (MGF): The raw water is filtered through a MGF unit in order to remove suspended matters and turbidity in the raw water. Vessels are designed for 1 x 100 % filtered water flow required as per plant water balance. Internally it is fitted with inlet distributor and a bottom collecting system. Externally, it is fitted with frontal pipe work and isolation valves. This unit is charged with a uniform grade of filtering sand, which is supported on different grades of under bed materials. Suspended matters get entrapped when the raw water is passed in downward direction through the filter bed. The unit is isolated for backwash when the pressure drop across the sand bed increases more than specified limit of 0.8 kg/cm². 100% free board is provided to allow for expansion in course of backwash and total suspended solids at MGF outlet shall be 5 mg/l.
- Ultra Filtration (UF) System: UF is a membrane filtration technique in which forces like pressure or concentration gradients leads to a separation through a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained in the retentate, while water and low molecular weight solutes pass through the membrane in the permeate. Also, UF is the pre-requirement of RO plant.
- Sodium Meta Bisulphate (SMBS) & Anti Scalant Dosing System: To prevent any residual chlorine from causing fouling of membrane a SMBS Dosing & Oxidation Reduction Process (ORP) Analyser with auto dump valve is provided. In case the residual chlorine in water is high, the auto dump valve will activate to prevent water from entering the system. To prevent formation of scales within the units, anti scalant dosing is carried out.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- **Micron Cartridge Unit:** One no. of micron cartridge Vessel, houses the PP cartridge elements of 5 micron rating which remove micron size particles.
- RO System: One no. of RO Module which will remove molecules and irons from solution.
- **De-Gasification Tower:** The water from Basket Filter Unit is further passed-through a 1 x 100 % no. of Degasser tower for removal of alkalinity present in raw water. It is a Mild Steel Rubber Lined (MSRL) vertical pressure vessel, which is internally fitted with inlet distributor and a bottom collecting system. Externally, it is fitted with pipe work and isolation valves.

POST TREATMENT SYSTEM


- **Mixed Bed Exchangers:** The treated water is further passed through the 2 x 100 % nos. of Mixed Bed Unit for polishing of treated water and further reduces the conductivity of Boiler Feed Water. It is a Mild Steel Rubber Lined (MSRL) vertical pressure vessel, which is internally fitted with inlet distributor and a bottom collecting system. Externally, it is fitted with frontal pipe work and isolation valves. This unit is charged with cation & anion resins. For Re-generation of mixed bed unit, HCl & NaOH are used to re-charge the resin once in stipulated time. The unit is isolated for re-generation when the conductivity leakage goes beyond specified limit. After, this the water is sent to pH Correction system for pH correction.
- **DM Water Tank**: The water is then stored in DM water storage tank from where it is transferred to Deaerator system for removal of Oxygen to prevent rusting of boiler.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.4 – Raw water treatment Diagram

EXPANSION IN EXISTING CAPTIVE POWER PLANT

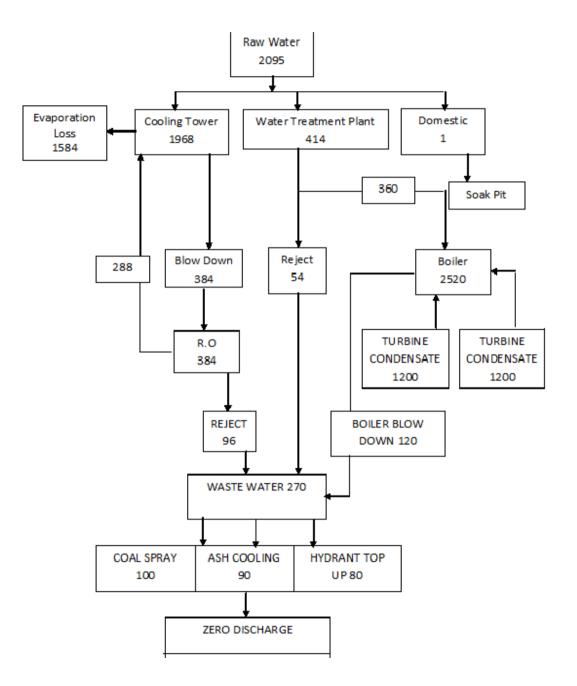
2.8 POLLUTION POTENTIAL AND ITS CONTROL MEASURES

2.8.1 Water Environment

Source of water: Irrigation department of Par river

The unit has obtained permission for withdrawal raw water from existing source. Additional water requirement for the proposed expansion shall be met from the same source. The existing water permission is adequate for increase in water requirement due to the proposed expansion as at any circumstance unit has 25% additional sanction over and above permission which will accommodate the requirement.

Sr. No.	Particulars	Water Con	Water Consumption (KL/Day)			Wastewater Generation (KL/Day)		
110.		Existing	Proposed	Total	Existing	Proposed	Total	
А.	Domestic	5.00	1.00	6.00	2.00	1.00	3.00	
В.	Industrial							
1.	Process	0.00	0.00	0.00	0.00	0.00	0.00	
2.	Boiler	1,170.00	414.00	1,584	805.00	50.0	855.00	
3.	Cooling	2,735.00	1,680.00	4,415	1,944.00	220.0	2164.00	
4.	Washing	0.00	0.00	0.00	0.00	0.00	0.00	
	Total (B)	3,905.00	2,094.00	5,999.00	2,749.00	270.00	3019.00	
Te	otal (A+B)	3,910.00	2,095.00	6,005.00	2,751.00	271.00	3022.00	


Table No. 2.11 – Water Consumption & Wastewater Generation details

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.5 – Water Balance Diagram (Expansion)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

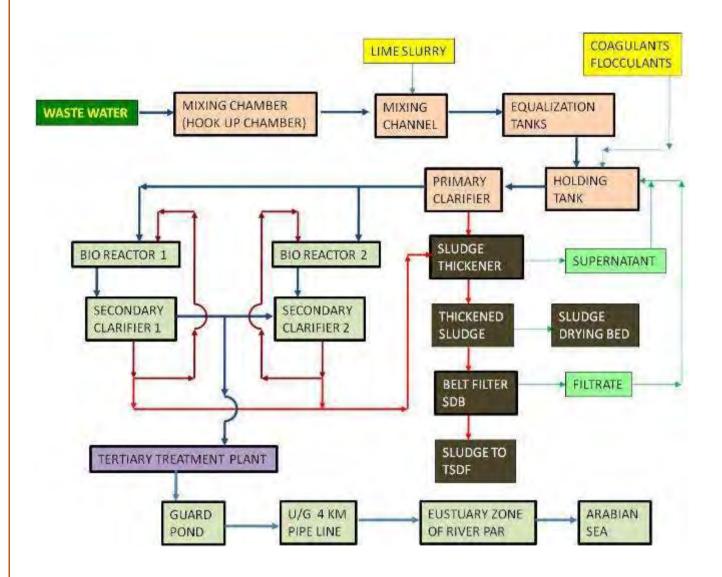
Treatment facility for sewage and effluent:

• Sewage Treatment:

Sewage generated during construction & operation phase due to proposed expansion will be treated in existing septic tank /soak pit facility.

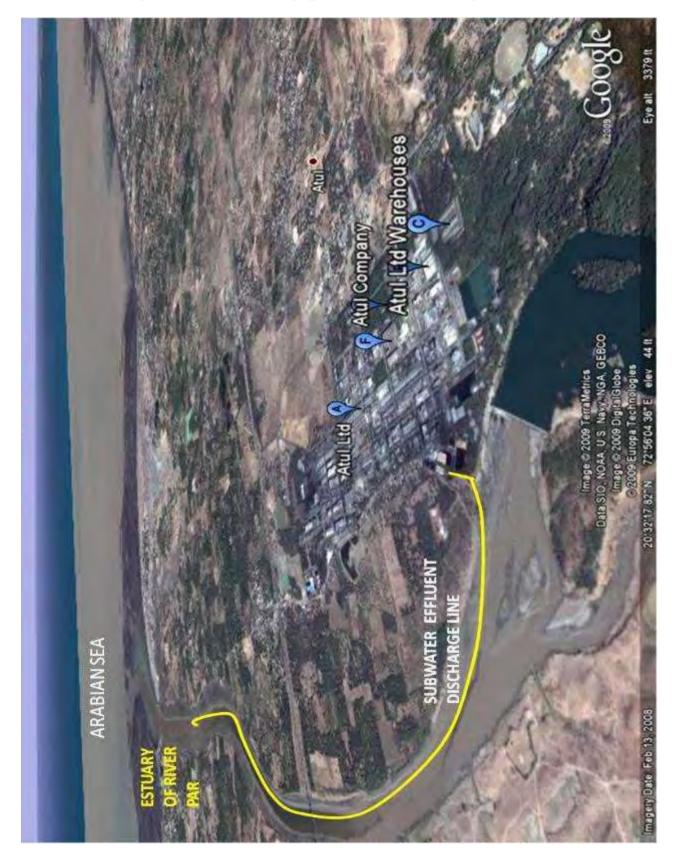
• Effluent Treatment:

The total existing wastewater generated (Process plant + existing CPP) is 19,873 KLD, which is treated in full-fledged existing Effluent Treatment Plant (ETP) of 20 MLD capacity. The ETP consists of conventional primary, secondary and tertiary stage treatment units. The schematic flow diagram of existing ETP is mentioned in **Figure No.** – **2.6.** The final treated effluent from the ETP confirming the GPCB norms is collected in guard pond and then discharged through closed pipeline to estuary zone of River Par via diffuser. The location of discharge point of treated effluent through pipeline is mentioned in **Figure No.** – **2.7.**


After proposed expansion, additional wastewater generated from pretreatment plant for water, blow down from boilers & cooling tower, condensate from turbine etc. will be having TDS in range 400-500 ppm. This wastewater will be used for ash quenching, dust suppression & fire hydrant make up. Hence there will be no additional load of effluent on the existing 20 MLD ETP. All the additional wastewater generated from the proposed CPP will be utilized for ash quenching, dust suppression & fire hydrant make up, hence the proposed plant shall achieve zero discharge norms.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.6 – Flow Diagram of Existing ETP



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 2.7 – Discharge point location of existing treated effluent

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.8.2 Air Environment

The Indian/Imported coal and/or Lignite will be used as fuel for the proposed expansion CPP. It is proposed to use these fuels in five different options and height of the stack has been calculated for these different options are mentioned below:

Sr. No.	Type of Fuel	Option No.	Fuel Consumption (TPH)	Stack Height (m)
1.	100 % Imported coal	Ι	14.12	61.81
2.	100 % Indian coal	II	23.23	58.30
3.	50 % Indian coal + 50 % Imported coal	III	18.95	61.93
4.	100 % Lignite (By adding limestone)	IV	20.00	74.58
5.	70 % Indian Coal + 30 % Lignite (By adding limestone)	V	22.15	49.98

Table No. 2.12 – Summar	ry of fuel consumption v	with different option a	and stack height

From the above table, it can be seen that the maximum stack height required for the proposed expansion of CPP is 74.58 m when the 100 % Lignite (By adding limestone) will be used as fuel. So it is decided to build an 106 m stack height for the proposed expansion of CPP. The details of existing and proposed flue gas emission, nature of emitted pollutants and air pollution control system provided are mentioned in the below table

Table No. 2.13 – Flue gas emissions and air pollution control measures for existing and proposed
scenario

Sr. No.	Stack attached to	Capacity (TPH)	Type of fuel	Stack Height (m)	Permissible Limit	Air Pollution Control system	
	EXISTING						
	EAST SITE						
1.	FBC boiler E1	34	G 1.0	56		ESP	
2.	FBC boiler E2	34	Coal & lignite	56	$PM < 150 \text{ mg/m}^3$	ESP	
3.	FBC boiler E3	50	inginite	80.3	SO ₂ < 100 ppm	ESP	
4.	Hot oil Unit (Resorcinol Plant)	32.5	FO	32.5	NOx < 50 ppm		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Stack attached to	Capacity (TPH)	Type of fuel	Stack Height (m)	Permissible Limit	Air Pollution Control system
WEST SITE						
5.	FBC boiler W1	45		70		ESP
6.	Coal fired boiler W1	18.18	Coal	35		Scrubber
7.	Coal fired boiler W2	19.18		35	$PM < 150 \text{ mg/m}^3$	Scrubber
8.	Hot Oil Plant Shed B	19	FO	19	SO ₂ < 100 ppm NOx < 50 ppm	
9.	Oil Burner Shed B (stand by)	17	LDO	17		
			NORTH	I SITE		
10.	Thermic Fluid Heater of DCO/DAP Plant	12	LDO	12	$\label{eq:main_state} \begin{split} PM &< 150 \text{ mg/m}^3\\ SO_2 &< 100 \text{ ppm}\\ NOx &< 50 \text{ ppm} \end{split}$	
	PROPOSED					
11.	AFBC boiler (2 Nos.)	50	Coal & lignite	106	$\begin{array}{l} PM < 150 \mbox{ mg/m}^3 \\ SO_2 < 100 \mbox{ ppm} \\ NOx < 50 \mbox{ ppm} \end{array}$	ESP with Sulphur capture system

Note: Two number of coal fired boilers (i.e Coal fired boiler W1 & W2) will be discontinued after commissioning of proposed 2 nos. of AFBC boilers with 50 TPH (each) capacity.

The ESP shall be operated efficiently to ensure that particulate matter emission does not exceed the GPCB norms. The outlet dust concentration of ESP will be maintained well within the prescribed limits. The technical Specification of the Existing and proposed ESP is as follows:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 2.14– Technical Specification of existing & proposed ESP

Sr. No.	Particulars	Units	Details			
А.	Existing					
1.	Type of ESP		Horizontal dry			
2.	Number of gas fields in series in direction of gas flow	Nos.	three			
3.	Number of electrical fields per boiler	Nos.	three			
4.	Type of Discharge Electrode		spiral			
5.	Type of Rapping		Tumbling hammer			
6.	Total no. of high voltage rectifier units installed	Nos.	three			
7.	Pressure drop across ESP (flange to flange)	mmwc	10 to 15			
8.	Ash hopper outlet flange elevation		3.0			
9.	No. of hoppers in ESP	Nos.	3			
B.	Proposed					
1.	Make		CETHAR			
2.	Fuels					
2.1	Fuel combinations - 1		100 % Imported coal			
2.2	Fuel combinations - 2		100 % Indian coal			
2.3	Fuel combinations - 3		50 % Indian coal + 50 % Imported coal			
2.4	Fuel combinations - 4		100 % Lignite (By adding limestone)			
2.5	Fuel combinations - 5		70 % Indian Coal + 30 % Lignite (By adding limestone)			
3.	Gas flow rate to ESP					
3.1	Fuel combinations - 1					
3.2	Fuel combinations - 2	21.60				
3.3	Fuel combinations - 3	mbinations - 3 m ³ /s 24.25				
3.4	Fuel combinations - 4					

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Particulars	Units	Details				
3.5	Fuel combinations - 5		22.60				
4.	Gas temperature at inlet of ESP						
4.1	Fuel combinations - 1						
4.2	Fuel combinations - 2						
4.3	Fuel combinations - 3	140					
4.4	Fuel combinations - 4						
4.5	Fuel combinations – 5						
5.	Inlet dust concentration						
5.1	Fuel combinations - 1		22.15				
5.2	Fuel combinations - 2		56.40				
5.3	Fuel combinations - 3	gm/nm ³	32.30				
5.4	Fuel combinations - 4	52.40					
5.5	Fuel combinations – 5	54.30					
6.	Outlet dust concentration with all fields in service	mg/nm ³	50				
7.	General Data of ESP		1				
7.1	Type of ESP		Horizontal flow dry type				
7.2	Number of precipitators for boiler		1				
7.3	Number of gas paths per Precipitator		1				
7.4	Number of gas fields in series in direction of gas flow	No.	4				
7.5	Number of electrical fields per boiler		4				
7.6	Type of Discharge Electrode		spiral				
7.7	Type of Rapping		Tumbling hammer				
7.8	Total Collecting Area	m^2	3822				
7.9	Total no. of high voltage rectifier	Nos.	4				
7.10	Pressure drop across ESP (flange to flange)	mmwc	30				
7.11	Ash hopper outlet flange elevation		3				
7.12	No. of hoppers in ESP	Nos.	4				

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.8.3 Solid/Hazardous Waste

The entire quantity of solid/hazardous waste will be handled and disposed as per Hazardous Waste (Management, Handling and Trans boundary Movement) Rules - 2008. After expansion, the source of solid/hazardous waste generation from plant will be Fly ash and Bed ash only.

The ash handling plant shall be designed to meet the following requirements and takes into consideration to develop plan for utilization of 100% ash progressively over a period of 10 years. Also ash handling plant shall be designed for 45% of ash content in fuel.

Sr. No.	Description	Quantity			
1.	Coal consumption at full load	23.23 TPH			
2.	Ash content in coal	45 %			
3.	Total ash produced	10.45 TPH OR 250.88 TPD			
4.	Ash distribution rates in percentage of total ash				
a.	Bottom Ash	20 %			
b.	Fly Ash	80 %			
5.	Ash collected per day				
a.	Bottom Ash50.18 TPD				
b.	Fly Ash	200.70 TPD			

Table No. 2.15 – Calculation of Ash collected per day

The Flow Diagram of Ash handling system is given in the Annexure – 8.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 2.16 – Details of solid/hazardous waste

Sr.	Name of	Quantity			Waste Disposal & Management
No.	Waste	Existing	Proposed	Total	waste Disposar & Management
Hazardous Waste					
1.	Used Oil	20 lit/year	10 lit/year	30 lit/yr	Collection, Storage, Transportation & Disposal by selling to registered recyclers
2.	Discarded Containers	2 nos./year	1 Nos./year	3 nos./yr	Collection, Storage, Transportation & Disposal by selling to GPCB approved scrap dealers
Solid	Waste				
3.	Fly Ash	7,108.00 MT/Month	6,019.20 MT/Month	13,127.20 MT/Month	Collection, Storage, Transportation & Disposal at cement Manufacturing & company's own brick manufacturing
4.	Bottom Ash	1,403.00 MT/Month	1,504.00 MT/Month	2,907.00 MT/Month	Collection, Storage, Transportation & Disposal at cement Manufacturing & company's own brick manufacturing

In hazardous waste Used oil and discarded containers will be generated from proposed expansion, which will be sold to registered recycler and GPCB approved scrap dealer respectively.

Due to proposed expansion additional fly ash will generated, which will be collected and stored in silo. From the silo, fly ash could be dispatched to trucks. A vent bag filter will be mounted on the silo to reduce the environment pollution. The complete system control will be fully automated and controlled by PLC and same system will be used after proposed expansion. Generated fly ash will be utilized in own brick manufacturing unit and/or send to cement manufacturing unit. (MOU with Ambuja cement is attached as **Annexure-10**)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.9 PROJECT COST

The project cost for the proposed expansion project is Rs. 96.82 Crores. The estimated project cost with breakup is shown below:

Sr. No.	Description	Rs. (Lacs)
1.	Site Development	61.94
2.	Civil Work	595.52
3.	Plant & Machinery	7469.77
4.	Environment Management System	555.00
5.	Greenbelt Development	5.00
6.	6. Other Assests/Contingency	
7.	7. Establishment charges and preoperative expenses	
8.	8. Project Management and Consultancy Charges	
9.	IDC & Financial Charges	706.18
	Total	9682.15

Table No. 2.17 – Project Cost break up

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2.10 GREEN BELT DEVELOPMENT

Greenbelts are an effective for control of air pollution, where green plants form a surface capable of absorbing air pollutants and forming a sink of pollutants. The importance of green belt is that the plants are living organism with their varied tolerance limit towards the air pollutants. A green belt is effective as a pollutant sink only within the tolerance limit of constituent plants. In this unit the major source of air pollutions are Boilers. Mitigation measures are suggested so that impact reduces significantly with proper plantation provided in different areas.

Proponent has already developed 300 acres of greenbelt in and around the Atul complex. Unit is developed 16,500 m² greenbelt area around the existing CPP area. In addition to this, afforestation and plantation activities shall be undertaken in all available spaces within the main plant. Additionally, the proponent has proposed 1420 m² of greenbelt around the proposed CPP area. Afforestation at the proposed CPP area will be undertaken, which will not only act as lung space in the area but will also improve aesthetics.

Multi-layered plantation comprising of medium height trees (7 m to 10 m) and shrubs (5 m height) are proposed for the green belt. In addition to this in future creepers will be planted along the boundary wall to enhance its insulation capacity.

Atul Limited has already developed a greenbelt around the plant within the existing premises. Further, an additional green belt with the following objectives is also envisaged to be developed for the proposed expansion project.

- Reduce air pollution.
- Attenuate noise generated
- Improve the general environment and aesthetics of the area
- Provide suitable habitat for fauna
- Control soil erosion
- Obscure the proposed facilities from general view

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Chapter – 3 Baseline Environmental Status

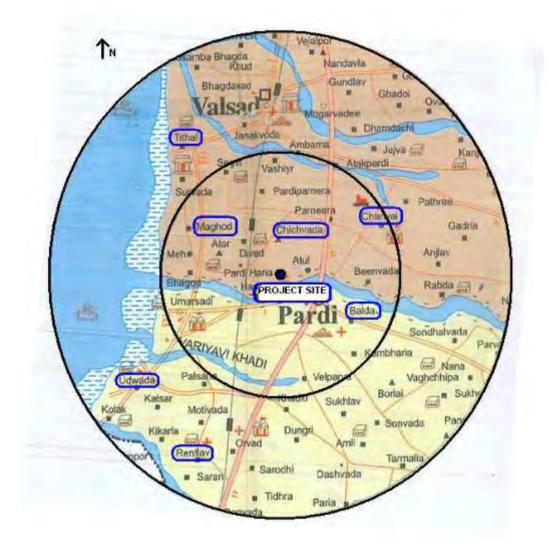
3.1 INTRODUCTION

The EIA process makes sure that environmental issues are raised when a project or plan is first discussed and that all concerns are addressed as a project gains momentum through to implementation. To be of most benefit it is essential that an environmental assessment is carried out to determine significant impacts early in the project cycle so that recommendations can be built into the design and cost-benefit analysis without causing major delays or increased design costs.

The base line data of existing environmental condition are very essential for Environmental Impact Assessment and Prediction of impact due to any proposed activities. The purpose of the study is to provide the information base against which to monitor and assess an activity progress and effectiveness during implementation and after the activity is completed as well as to determine project compliance with regulatory requirements, standard and government policies. This is an important intend of "Environmental Impact Assessment" Study. The base line data are collected from the study area to meet the need of this purpose.

Environmental monitoring is the systematic measurement of key environmental indicators over time within a particular geographic area. The baseline environmental quality is assessed through field studies within the impact zone for various components of the environment viz. air, noise, water, biological and socio-economic. The baseline environmental study has been conducted for the study area of 10 km radial distance from plant site for the period December 2014 to February 2015. Technical team was appointed after receiving the ToR for the survey, monitoring and sample collection for different environmental components in the study area. The current study includes base line status of environmental quality in the vicinity of the project, which further serves as the basis for identification, prediction and evaluation of impacts.

Baseline conditions were assessed by collecting samples from selected villages in the study region by technical team. Primary data were collected for different environmental components. Samples of ambient air, soil, surface water and ground water were analyzed to assess the baseline condition of study region. Primary survey was carried out to collect the data for assessing socio-economic and ecological condition of the study region. Primary data were compared with secondary data to verify the observations. Villages covered within study region are shown in **Figure No. 3**.


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3: Map showing the study region

ECO CHEM SALES & SERVICES

PAGE 97

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No. Location		Distance	Direction
01.	Project Site		
02.	Chichwada	Approx 2	N
03.	Balda	Approx 3	ES
04.	Magod	Approx 4	WN
05.	Chanvai	Approx 5	EN
06.	Tithal	Approx 6	NW
07.	Udvada	Approx 8	WS
08.	Rentlav	Approx 9	SW

Table No.3.1.1 Environment Monitoring Locations in the study region

The existing environmental setting has been considered to establish the baseline conditions which are described with respect to following.

- Land environment
- Water Environment
- Noise Environment
- Air Environment
- Meteorology
- Ecology
- Demography and Socio-economic Environment

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table 3: Environmental Setting

Sr. No.	Particulars	Details	
1	Location	Please refer Chapter 2	
2	Nearest Highway	National Highway No. 8: Appx. 2.0 km (EEN)	
3	Nearest Railway Station	Atul Railway Station: Appx. 1.5 km (NW)	
4	Nearest Airport	Daman Airport: Appx. 15.2 km (SW)	
5	Nearest Village	Hariya: Appx. 2.1 km (NW)	
6	Nearest Town/city	Valsad: Appx. 7 km (N)	
7	River/ Water body	Par River: 700 m (SE)	
8	Sea	Arabian Sea	
9	Archaeologically Important Places	None within 10 km radial periphery	
10	National Park	None within 10 km radial periphery	

3.2 METHODOLOGY

The baseline environmental study has been conducted for 10 km radius by following the guidelines of MoEF. The details of the study period, frequency of sampling & method of environmental sampling & analysis are shown below in succeeding paragraphs under respective titles.

3.2.1 Study Period and Frequency of Sampling

The period of study was December 2014 to February 2015. Details of frequency of environmental sampling considered for the study are illustrated in **Table No. 3.2.1**.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No 3.2.1: Frequency of Environmental Monitoring

Attributes				
	Locations	Parameters	Frequency	
A. Air Environment				
Meteorological	Nr. Project Site	Temperature, Relative	Hourly data from	
		Humidity, Precipitation	December 2014 to	
		Wind direction, Wind	February 2015	
		Speed		
Ambient Air Quality	8 locations in the study	PM _{2.5} , PM ₁₀ , SO ₂ , NOx,	24 hourly, twice a week	
	area of 10 km radius from	CO	during study period	
	Project site.			
	[5 location with in 5 km]			
B. Noise	8 locations in the study	Noise Levels in dB(A)	Once in Study Period	
	area within 10 km radius			
	from the project site			
C. Water				
Ground Water	Grab samples of 5	Physical, Chemical,	Twice in a Month	
	Locations within 10 km	Microbiological and	during Study Period	
	radius of Study region	Heavy Metal		
Surface Water	Grab samples of 5	Physical, Chemical,	Once in a Month during	
	Locations within 10 km	Microbiological and	Study Period	
	radius Study region	Heavy Metal		
D. Soil Quality	7 locations in the study	Physical, Chemical	Once in a Month during	
	area within 10 km radius	Characteristics, Soil	Study Period	
	from the project site	Texture		
E. Land Use & Land	Within 10 km radius of	Existing Land use pattern		
Cover	study area			
F. Ecological Data	Within 10 km radius of	Existing Flora & Fauna	Once in Study Period	
	study area			
G. Socioeconomic	Within 10 km radius of	Socio-economic	Once in Study Period	
Data	study area	characteristics of the		
		affected area		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.2.2 Method of Environmental Sampling & Analysis

The methods adopted for environmental sampling & analysis are illustrated in following Table No. 3.2.2.

Table No. 3.2.2: Method of Environmental Sampling & Analysis

Attributes	Methods		
	Sampling/Preservation	Analysis	
A. Air Environment	As per IS: 5182 & AWMA.	As per IS:5182 & AWMA	
Ambient air quality	Instrument operated as per it's		
B. Noise	Instrument : Noise level meter	Survey carried out as per EPA	
C. Water			
Ground Water	Standard Methods for Examination of	IS 3025 & Standard Methods for	
Surface Water	Water and Wastewater, 21 st edition,	Examination of Water and	
	APHA 2005	Wastewater, 21 st edition, APHA 2005	
D. Soil Quality	IS 2720	As per Laboratory SOP based or	
		standard methods	
E. Ecological Data	Primary data by site visit and verified	Primary data by site visit and	
	by reviewing various literature,	verified by reviewing various	
	internet	literature, internet	
F. Socioeconomic Data	Primary Survey & Census of India	Primary Survey & Census of India	
	2011	2011	

3.3 BASELINE ENVIRONMENTAL STATUS

The baseline environmental study was carried out for the Air, Water, Land, Noise & Socioeconomic environment. The study was conducted for the period December 2014 to February 2015. Locations have been selected within 10 km radius from the project site & environmental samples were collected from the selected locations of the study area. Primary data were verified by reviewing the secondary data. Sources of secondary data were various literatures published like Census of India – 2001 & 2011, Environment Information Centre-Delhi, Forest department, District & Village Panchayat, Internet etc. The scenario of environmental condition of the area revealed from the sample & data analysis is described below in subsequent paragraphs.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.4 MICROMETEOROLOGY

The study of micro – meteorological conditions of a particular region is of utmost importance to understand the variations in the ambient air quality status in that region. The prevailing micrometeorology at project site plays a crucial role in transport and dispersion of air pollutants.

The persistence of the predominant wind direction and wind speed at the project site will decide the direction and extent of the air pollution impact zone.

The principal variables which affect the micrometeorology are horizontal transport and dispersion, convective transport and vertical mixing and topography of the area towards local influences.

3.4.1 Source of Meteorological Data

Micrometeorological data were collected by using the wind monitor as per CPCB guideline. Data were collected on hourly basis for the period December 2014 to February 2015. This weather station was installed at the project site.

3.4.2 Temperature

Temperature data were collected on hourly basis for the period December 2014 to February 2015 and daily average results are tabulated in **Table No.3.4.1**.

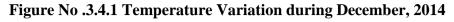
During the study period minimum temperature was recorded 13.4° C in the month of January, 2014 and maximum temperature was recorded 41.0° C in the month of February, 2015.

The variation in temperature is represented graphically in **Figure No. 3.4.1 to Figure No. 3.4.3** for the study period.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.4.1 Details of Temperature Nr. Project site (Dec'14 to Feb'15)

D	Average Temperature (⁰ C)			
Date —	Dec'14	Jan'15	Feb'15	
01	27.3	21.7	25.5	
02	29.6	22.8	24.2	
03	29.0	23.7	25.3	
04	29.3	26.5	27.2	
05	28.7	27.3	28.2	
06	29.2	27.3	26.6	
07	28.7	25.1	25.9	
08	28.0	24.1	24.2	
09	27.2	26.4	30.6	
10	26.1	25.2	28.9	
11	23.4	26.3	26.6	
12	25.0	25.6	26.0	
13	25.8	23.0	26.0	
14	24.8	23.8	24.7	
15	24.1	24.4	26.6	
16	24.5	23.4	25.9	
17	24.4	25.0	27.4	
18	25.2	25.8	25.6	
19	26.2	24.8	26.8	
20	26.3	23.9	27.3	
21	25.6	24.8	30.6	
22	26.8	24.5	30.2	
23	23.2	25.1	29.2	
24	23.5	25.9	28.3	
25	22.9	24.2	27.0	
26	25.8	25.2	24.4	
27	24.6	24.2	24.7	
28	25.1	25.4	22.9	
29	24.6	26.0		
30	23.7	27.2		
31	21.3	26.8		


ECO CHEM SALES & SERVICES

PAGE 103

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

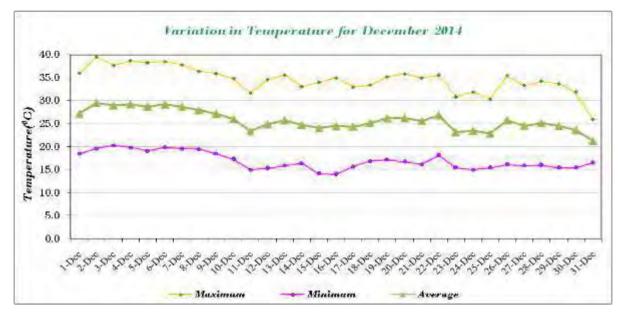


Figure No 3.4.2 Temperature Variation during January, 2015

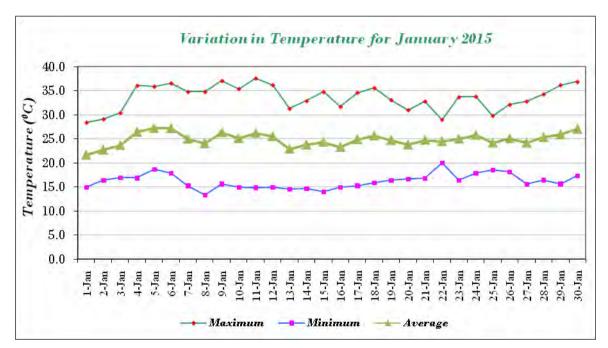
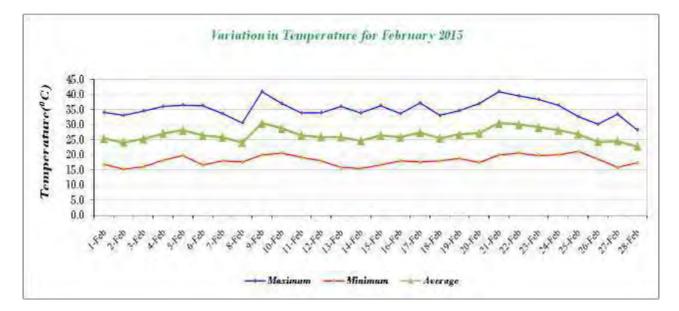



Figure No.3.4.3 Temperature Variation during February, 2015

3.4.3 Humidity

Humidity affects the nature and characteristics of pollutants in the atmosphere as it is the measure of amount of moisture in the atmosphere. Humidity helps suspended particulate matter to coalesce and grow in size to settle under the gaseous pollutants by providing them aqueous medium. Hourly data for humidity was collected for the period of December 2014 to February 2015. Humidity was observed between 08 to 93 %. Month-wise average data of humidity are tabulated in **Table No.3.4.2.** The variation in humidity is represented graphically in **Figure No.3.4.4 to Figure No.3.4.6**.

Table No 3.4.2:	Details of	Humidity	Nr. Project	site (Dec	·'14-Feb'15)
1 abic 110 3.4.2.	Details of	munuity.		SILC (DCC	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Date	Average Humidity (%)		
Date	Dec'14	Jan'15	Feb'15
01	39.5	56.5	45.0
02	31.5	59.5	48.5
03	38.0	60.5	46.0
04	39.0	52.5	46.5
05	30.5	43.5	45.0
06	32.0	37.5	50.5
07	43.5	41.0	53.5
08	45.0	45.0	51.5
09	45.0	25.5	43.5
10	45.5	34.5	41.0

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

11	49.5	37.0	50.5
12	44.5	35.0	50.0
13	41.0	36.0	48.0
14	45.5	43.5	48.5
15	28.0	47.0	50.5
16	30.5	49.5	53.5
17	32.0	44.5	48.0
18	28.5	41.0	55.0
19	23.0	45.5	59.0
20	37.0	52.5	52.0
21	42.5	46.0	43.5
22	35.5	57.0	30.5
23	41.0	52.0	39.0
24	53.5	45.0	45.5
25	44.0	56.5	50.5
26	43.5	45.0	48.5
27	26.5	43.0	40.5
28	28.0	51.0	58.0
29	33.0	37.0	
30	38.5	31.5	
31	53.0	40.0	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.4 Month wise Humidity Variation in % (December, 2014)

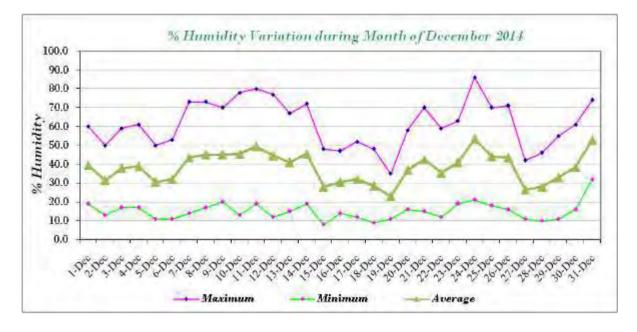
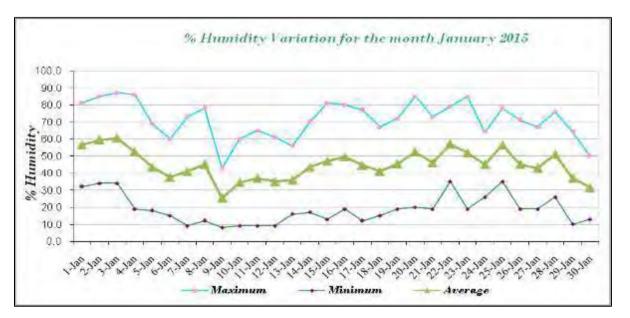
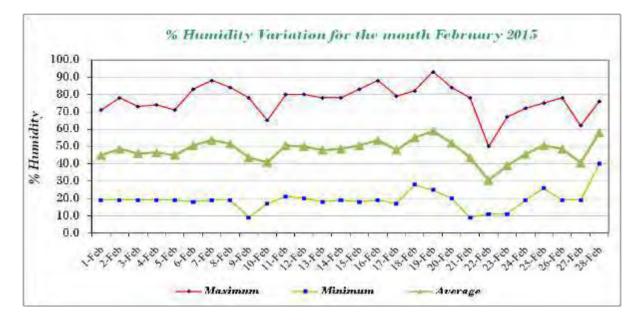



Figure No. 3.4.5 Month wise Humidity Variation in % (January, 2015)


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No 3.4.6: Month wise Humidity Variation in % (February, 2015)

3.4.4 Wind Velocity

The wind speed was measured by anemometer in km/hour. The rate of dispersion, diffusion and transportation of pollutants in the atmosphere mainly depend on wind speed and its direction. Wind direction and velocity data have been collected during the study for the preparation of Environmental Impact Assessment report. Data were collected for the Period of December 2014 to February 2015. The wind speed was in the range of 0 to 12.0 km/hr during study period. It was maximum in the month of December, 2015.

Date	Average Wind Speed (km/hr)			
	Dec'14	Jan'15	Feb'15	
01	3.0	3.3	3.9	
02	4.0	1.5	2.4	
03	2.0	2.7	2.0	
04	3.1	2.2	1.8	
05	2.6	3.0	2.4	
06	4.3	2.5	1.7	
07	2.5	2.8	2.7	
08	2.7	2.8	1.9	
09	3.1	3.2	2.4	

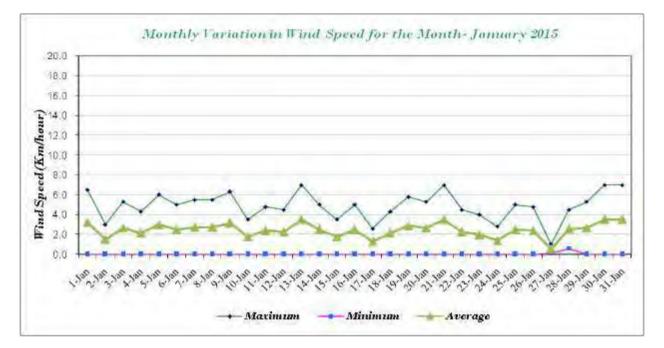
 Table No. 3.4.3 Details of Wind speed Nr. Project site (Dec'14-Feb'15)

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

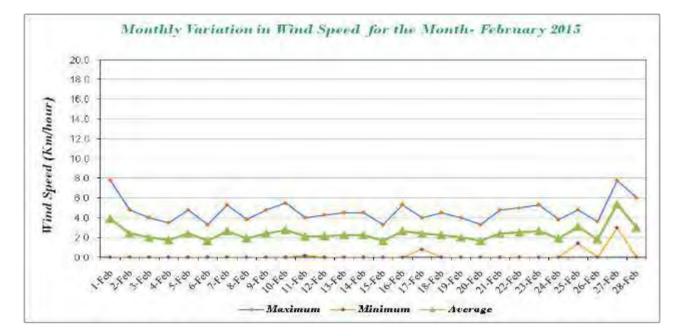
10	1.8	1.8	2.8
11	2.5	2.4	2.1
12	1.3	2.3	2.2
13	2.2	3.5	2.3
14	2.9	2.5	2.3
15	4.3	1.8	1.7
16	4.1	2.5	2.7
17	4.2	1.3	2.4
18	6.0	2.2	2.3
19	3.8	2.9	2.0
20	2.4	2.7	1.7
21	3.2	3.5	2.4
22	2.4	2.3	2.5
23	1.9	2.0	2.7
24	2.0	1.4	1.9
25	3.0	2.5	3.1
26	3.2	2.4	1.8
27	4.0	0.6	5.4
28	2.5	2.6	3.0
29	2.8	2.7	
30	2.9	3.5	
31	3.3	3.5	

ECO CHEM SALES & SERVICES



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.4.7 Wind Speed Variation in km/hour (December, 2014)


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.9: Wind Speed Variation in km/hour (February, 2015)

3.4.5 Wind Rose

Wind rose diagram is a graphical representation of the magnitude and direction of wind speed considering all the directions.

From the knowledge of wind rose diagram one can easily predict the direction and extent of spreading of the gaseous and particulate matter from the source. Wind rose diagram has been prepared by using daily average wind velocity and dominant wind direction. Wind rose diagrams have been prepared for the period of December 2014 to February 2015.

Wind rose diagrams and frequency Distribution are presented in Figure No 3.4.10 to Figure No.3.4.15 Frequency Count Chart and Frequency Distribution chart are presented in Table No. 3.4.4 to Table No.3.4.9.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.4.4 Frequency Count Chart (December, 2014)

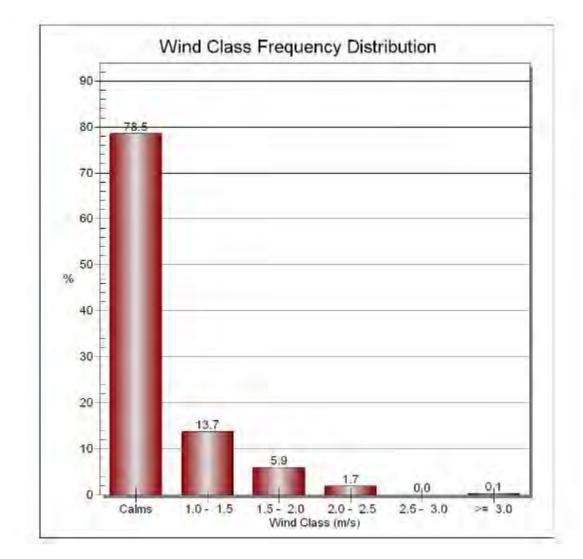
Sr.	Directions / Wind	1.0 -	1.5 -	2.0 -	2.5 -		
No.	Classes (m/s)	1.5	2.0	2.5	3.0	>= 3.0	Total
1	Ν	1	0	0	0	0	1
2	NNE	0	0	0	0	0	0
3	NE	0	0	0	0	0	0
4	ENE	0	0	0	0	0	0
5	Ε	2	0	0	0	0	2
6	ESE	5	0	0	0	0	5
7	SE	10	6	0	0	0	16
8	SSE	2	0	0	0	0	2
9	S	3	0	0	0	0	3
10	SSW	0	1	0	0	0	1
11	SW	2	1	1	0	0	4
12	WSW	4	2	0	0	0	6
13	W	6	1	1	0	0	8
14	WNW	13	6	1	0	0	20
15	NW	50	26	10	0	1	87
16	NNW	4	1	0	0	0	5
	Sub-Total	102	44	13	0	1	160
	Calms			•	•		584
	Missing/Incomplete	1					0
	Total						744

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

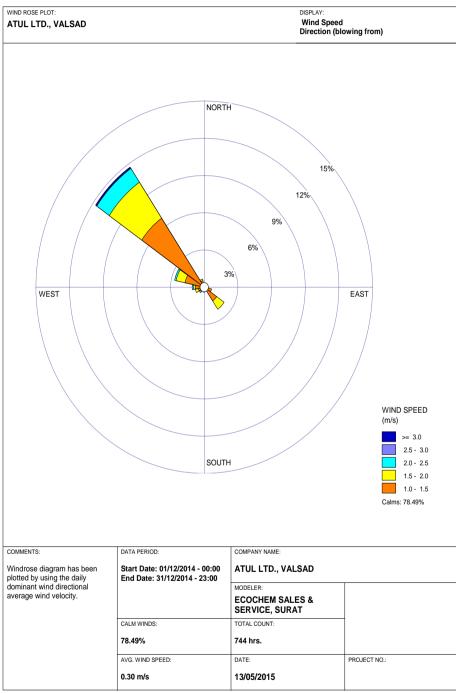
Table No. 3.4.5 Frequency Distribution Chart (December, 2014)

Sr. No.	Directions / Wind Classes (m/s)	1.0 - 1.5	1.5 - 2.0	2.0 - 2.5	2.5 - 3.0	>= 3.0	Total
1	Ν	0.0	0.0	0.0	0.0	0.0	0.0
2	NNE	0.0	0.0	0.0	0.0	0.0	0.0
3	NE	0.0	0.0	0.0	0.0	0.000	0.000
4	ENE	0.0	0.0	0.0	0.0	0.0	0.0
5	Ε	0.0	0.0	0.000	0.000	0.0	0.003
6	ESE	0.0	0.0	0.0	0.000	0.0	0.007
7	SE	0.0	0.0	0.0	0.000	0.0	0.022
8	SSE	0.0	0.0	0.000	0.000	0.0	0.003
9	S	0.0	0.0	0.0	0.000	0.000	0.004
10	SSW	0.0	0.0	0.0	0.000	0.0	0.001
11	SW	0.0	0.0	0.001	0.000	0.000	0.005
12	WSW	0.0	0.0	0.000	0.000	0.000	0.008
13	W	0.0	0.0	0.0	0.0	0.0	0.0
14	WNW	0.0	0.0	0.0	0.0	0.0	0.0
15	NW	0.1	0.0	0.0	0.0	0.0	0.1
16	NNW	0.0	0.0	0.0	0.0	0.0	0.0
	Sub-Total	0.1	0.1	0.017	0.000	0.001	0.2
	Calms			•	•	•	0.78495
	Missing/Incomplete						0
	Total						1


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.4.10 Wind class frequency distribution (December, 2014)


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.6 Wind rose diagram for the month of December, 2014

WRPLOT View - Lakes Environmental Software

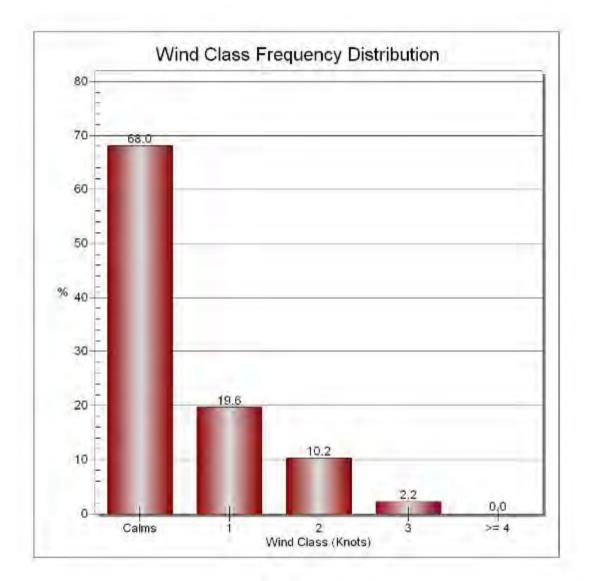
ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Directions / Wind Classes (m/s)	1.0	2.0	3.0	>= 4.0	Total
1	Ν	0	0	0	0	0
2	NNE	0	0	0	0	0
3	NE	0	0	0	0	0
4	ENE	1	0	0	0	1
5	Ε	4	1	0	0	5
6	ESE	14	14	1	0	29
7	SE	25	14	6	0	45
8	SSE	5	5	1	0	11
9	S	6	1	1	0	8
10	SSW	3	1	0	0	4
11	SW	9	2	0	0	11
12	WSW	9	3	2	0	14
13	W	8	1	0	0	9
14	WNW	7	8	1	0	16
15	NW	47	25	4	0	76
16	NNW	8	1	0	0	9
	Sub-Total	146	76	16	0	238
	Calms					506
	Missing/Incomplete]				0
	Total]				744

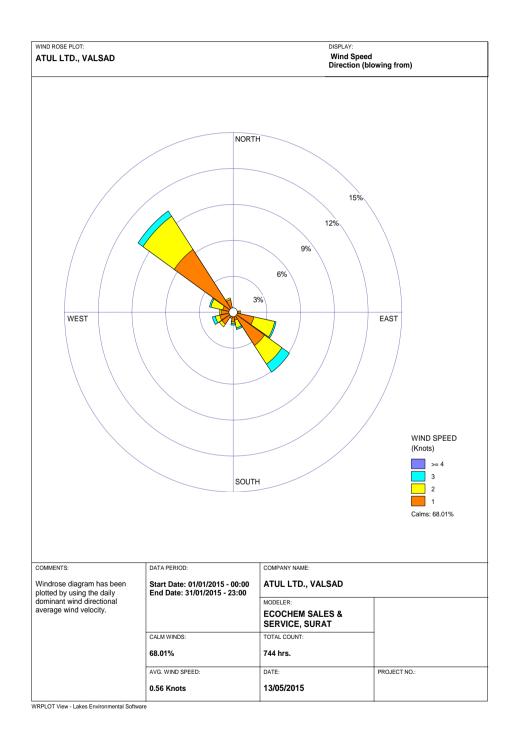
Table No. 3.4.7 Frequency Count Chart (January, 2015)

Sr. No.	Directions / Wind Classes (m/s)	1	2	3	>= 4	Total
1	Ν	0.0	0.0	0.0	0.0	0.0
2	NNE	0.0	0.0	0.0	0.0	0.0
3	NE	0.0	0.0	0.0	0.0	0.0
4	ENE	0.0	0.0	0.0	0.0	0.0
5	Ε	0.0	0.0	0.000	0.0	0.007
6	ESE	0.0	0.019	0.0	0.0	0.039
7	SE	0.0	0.0	0.0	0.0	0.060
8	SSE	0.0	0.0	0.001	0.0	0.015
9	S	0.0	0.0	0.001	0.0	0.011
10	SSW	0.0	0.0	0.0	0.0	0.005
11	SW	0.0	0.0	0.000	0.000	0.015
12	WSW	0.0	0.0	0.0	0.0	0.019
13	W	0.0	0.0	0.0	0.0	0.0
14	WNW	0.0	0.0	0.0	0.0	0.0
15	NW	0.1	0.0	0.0	0.0	0.1
16	NNW	0.0	0.0	0.0	0.0	0.0
	Sub-Total	0.2	0.102	0.022	0.000	0.320
	Calms					0.6801
	Missing/Incomplete					0
	Total					1


Table No. 3.4.8 Frequency Distribution Chart (January, 2015)

ECO CHEM SALES & SERVICES

Figure No. 3.4.11 Wind class frequency distribution (January, 2015)



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.12 Wind rose diagram for the month of January, 2015

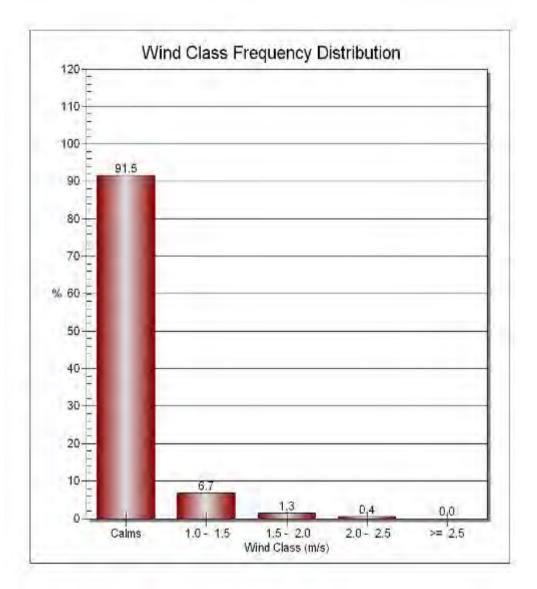
ECO CHEM SALES & SERVICES

G N	Directions / Wind	1.0 -	1.5 -	2.0 -	>=	
Sr. No.	Classes (m/s)	1.5	2.0	2.5	2.5	Total
1	Ν	0	0	0	0	0
2	NNE	0	0	0	0	0
3	NE	0	0	0	0	0
4	ENE	0	1	0	0	1
5	E	5	1	1	0	7
6	ESE	11	5	1	0	17
7	SE	17	2	1	0	20
8	SSE	4	0	0	0	4
9	S	3	0	0	0	3
10	SSW	0	0	0	0	0
11	SW	0	0	0	0	0
12	WSW	0	0	0	0	0
13	W	0	0	0	0	0
14	WNW	0	0	0	0	0
15	NW	5	0	0	0	5
16	NNW	0	0	0	0	0
	Sub-Total	45	9	3	0	57
	Calms					615
	Missing/Incomplete					0
	Total					672

Table No. 3.4.11 Frequency Count Chart (February, 2015)

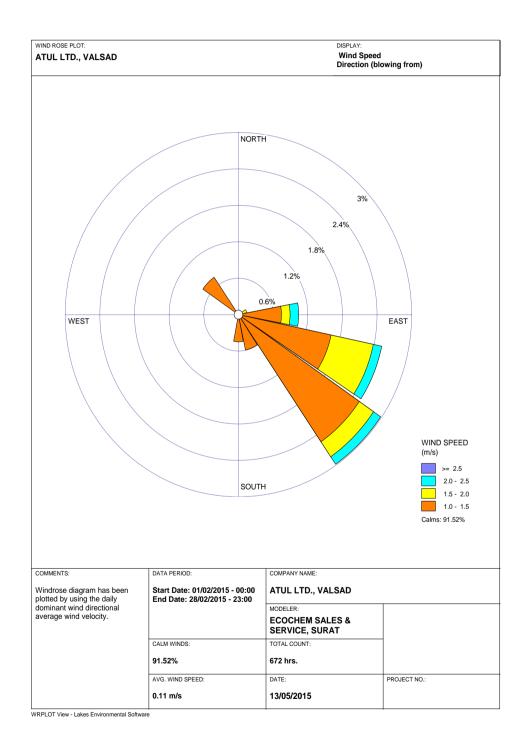
Sr.	Directions / Wind			2.0 -		
No.	Classes (m/s)	1.0 - 1.5	1.5 - 2.0	2.5	>= 2.5	Total
1	N	0.0	0.0	0.0	0.0	0.0
2	NNE	0.0	0.0	0.0	0.0	0.0
3	NE	0.0	0.0	0.0	0.0	0.0
4	ENE	0.0	0.001	0.0	0.0	0.001
5	E	0.0	0.0	0.0	0.0	0.010
6	ESE	0.0	0.0	0.0	0.000	0.025
7	SE	0.0	0.0	0.0	0.0	0.030
8	SSE	0.0	0.000	0.000	0.000	0.006
9	S	0.0	0.0	0.000	0.0	0.004
10	SSW	0.0	0.000	0.000	0.000	0.000
11	SW	0.0	0.0	0.000	0.000	0.000
12	WSW	0.0	0.0	0.000	0.0	0.000
13	W	0.0	0.0	0.0	0.0	0.0
14	WNW	0.0	0.0	0.0	0.0	0.000
15	NW	0.0	0.0	0.0	0.0	0.0
16	NNW	0.0	0.0	0.0	0.0	0.0
	Sub-Total	0.1	0.013	0.004	0.000	0.085
	Calms				•	0.9151
	Missing/Incomple					0
	Total					1

Table No. 3.4.12 Frequency Distribution Chart (February, 2015)


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.13 Wind class frequency distribution (February, 2015)


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.4.14 Wind rose diagram for the month of February, 2015

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.5 AIR ENVIRONMENT

A clean air supply is essential for the health of living beings and that of the environment, but due to industrial revolution quality of air we breathe has deteriorated considerably – mainly as a result of human activities. Rising of industrial and energy production, the burning of fossil fuels and the dramatic rise in fossils fuels, all contribute to air pollution. Ambient air quality monitoring was carried out for the assessment of the existing status of background air quality in the study area. This will be useful for assessing the conformity of the ambient air quality to the standards even after commencement of the proposed project.

3.5.1 Selection of Sampling Locations

Following points were considered during the selection of Ambient Air Quality Monitoring locations.

- Topography/terrain of the study area
- Regional synoptic scale climatologically normal's
- Densely populated areas within the region
- Location of surrounding Industries
- Representation of regional background
- Facility for Ambient Air Monitoring
- Representation of valid cross sectional distribution in downwind direction
- Avoidance of proximity of roads, construction activity or any other perturbing activity which may be temporary in nature, which may lead to some erroneous conclusions.
- Availability of manpower, electricity, approach, sturdy structure and protection of samplers.
- Dominant Wind Direction

To establish the baseline status around the project site of the study region monitoring was conducted for 8 locations within 5 km radius of study region during December 2014 to February 2015. At the time of location selection general wind pattern in the study region was considered for the selection of minimum one location in the downwind direction i.e. SW and one in upwind direction as control i.e. NE. Downwind locations were Rentlav and Udwada; and upwind location were considered as Chanvai and Chichvada at the time of location selection. However, ambient air monitoring locations were selected in all the directions looking towards the possibility of change in wind pattern during the study period. The

EXPANSION IN EXISTING CAPTIVE POWER PLANT

sampling stations are highlighted in **Figure No. 3.5.1** and details of AAQM stations are tabulated in the **Table No.3.5.1**.

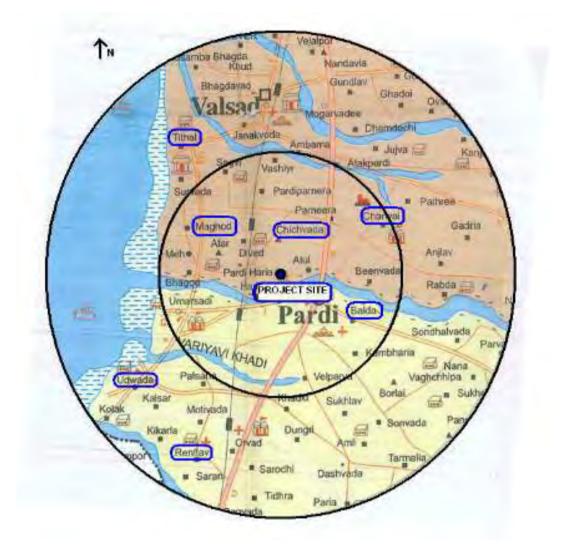

Sr. No.	Location	Distance (km)	Direction
01.	Project Site		
02.	Chichwada	Approx 2	N
03.	Balda	Approx 3	ES
04.	Magod	Approx 4	WN
05.	Chanvai	Approx 5	EN
06.	Tithal	Approx 6	NW
07.	Udvada	Approx 8	WS
08.	Rentlav	Approx 9	SW

Table No 3.5.1 Air Quality Monitoring Location Details

Figure No. 3.5.1 Ambient Air Monitoring locations

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.5.2 Ambient Air Monitoring Photographs

AAQM, Chichwada

AAQM, Balda

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.5.2 Frequency and Parameters for Sampling

Ambient Air Quality Monitoring was carried out for 8 locations within 10 km radius of the project as per AAQM specifications of CPCB for the parameters $PM_{2.5}$, PM_{10} , SO_2 , NO_x and CO. Frequency of sampling was twice a week during study period and samples were collected as per the standard method adopted for sampling and analysis. Sampling and test methods are tabulated in **Table No. 3.5.2**.

3.5.3 Instrument for Sampling

Samples were collected by using the Respirable dust samplers & $PM_{2.5}$ micron dust samplers at the height of approximately 3.5 m above the Ground Level. Methods were adopted as outlined by Central Pollution Control Board, Bureau of Indian Standard & National Environmental Engineering Research Institute. Monitoring was carried out as per the instructions of instrument's manual. Details of method are presented in **Table No.3.5.2**.

Sr. No.	Pollutant	Test Method					
1	PM _{2.5}	CPCB Guideline					
2	PM_{10}	IS 5182 Part 23 2006					
3	SO_2	IS 5182 Part II 2001					
4	NOx	IS 5182 Part VI 2006					
5	СО	Methods of Air Sampling & Analysis AWMA , EPA (Gas Chromatography)					

Table No 3.5.2 Details of Analysis Method

3.5.4 Quality of Ambient Air

Ambient air quality monitoring was done at the above mentioned locations and analysis was carried out in the laboratory. Minimum, maximum and percentile value for the parameters $PM_{2.5}$, PM_{10} , SO_2 , NO_x and CO are tabulated in **Table No.3.5.3 to Table No.3.5.5**.

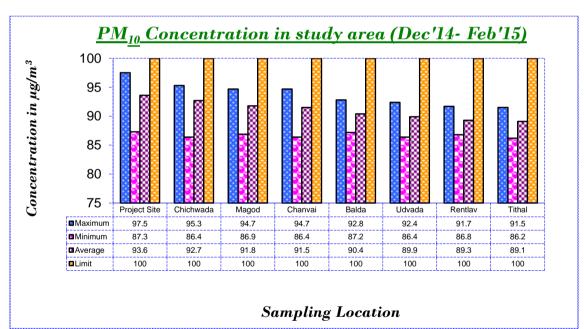
EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.5.3 Percentile Value of PM₁₀ & PM_{2.5} (Dec'14 to Feb'15)

G	Sampling Location			PM _{2.5}									
Sr. No.		Min.	Percentile			Max.	Min.	Percentile			Max.		
		$(\mu g/m^3)$	25	50	75	98	(µg/m ³)	$(\mu g/m^3)$	25	50	75	98	$(\mu g/m^3)$
1	Project Site	87.3	92.7	94.0	95.0	97.2	97.5	47.4	50.7	52.6	54.4	56.9	57.4
2	Chichwada	86.4	91.8	92.7	93.8	95.3	95.3	45.2	49.5	51.0	52.6	54.1	54.4
3	Magod	86.9	90.7	92.3	93.5	94.6	94.7	46.5	48.6	49.8	51.8	56.8	58.2
4	Chanvai	86.4	90.5	91.7	92.7	94.5	94.7	46.2	48.6	50.6	51.9	55.4	55.6
5	Balda	87.2	89.5	90.6	91.6	92.7	92.8	45.1	49.6	50.5	51.7	53.7	53.7
6	Udvada	86.4	89.3	89.7	90.9	92.4	92.4	44.2	48.3	49.4	50.3	52.2	52.7
7	Rentlav	86.8	88.2	89.4	90.4	91.6	91.7	44.3	47.3	48.6	49.8	53.3	53.8
8	Tithal	86.2	87.6	89.0	90.3	91.5	91.5	45.8	47.2	49.0	50.3	54.3	54.8

Table No. 3.5.4 Percentile Value for ambient air analysis (SO₂ & NO_x) (Dec'14 to Feb'15)

				S	O_2					NO	x		
	Sampling		Percentile					Percentile				Ma	
	Location	Min. (μg/m ³)	25	50	75	98	Max. (µg/m ³)	Min. (µg/m ³)	25	50	75	98	x. (μg/ m ³)
1	Project Site	27.2	30.7	31.6	32.5	33.7	33.7	36.7	41.6	43.4	44.8	46.8	46.8
2	Chichwada	28.6	31.1	31.6	32.7	34.3	34.5	34.2	41.5	42.4	44.0	46.1	46.2
3	Magod	29.4	29.9	31.2	32.9	34.3	34.7	36.3	40.6	42.8	43.7	46.5	47.5
4	Chanvai	28.5	30.7	31.2	31.8	33.3	33.6	36.9	40.5	41.7	42.7	44.6	44.7
5	Balda	27.4	29.6	30.6	31.8	33.1	33.4	33.5	39.6	40.8	42.0	43.3	43.5
6	Udvada	27.3	28.5	29.7	30.2	31.9	31.9	34.2	38.8	39.6	40.9	42.8	42.8
7	Rentlav	26.7	27.9	28.8	30.1	31.3	31.4	34.7	37.6	38.8	40.0	41.5	41.8
8	Tithal	26.3	27.4	28.2	28.8	30.5	30.7	34.8	35.8	37.5	38.3	41.4	41.9



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No3.5.5 Results of CO (Dec'14 to Feb'15)

S-	Samuling		СО									
Sr. No.	Sampling Location	Min.		Percentile								
INU.	Location	$(\mu g/m^3)$	25	50	75	98	$(\mu g/m^3)$					
1	Project Site	975	1008	1018	1051	1074	1075					
2	Chichwada	925	960	1005	1024	1060	1064					
3	Magod	910	923	974	987	1012	1015					
4	Chanvai	854	918	950	978	1009	1012					
5	Balda	765	805	873	918	982	988					
6	Udvada	684	740	775	814	869	875					
7	Rentlav	645	686	728	754	785	788					
8	Tithal	655	668	695	709	728	730					

Figure No. 3.5.3 PM_{10} Conc. Variation in study Area

Figure No. 3.5.4 PM_{2.5} Conc. Variation in Study Area

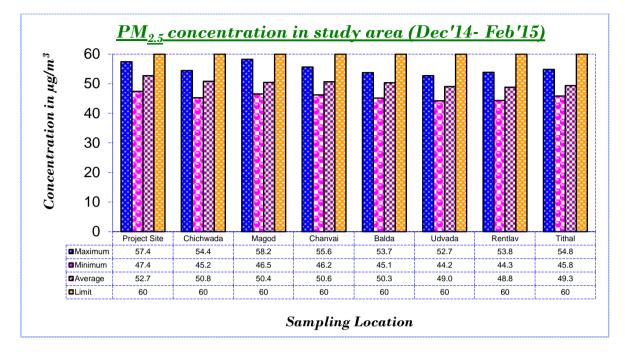
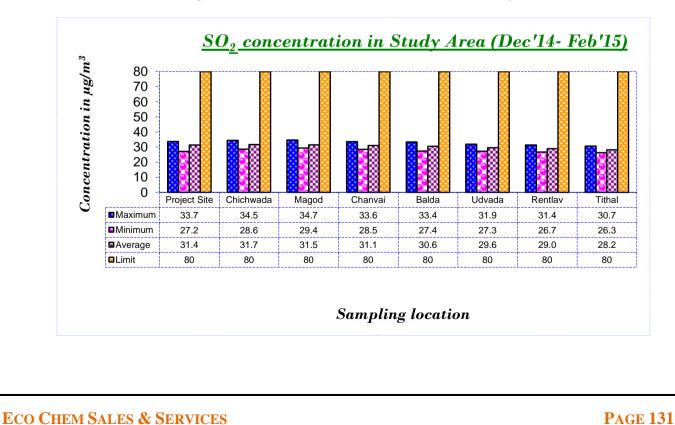
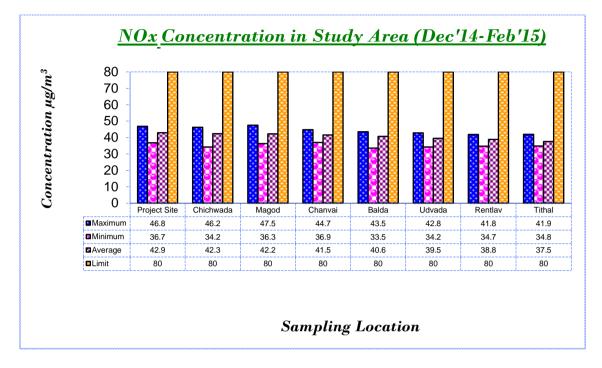



Figure No. 3.4.5 Variation in SO₂ Conc. In study area



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.5.6 Variation in NO_x Conc. In study area

Table No. 3.5.7 Ambient Air Quality Standards

(Standard for Ambient Air Quality Monitoring as per Ministry of Environment & Forests (MoEF))

Sr.	Pollutant	Avg. on basis of Time	Industrial/Residential	Ecologically
No.			Area	Sensitive Area
1.	SO ₂	Annual	50	20
		24 Hrs.	80	80
2.	NO ₂	Annual	40	30
		24 Hrs.	80	80
3.	PM ₁₀	Annual	60	60
		24 Hrs.	100	100
4.	PM _{2.5}	Annual	40	40
		24 Hrs.	60	60
6.	СО	8 Hrs.	02	02
		1 Hr	04	04

• Publication: November 16, 2009

• unit: $\mu g/m^3$

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.5.5 Summary of Ambient Air Quality

Results were compared with the standard for ambient air quality monitoring as per the Ministry of Environment & Forests (MoEF).

- During the study $PM_{2.5}$ was observed between 44.2 58.2 µg/m³. Maximum concentration of $PM_{2.5}$ was found at Magod village. Results of $PM_{2.5}$ for all locations are well within the CPCB norms.
- PM_{10} was observed in the range of 86.2 97.5 µg/m³. Results found during the study period for PM_{10} were well within the limit given by Ministry of Environment & Forests.
- SO₂ concentration was observed in the range of 26.3 to 34.7 μ g/m³, which is well within the standard limit.
- NO_x concentration in Ambient Air quality was between 33.5-47.5 μ g/m³, which is well within the standard limit.
- Monitoring and analysis was also carried out for CO. Maximum Concentration of CO was found to be 1075 µg/m3 near project site.
- On the basis of test results found during the survey it can be concluded that the ambient air quality of the study region is quite good as all the results are well within the limit.

3.6 NOISE ENVIRONMENT

Various noise scales have been introduced to describe in a single number the response of an average human being to a complex sound made up of various frequencies at different loudness levels. The most common and widely accepted is the weighted decibel dB (A) scale.

The objective of the baseline noise survey was to identify existing noise sources and to measure background noise levels at the sensitive receptors within the study area.

Peoples' perception of noise varies depending on number of factors including their natural sensitivity and hearing ability, past experience of sound, cultural factors and the time of day at which sound is experienced. Continuous sound is perceived quite differently from intermittent sound at the same level. High or continuous noise levels may cause permanent loss of hearing ranging from reduced perception at certain frequencies to total deafness. At comparatively lower levels noise may have psychological effects including disturbance of sleep, annoyance and irritation.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

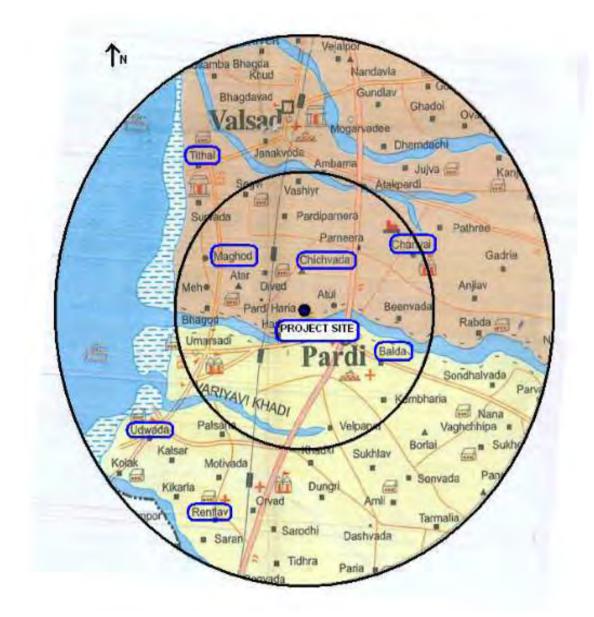
3.6.1 Source of Noise Pollution

The sources of noise pollution in the study area are industrial noise, noise due to commercial activities, noise generated by Community, vehicular traffic, etc.

3.6.2 Noise Level in the Study Area

The noise level was monitored at different villages in study area and nearer to industrial area. Details of locations are given in Table No. 3.6 & Figure No. 3.6. Results are tabulated in Table No. 3.6.1 and Figure No. 3.6.1 & Figure No. 3.6.2.

Sr. No.	Location	Distance (km)	Direction
01	Project Site		
02	Chichwada	Approx 2	N
03	Balda	Approx 3	ES
04	Magod	Approx 4	WN
05	Chanvai	Approx 5	EN
06	Tithal	Approx 6	NW
07	Udvada	Approx 8	WS
08	Rentlav	Approx 9	SW


Table No. 3.6.1 Noise Sampling Locations

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.6.1 Map Showing the Noise Sampling Locations

ECO CHEM SALES & SERVICES

Figure No. 3.6.2 Noise Monitoring Photographs

Noise, Tithal

Noise, Chichwada

Noise, Magod

Noise, Balda

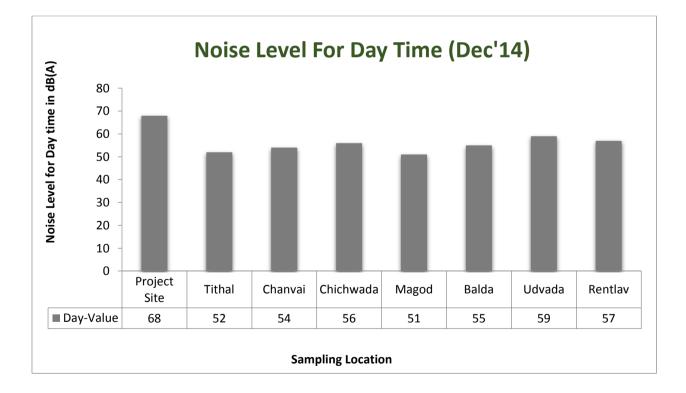


Table 3.6.2 Noise Analysis Report (Dec'14 to Feb'15)

Sr. No.	Location	Noise Level in dB (A)	
		Day Time	Night Time
1.	Project Site	68	59
2.	Tithal	52	43
3.	Chanvai	54	46
4.	Chichwada	56	45
5.	Magod	51	42
6.	Balda	55	44
7.	Udvada	59	48
8.	Rentlav	57	46

Note: Day time -6.00 am to 10.00 pm, Night time -10.00 pm to 6.00 am

Figure No. 3.6.3 Variation in Noise Level during day time

ECO CHEM SALES & SERVICES

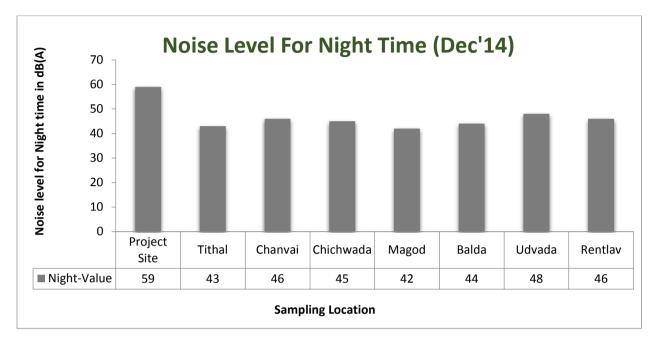


Figure No. 3.6.4 Variation in Noise Level during night time

Noise standards have been designated for different types of land use i.e. residential, commercial, industrial areas and silence zones, as per 'The Noise Pollution (Regulation and Control) Rules, 2000, Notified by Ministry of Environment and Forests, New Delhi, February 14, 2000. Different standards have been stipulated for day (6 am to 10 pm) and night (10 pm to 6 am). The noise levels of the study area are compared with the noise level standards as shown in **Table No. 3.6.2**.

Table No 3.6.2: Noise Level Standards

		Limits in dB		
Sr. No.	Category of Area	Day time	Night time	
		6.00 a.m. to 10.00 p.m.	10.00 p.m. to 6.00 a.m.	
1.	Industrial Area	75	70	
2.	Commercial Area	65	55	
3.	Residential Area	55	45	
	Silence Zone			
4.	i.e. Hospital, Educational	50	40	
	institute, etc.			

The noise level study shows that the noise levels are meeting the acceptable norms.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.7 LAND ENVIRONMENT

Studies on land use aspects of eco system play an important role in identifying sensitive issues and to take appropriate action to maintain ecological homeostasis in the region. The main objective of this section is to provide a baseline status of the area, so that temporal changes due to the proposed port on the surroundings can be assessed in future.

3.7.1 Land Use Pattern

The land use and land cover information is very vital for any kind of management of land. Good and correct compilation of this information helps in deciding the proper use of the land. Optimum economic use in accordance with minimal disturbance of the present ecology should be the prime objective of any industrial activity.

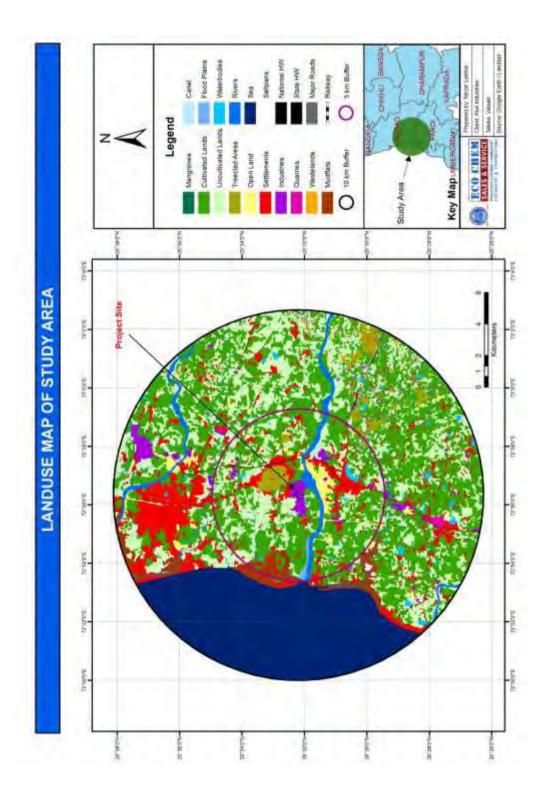
The study of mapping land use and land cover for the area covering 10 km radial distance from site was conducted using Geocoded False Colour Composite scene of IRS-IC LISS III / LISS IV images along with Survey of India (SOI) Toposheets.

There are few ponds/lakes present within 10 km radius of the industry. The nearest is at eastern and south-eastern side of the industry close to railway track and road. Valsad railway station falls within the study area and near to it is railway colony and suki talavadi. Industrial area/study area also has club, helipad area, colony along with other amenities. The cultivable land at present is 36.2 % in the study area while the uncultivated land is around 22.78 % both together covering more than 59 % of the total area under study. The uncultivated/fallow lands are the lands, which are left free without cultivation currently for various reasons such as replenishment of nutrient, water scarcity, etc. Quarrying activities have also been found in small amount. Since the area is close to the coast there are presence of mudflats (nearly 2.5%), salt work activities (nearly 0.1%) and a very small amount of mangroves in scattered forms. Total built-up areas are around 11% out of which nearly 1.5% comprises of industrial area while the rest of it is settlement. There is no reserved forest or protected forest found within the study area. Land Use details are shown in **Table no. 3.7.1 and Figure no. 3.7.1**.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table 3.7.1: Land use Statistics (10 km)

(Source: Land use mapping and primary survey of the area)


Legends	Area (Sqkm)	Percentage
Canal	0.306766291	0.08%
Cultivated Lands	137.0511881	36.20%
Flood Plains	0.683065356	0.18%
Industries	5.632957463	1.49%
Major Roads	3.423271578	0.90%
Mangroves	0.232830098	0.06%
Mudflats	9.336407719	2.47%
National HW	0.615649709	0.16%
Open Land	6.049810932	1.60%
Quarries	0.57164869	0.15%
Railway	0.460630288	0.12%
Rivers	9.578620179	2.53%
Saltpans	0.341591696	0.09%
Sea	70.89387095	18.72%
Settlements	36.5256353	9.65%
State HW	0.889830378	0.24%
Treeclad Areas	6.711023516	1.77%
Uncultivated Lands	86.26207951	22.78%
Wastelands	0.285165933	0.08%
Waterbodies	2.783769679	0.74%
Grand Total	378.6358134	100.00%

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure 3.7.1: Land use Map

ECO CHEM SALES & SERVICES

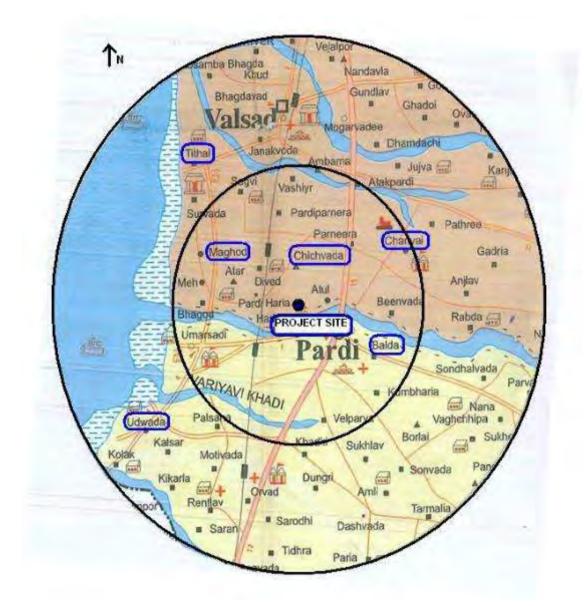
EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.8 SOIL QUALITY

7 samples were collected from different locations within 10 km radius to assess the base line status of soil. Analysis was also carried out for physico-chemical parameters as well as the parameters to define the texture class. Soil samples were collected by using core cutter and brought to the laboratory in polythene bags. Standard procedures have been followed for soil sampling and analysis. Soil sampling locations are presented in **Figure No. 3.8.1** and tabulated in **Table No. 3.8.1**.

The soil in this region mainly comprises of sandy clay loam soil having hard texture. Maximum and minimum value for tested parameters is presented in **Table. No. 3.8.2** to **Table No. 3.8.4**.

Sr. No.	Location	Distance from project site, km	Direction from project site
1	Project Site		
2	Chichwada	Approx 2	Ν
3	Balda	Approx 3	ES
4	Magod	Approx 4	WN
5	Chanvai	Approx 5	EN
6	Tithal	Approx 6	NW
7	Udvada	Approx 8	WS


Table No.3.8.1: Sampling Locations

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.8.1: Soil Sampling Locations

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.8.2: Soil Sampling Photographs

Soil Samples, Tithal

Soil Sample, Magod

Soil Sample, Chichwada

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.8.2: Average Results of Soil Samples (Dec'14 to Feb'15)

Sr.			Average Results						
No.	Parameter	Unit	Project Site	Tithal	Chanvai	Chichwada	Magod	Balda	Udvada
1	рН		6.94	6.98	7.29	8.05	8.05	7.51	7.72
2	Moisture	%	11.0	10.6	10.1	9.8	9.8	5.5	5.6
3	Organic (Loss on ignition)	%	0.4	0.4	0.5	0.6	0.5	0.3	0.3
4	Calcium	meq/100g	34.3	28.3	31.5	37.1	36.6	34.3	36.7
5	Magnesium	meq/100g	27.7	30.8	30.0	26.8	25.7	29.5	28.7
6	Sodium	meq/100g	4.5	5.2	6.6	4.0	3.7	3.6	3.6
7	Potassium	meq/100g	2.3	1.6	1.7	1.8	1.6	1.3	1.3
8	ESP	%	6.49	7.76	9.42	5.79	5.48	5.31	5.10
9	Total Phosphorus	mg/100g	8.67	5.51	8.57	8.10	9.71	6.82	3.87
10	Total Nitrogen	mg/100g	6.27	2.57	2.23	2.73	3.87	9.83	9.77
11	Nitrate	mg/100g	2.67	4.23	5.20	3.10	2.57	4.30	2.77
12	Zinc	mg/100g	5.2	4.4	3.9	4.5	2.2	2.4	2.5
13	Copper	mg/100g	4.6	4.2	4.1	3.1	1.1	3.6	0.8
14	Iron	mg/100g	81.6	100.9	97.4	85.5	96.4	98.9	96.7
15	Chromium	mg/100g	3.8	2.5	3.7	3.5	1.2	2.5	1.6
16	Boron	mg/100g	2.8	2.6	2.9	3.8	1.7	1.4	1.2
17	Electrical Conductivity	µmhos/cm	1.5	2.3	1.9	1.4	1.6	1.6	1.3
18	Bulk Density	gm/cc	1.5	1.5	1.7	1.4	1.6	2.1	2.1

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sr. No.	Parameter	Project Site	Tithal	Chanvai	Chichwada	Magod	Balda	Udvada
1	Texture	Silty Clay Loam	Silty Clay	Silty Clay Loam	Silty Clay	Silty Clay Loam	Silty Clay Loam	Clay Loam
2	Sand%	12	18	16	14	20	18	22
3	Silt %	53	42	46	44	45	46	43
4	Clay%	35	40	38	42	35	36	35
5	Colour	Black	Black	Black	Black	Black	Black	Black

Table No.3.8.3: Soil Texture analysis (Dec'14 to Feb'15)

3.8.1 Summary of Soil Quality

The following interpretation is made based on visual observation & the average test results found during the study period.

- Results of pH were varying in narrow range for one location to other location from 6.94 to 8.05 during the study period .Overall the pH of all the soil samples were found almost neutral.
- Loss on ignition test was also carried out to know the probability of Organic matter in the soil samples. Concentration of organic matter was found in the range of 0.3 to 0.6 %. Minimum Value was observed in the soil samples of Balda and Udvada.
- During analysis total Nitrogen was found in the range of 2.23-9.83 mg/100 gm. Minimum value was observed in the soil sample of Chanvai.
- Total Phosphorous content was found in the range of 3.87 to 9.71 mg/100 gm.
- Calcium content ranged from 28.3 to 37.1 meq/100 gm and magnesium content ranged from 25.7 to 30.8 meq/100 gm.

As a micronutrient analysis of Iron, Chromium, copper & Boron was also carried out for all the soil samples & its presence was found lower than the desired value. Soil texture was found to be silt clay and silt clay loam in most of the villages of study region.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.9 WATER ENVIRONMENT

Water is vital for all known forms of life. It is a precondition for human, animal and plant life as well as an indispensable resource for the economy. Water plays a fundamental role in climate regulation cycle. Current scenario shows that large population is deprived of access to water and if they might have this access, the water may be polluted with many contaminants. In the future, we will probably find that clean water will be a rare and high price commodity.

Most water resources are being influenced by human activities. Among these, industrial activities are the major pressure on water environment. The growing population and industrial demands for development and welfare or improvement further increases the pressure on these resources. As a result water resources are getting contaminated and making the adverse impact on aquatic life. Ensuring a sustained use and avoiding closure of development options requires in depth knowledge of physical, chemical and biological responses to human interference and robust prediction tools for the evaluation and optimization of proposed development and abatement schemes.

Physical, chemical and biological factors influencing water quality are so interrelated that a change in any water quality parameter may trigger other changes in a complete network of interrelated variables. Selected water quality parameters for surface and ground water resources along with biological indicators within study region have been used for water environment and assessing the impact on it by proposed project. A study on water environment aspects of ecosystem plays an important role in environmental assessment to identify water related sensitive issues.

3.9.1 Reconnaissance

As a significant part of predefined framework of the present study water samples were collected from selected locations. The Reconnaissance survey was undertaken and monitoring locations were finalized based on:

- Presence, Location and uses of major water bodies in the region
- Type and Location of Industrial/residential areas, their intake and effluent disposal locations
- Likely area that can represent baseline conditions

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.9.2 Water Quality

With the start of water quality study, the water resources in the study area were divided into two categories for getting ideal upshot of baseline status of water quality of the region. These two major categories as determined are:

- Ground Water resources (tube well, open well, springs etc.)
- Surface water resources including streams, nalas, ponds ,river, canals, estuary

3.9.3 Sampling & Analysis

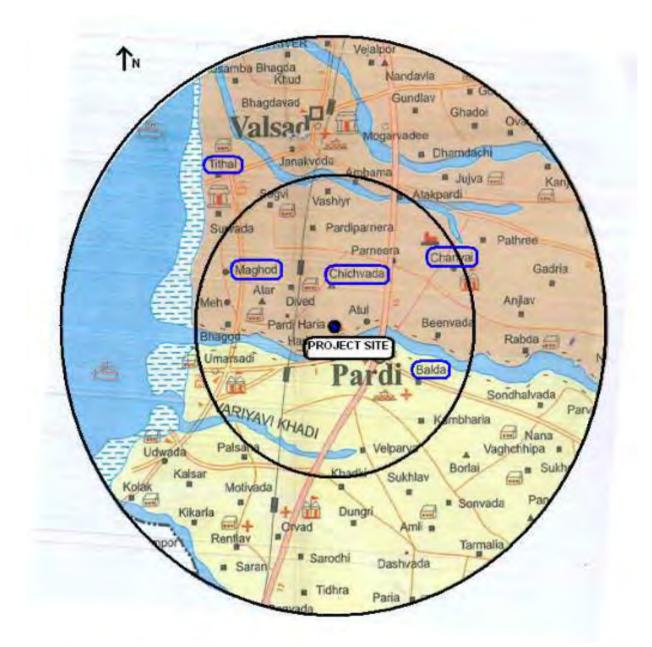
All the water samples were collected and analyzed as per "Standard Methods for Examination of Water & Wastewater", APHA 21st edition, 2005. Water Samples for the analysis of physico-chemical parameters were collected in plastic carboy and parameter wise preserved onsite as per the technique defined in the book of APHA, 21st edition. Temperature, pH and DO were analyzed onsite and samples were brought to the laboratory for the analysis of remaining parameters.

3.9.4 Ground Water Resources

To assess the quality of ground water, samples were collected from 5 locations for the analysis of physico-chemical and microbiological parameters. Frequency of sampling was twice in a month during the study period.

Sampling locations are tabulated in Table No.3.9.1 and Figure No.3.9.1 and its analysis report is presented in Table No 3.9.1 to Table No.3.9.2.

Sr. No.	Location	Distance from	Direction from
		project site, km	project site
01	Chichwada	Approx 2	Ν
02	Balda	Approx 3	ES
03	Magod	Approx 4	WN
04	Chanvai	Approx 5	EN
05	Tithal	Approx 6	NW


Table No.3.9 Sampling Locations

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No 3.9.1 Map Showing Ground Water Sampling Locations

ECO CHEM SALES & SERVICES

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No 3.9.2 Ground Water Sampling Photographs

Ground Water sample, Chanvai

Ground Water sample, Magod

Ground Water sample, Balda

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.9.1 Ground water analysis Report (Dec'14 – Feb'15)

Sr.	Parameter	Unit	Tit	thal	Cha	nvai	Chicł	nwada
No.	1 al alletel		Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
1.	Temperature	⁰ C	22.5	24.5	22.5	24.5	22.5	25.0
2.	рН	pH Unit	6.5	7.33	6.9	7.4	5.9	7.15
3.	Colour	Pt.Co.scale	<05	<05	<05	<05	<05	<05
4.	Odour		Odourless	Odourless	Agreeable	Agreeable	Agreeable	Agreeable
5.	TDS	mg/L	1438	1515	325	359	364	407
6.	Turbidity	NTU	0.6	0.8	0.5	0.8	0.6	0.78
7.	Total Hardness	mg/L	785	910	255	305	290	335
8.	Calcium	mg/L	190	228	48	54	52	64
9.	Total Alkalinity	mg/L	368	424	212	232	218	240
10.	Chloride	mg/L	600	765	204	236	69	94
11.	Magnesium	mg/L	69	84	33	40	35	72
12.	Sulphate	mg/L	5	8	2	6	3	4
13.	Phosphate	mg/L	0.5	0.9	0.6	1.1	0.1	0.8
14.	Sodium	mg/L	125	234	27	39	25	33
15.	Potassium	mg/L	72	91	8	15	11	18
16.	Fluoride	mg/L	0.5	0.7	0.6	0.8	0.6	0.9
17.	Phenolic Comp.	mg/L	NIL	NIL	NIL	NIL	NIL	NIL
18.	Oil & Grease	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
19.	Dissolved oxygen	mg/L	5.6	6.4	5.6	6.4	5.5	6.5
20.	COD	mg/L	14	22	9	16	8	14
21.	BOD(3daysat27 ⁰ C)	mg/L	4.5	8	<4	<4	<4	<4
22.	Nitrate	mg/L	0.2	0.3	0.2	0.4	0.9	1.4
23.	Iron	mg/L	0.18	0.33	0.28	0.47	0.21	0.34
24.	Copper	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
25.	Boron	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
26.	Chromium	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
27.	Zinc	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
28.	MPN	No./100ml	NIL	NIL	NIL	NIL	NIL	NIL
29.	Silica	mg/L	3.6	4.6	3.7	6.0	3.8	4.2

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.9.2 Ground water analysis Report (Dec'14 to Feb'15)

Sr. No	Parameter	Unit	Ma	god	Balda		
51.110	I al ameter	Omt	Minimum	Maximum	Minimum	Maximum	
1.	Temperature	⁰ C	22.5	24.5	22.0	25.0	
2.	рН	pH Unit	7.0	7.28	6.6	7.06	
3.	Colour	Pt.Co.scale	<05	<05	<05	<05	
4.	Odour		Agreeable	Agreeable	Odourless	Odourless	
5.	TDS	mg/L	510	547	412	439	
6.	Turbidity	NTU	0.8	1.1	0.5	0.8	
7.	Total Hardness	mg/L	260	305	220	280	
8.	Calcium	mg/L	48	64	48	62	
9.	Total Alkalinity	mg/L	312	344	316	348	
10.	Chloride	mg/L	134	150	52	65	
11.	Magnesium	mg/L	28	38	19	32	
12.	Sulphate	mg/L	2.7	4.9	3.2	4.3	
13.	Phosphate	mg/L	0.2	0.28	0.6	0.9	
14.	Sodium	mg/L	69	82	46	69	
15.	Potassium	mg/L	22	29	15	22	
16.	Fluoride	mg/L	0.2	0.3	0.5	0.7	
17.	Phenolic Comp.	mg/L	NIL	NIL	NIL	NIL	
18.	Oil & Grease	mg/L	<1.0	<1.0	<1.0	<1.0	
19.	Dissolved oxygen	mg/L	5.7	6.6	5.5	6.7	
20.	COD	mg/L	3	13	13	22	
21.	BOD(3daysat27 ⁰ C)	mg/L	<4	<4	<4	<4	
22.	Nitrate	mg/L	0.1	0.2	0.2	0.4	
23.	Iron	mg/L	0.27	0.5	0.10	0.18	
24.	Copper	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
25.	Boron	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
26.	Chromium	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
27.	Zinc	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
28.	MPN	No./100 ml	NIL	NIL	NIL	NIL	
29.	Silica	mg/L	2.7	3.9	2.9	3.8	

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.9.3 Drinking Water Specification: IS: 10500, 1992

Sr. No.	Parameter	Unit	Desirable Limit	Permissible Limit
1	Temperature	⁰ C		
2	рН	pH Unit	6.5 - 8.5	No Relaxation
3	Colour	Pt.Co.scale	5	15
4	Odour		Agreeable	
5	TDS	mg/L	500	2000
6	Turbidity	NTU	5	10
7	Total Hardness	mg/L	200	600
8	Calcium	mg/L	75	200
9	Total Alkalinity	mg/L	200	600
10	Chloride	mg/L	250	1000
11	Magnesium	mg/L	30	100
12	Sulphate	mg/L	200	400
13	Phosphate	mg/L		
14	Sodium	mg/L		
15	Potassium	mg/L		
16	Fluoride	mg/L	1.0	1.5
17	Phenolic Comp.	mg/L	0.001	0.002
18	Oil & Grease	mg/L		
19	Dissolved oxygen	mg/L		
20	COD	mg/L		
21	BOD(3 days at 27° C)	mg/L		
22	Iron	mg/L	0.3	No Relaxation
23	Nitrate	mg/L	45	No Relaxation
24	Copper	mg/L	0.05	1.5
25	Boron	mg/L	0.5	1.0
26	Total Chromium	mg/L	0.05	No Relaxation
27	MPN	No./100 ml	Nil	Nil

(Reaffirmed 2012)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.9.5 Summary of Ground Water Quality

The test results were compared with the Drinking Water Specification: IS: 10500, 1992 (Reaffirmed 2012) & it is summarized as under.

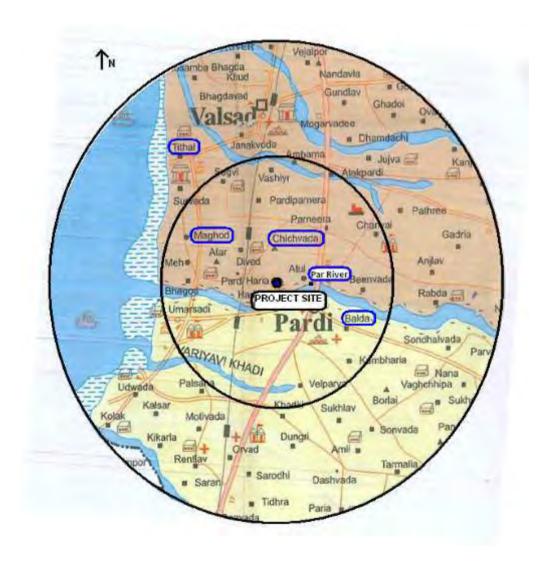
- pH range was observed between 5.9 7.38.
- Total dissolved solids were recorded in the range of 325 1515 mg/L. Total Dissolved solids concentration was found acceptable. The concentration was high in the samples of Tithal.
- Total hardness was in the range of 220 910 mg/L with minimum at Balda & maximum at Tithal. Hardness results were found within the permissible limit except for the samples of Tithal.
- Results of Alkalinity, Calcium, Magnesium were also found within the permissible limit except for the samples of Tithal village.
- All the heavy metals were found well within the range of prescribed standards. Any of toxic metals were not found in any village during analysis. Fluoride was also within the range of prescribed limit in all the samples.
- As microbiological parameters MPN analysis was also carried out and it was found NIL.
- On the basis of test results it is summarized that water quality for studied locations is as per IS 10500

 2012. Water can be used for drinking purpose after primary treatment and can also be used for domestic purposes. Water of Tithal village should not be used for drinking purpose without proper treatment.

3.9.6 Surface Water

To assess the quality of Surface water, samples were collected from 05 locations for the analysis of physico-chemical, microbiological as well as for biological parameters. Frequency of sampling was once in a month during the study period for the analysis of physico-chemical parameters and once during the study period for the testing of biological parameters.

Sampling and analysis was carried out as per "Standard Methods for Examination of Water and Wastewater, APHA 21st edition, 2005. Sampling locations are tabulated in the **Table No.3.9.4** and **Figure No.3.9.3** and analysis report is presented in **Table No.3.9.5**.



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.9.4 Details of Surface Water Sampling Locations

Sr. No.	Location	Source of water	Distance from the project Site (km)	Direction from the Project Site
01	Chichwada	Pond	Approx 2	Ν
02	Balda	Pond	Approx 3	ES
03	Magod	Pond	Approx 4	WN
04	Tithal	Pond	Approx 6	NW
05	Par River	River	Approx 1	E

Figure No.3.9.3 Map showing the locations for Surface water

ECO CHEM SALES & SERVICES

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No.3.9.4 Surface water sampling Photographs

Surface Water sample, Tithal

Surface Water sample, Chichwada

Surface Water sample, Balda

Surface Water Samples, Par River

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.9.5 Surface water Analysis Report (Dec'14 to Feb'15)

Sr.	Parameter	Unit	Tit	thal	Chick	nwada	Ma	god
No.	rarameter	Umt	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
1.	Temperature	⁰ C	22.0	24.0	22.5	25.0	22.5	24.5
2.	рН	pH Unit	6.80	7.12	7.18	7.35	7.42	7.54
3.	Colour	Pt.Co.scale	<05	<05	<05	<05	<05	<05
4.	Odour		Agreeable	Agreeable	Agreeable	Agreeable	Odourless	Odourless
5.	TDS	mg/L	154	178	75	786	235	246
6.	Turbidity	NTU	4.6	5.4	4.0	5.2	4.9	6.8
7.	Total Hardness	mg/L	75	110	25	35	170	180
8.	Calcium	mg/L	50	60	15	25	43	52
9.	Total Alkalinity	mg/L	72	96	48	60	128	148
10.	Chloride	mg/L	44	53	22	26	42	54
11.	Magnesium	mg/L	5	12	2	2	12	15
12.	Sulphate	mg/L	2.2	4.3	1.0	2.7	2.7	3.8
13.	Phosphate	mg/L	0.9	1.1	1.1	1.3	1.3	1.5
14.	Sodium	mg/L	18	23	19	26	22	27
15.	Potassium	mg/L	5	8	5	8	4	7
16.	Fluoride	mg/L	0.7	0.9	0.6	0.8	0.6	0.85
17.	Phenolic Comp.	mg/L	Nil	Nil	Nil	Nil	Nil	Nil
18.	Oil & Grease	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
19.	Dissolved oxygen	mg/L	5.4	6.5	5.7	6.6	5.1	6.5
20.	COD	mg/L	2	4	10	14	16	20
21.	BOD(3daysat27 ⁰ C)	mg/L	<4	<4	<4	<4	6.5	7
22.	Nitrate	mg/L	0.2	0.2	0.1	0.2	1.1	1.8
23.	Iron	mg/L	0.08	0.11	0.40	0.58	0.73	0.76
24.	Copper	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
25.	Boron	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
26.	Chromium	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
27.	Zinc	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
28.	Silica	mg/L	5.7	6.8	6.2	6.5	6.1	6.5

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.9.6 Surface water Analysis Report (Dec'14 to Feb'15)

Sr.	Parameter	Unit	Ba	lda	Par River		
No.	rarameter	Umt	Minimum	Maximum	Minimum	Maximum	
1.	Temperature	⁰ C	22.5	23.5	22.0	25.0	
2.	рН	pH Unit	6.62	6.86	7.52	7.71	
3.	Colour	Pt.Co.scale	<05	<05	<05	<05	
4.	Odour		Odourless	Odourless	Agreeable	Agreeable	
5.	TDS	mg/L	74	92	302	324	
6.	Turbidity	NTU	6.2	6.8	2.2	3.1	
7.	Total Hardness	mg/L	50	60	195	215	
8.	Calcium	mg/L	8	12	68	76	
9.	Total Alkalinity	mg/L	44	52	184	196	
10.	Chloride	mg/L	16	23	59	64	
11.	Magnesium	mg/L	7	8	5	7	
12.	Sulphate	mg/L	3.2	4.0	10.8	14.1	
13.	Phosphate	mg/L	1.4	1.6	1.4	1.6	
14.	Sodium	mg/L	15	20	31	39	
15.	Potassium	mg/L	4	6	4	7	
16.	Fluoride	mg/L	0.5	0.7	0.6	0.7	
17.	Phenolic Comp.	mg/L	Nil	Nil	Nil	Nil	
18.	Oil & Grease	mg/L	<1.0	<1.0	<1.0	<1.0	
19.	Dissolved oxygen	mg/L	5.3	6.6	5.2	6.6	
20.	COD	mg/L	16	20	16	20	
21.	BOD(3daysat27 ⁰ C)	mg/L	6.0	6.5	5.0	7.5	
22.	Nitrate	mg/L	0.1	0.2	0.1	0.3	
23.	Iron	mg/L	0.12	0.15	< 0.05	< 0.05	
24.	Copper	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	
25.	Boron	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
26.	Chromium	mg/L	< 0.03	< 0.03	< 0.03	< 0.03	
27.	Zinc	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	
28.	Silica	mg/L	5.4	6.1	4.9	5.2	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No.3.9.7 Bacteriological Analysis of surface Water (Dec'14 to Feb'15)

Sr. No.	Sampling Location	Total Coliforms	F.Coliform	E.coli	F.Streptococci			
	Location	Most Probable No (MPN): No/100 ml						
1.	Tithal	38	15	13	8			
2.	Chichwada	49	20	12	10			
3.	Magod	37	22	14	9			
4.	Balda	36	24	11	8			
5.	Par River	33	18	11	10			

Table No.3.9.8 Inland Surface Water Classification (CPCB Standards)

Sr. No.	Characteristics		Class					
SF. NU.	Characteristics	Α	В	С	D	E		
1.	Dissolved Oxygen, mg/L, Min	6	5	4	4	-		
2.	Biochemical Oxygen Demand, mg/ L Max	2	3	3	-	-		
3.	Total Coliform Organisms* MPN/100 ml, Max	50	500	5000	-	-		
4.	Total Dissolved Solids mg/L Max	500	-	1500	-	2100		
5.	Chlorides (as CL), mg/L, Max	250	-	600	-	600		
6.	Colour, Hazen Units, Max	10	300	300	-	-		
7.	Sodium Absorption Ratio, Max	-	-	-	-	26		
8.	Boron (as B) mg/L Max	-	-	-	-	2		
9.	Sulphates (as SO ₄), mg/L Max	400	-	400	-	1000		
10.	Nitrates (as NO ₃), mg/L Max	20	-	50	-	-		
11	Free Ammonia (as N), mg/L Max	-	-	-	12	-		
12.	Conductivity at 25 [°] C, micromhos/cm, Max	-	-	-	1000	2250		
13.	pH value	6.5-8.5	6.5-8.5	6.5-8.5	6.5-8.5	6.5-8.5		
14.	Iron (as Fe), mg/l, Max	0.3	-	50	-	-		
15.	Fluorides (as F), mg/L, Max	1.5	1.5	1.5	-	-		
16.	Copper (as Cu), mg/L, Max	1.5	-	1.5	-	-		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

* If the coliform is found to be more than the prescribed tolerance limits, the criteria for coliform shall be satisfied if not more than 20 percent of samples show more than the tolerance limitspecified, and not more than 5 percent of samples show values more than 4 times the tolerance limits. Further, the faecal coliform should not be more than 20 percent of the coliform.

Source: Indian Standard (IS: 2296 – 1982).

- A' Drinking water surface without conventional treatment but after disinfection
- B' Outdoor bathing (organized)
- C' Drinking water source with conventional treatment followed by disinfection
- D' Propagation of wild life, fisheries
- E' Irrigation, industrial, cooling, controlled waste disposal

3.9.7 Summary of Surface Water Quality

The following description is based on the analysis of the samples:

- During the analysis pH of the samples was found ranging from 6.80 to 7.71.
- TDS analysis was also carried out for surface water sample of the various locations. Minimum TDS was found 74 mg/L in the sample of Balda & maximum TDS was found 324 mg/L for the sample of Par river.
- Turbidity was found between 2.2 to 6.8 NTU.
- DO measured during analysis was ranging between 5.1 to 6.6 mg/L. Almost all the samples of surface water are having similar concentration of DO. DO levels was found more than 4.0 mg/L for all the samples, it means condition of the water resources are favourable to aquatic life.
- It was found that Total Hardness in the sample of Chichwada was minimum i.e. 25 mg/L & maximum was 215 mg/L in the sample of Par River.

Test results comparison study with Inland Surface Water Classification (CPCB Standards) reveals that water cannot be used directly for drinking purpose as MPN test is positive for almost all the locations. Surface water for these locations can be used for various domestic purposes but it cannot be used for drinking purpose. Before taking it for drinking purpose it should be passed through various stages of conventional treatment.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.10 ECOLOGY

Ecology is the scientific study of the relations that living organisms have with respect to each other and their natural environment. Producer, consumer and decomposer govern whole cycle of ecology. Plant and animal both are interdependent to each other. Producer is necessary for each consumer. Plant plays their role in ecology as producer. Plant, animals and microorganism together with the environment in which they live make an independent unit called the Ecosystem.

Mainly two types of Vegetation cover are on the earth surface. One is self-growing and another is cultivated. Plants are renewable resource and useful to living organism in many ways. It is therefore the role of man in manipulating and changing vegetation population. Due to lack of awareness deforestation is occurring which in turn is responsible for imbalance of ecosystem.

The main objective of the ecological survey is aimed to find out baseline status of flora and fauna of the study region. An ecological survey of the study area was conducted particularly with reference to listing of species and assessment of the existing baseline ecological (terrestrial and marine ecosystem) conditions in the study area.

3.10.1 Methodology Adopted for the Study of Flora & Fauna

The importance of primary data collection in all ecological work cannot be over-emphasized as without good survey data the quality of an ecological assessment, mitigation and compensation proposals will be compromised. The data of flora & fauna were collected on visual observation during our site visit and by reviewing various literatures. Authenticity of the primary data was checked by reviewing the data collected from Forest Department, EIC and different Taxonomy books. Previous EIA reports of Valsad region were also referred during the finalization of floral and faunal data. The detail of different species of fishes collected by Department of Fisheries, Valsad (2011) is tabulated in **Table No.3.10.4.**

Data Collection: Following steps were considered for the collection of secondary data and generation of primary data while carrying out ecological survey of the study area.

Step 1: Defining the study area

The study area was larger than the development site as it included adjacent areas that might be directly or indirectly affected by the proposal.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Step 2: Stratifying the site

When designing a field survey, the study area was stratified (i.e. divide the area into relatively homogenous units - often referred to as 'environmental sampling units' or 'stratification units'). Stratified sampling provides a logical, objective and efficient method of undertaking surveys and ensures that the full range of potential habitats and vegetation types will be systematically sampled.

Step 3: Visiting the site

A preliminary site visit was conducted to refine the initial stratification units, determine the vegetation types present at the site, assess the vegetation condition and conduct a habitat assessment.

Observations:

The ecology of the study region is categorized as following:

✓ <u>FLORA</u>

Kharif and Rabi crops are grown in the study region. Following plants are also found around the human settlements which are described in **Table No. 3.10.1**.

Scientific name	Common Name	Scientific name	Common Name
Trees		Shrubs	
Acacia auriculiformis	Bengali Baval	Hibiscus rosa-sinensis	Jasud
Acacia catechu	Khair	Hibiscus vitifolius	Van Kapas
Acacia nilotica	Desi Baval	Jathorpha gossypifolia	Ratanjot Black
Aegle marmelos	Bili	Jatropha curcas	Ratanjot
Ailanthas excels	Ardusa	Lawsonia inermis	Mendi
Albizzia procera	Killai (kevlo)	Leea edgeworthii	Dussorudi
Azadirachta indica	Limdo	Nerium indicum	Karen
Bauhinia purpurea	Kachnar	Nyctanthus arbortristis	Parijatak
Bauhinia racemosa	Ashitro	Tephrosia purpurea	Sartankho
Bombax ceiba	Shimdo	Thespesia populnea	Paras Piplo
Carica papaya	Papaya	Vitex negundo	Nagod
Cassia fistula	Garmalo	Zizyphus oenoplia	Boydino velo
Casuarina equisetifolia	Sharu	Herbs	
Cocos nucifera	Nariel	Argemone mexicana	Darudi
Cordia gharaf	Gundi	Aerva sanguinolenta	Karadia

Table No. 3.10.1 Details of Flora

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Calotropis procera	Akdo	Brassica juncea	Rai
Capparis grandis	Thikari	Bothriochloa pertusa	Zenzvo
Carissa conjesta	Karmada	Catharanthus roseus	Barmasi
Cassia auriculata	Aval	Cassia tora	Kunvandio
Cirtus limon	Limbu	Capsicum annum	Marchi
Clerodendron incerne	Vilayati Mendi	Centella asiatica	Bhrami
Dalbergia paniculata	Patrali	Datura metel	Ganthovalo
Dalbergia sissoo	Sissoo	Hibiscus lobatus	Tali
Datura metel	Dhanturo	Indigofera linnaei	Fatakiya
Dendrophthoe falcate	Vando	Launaea procumbens	Bhonyadandi
Emblica officinalis	Amla	Lavandula bipinnata	Roth
Eucalyptus species	Nilgiri	Leucas aspera	Kubi
Ficus bengalensis	Vad	Ipomoea aquatica Forsk	Mali Ni Bhaji
Ficus glomerata	Umero	Melilotus Jangli	Methi
Ficus religiosa	Pipdo	Musa paradisiacal	Kela
Garuga pinnata	Kakad	Ocimum sanctum	Tulsi
Madhuca indica	Mahudo	Phyllanthus fraternus	Bhonya Amli
Mangifera indica	Amba	Sesamum indicum	Fal
Melia azaderach	Bakam Limdo	Setaria italica	Chano
Morus alba	Shetur	Sida cordata	Bhoya bala
Phoenix sylvestris	Khajuri	Tribulus terrestris	Bethu Gokhru
Pongomia pinnata	Karanj	Trichodesma amplexicaule	Undhafuli
Prosopis juliflora	Gando Baval	Climbers	
Samanea saman	Rato Sarasdo	Ampelocissus latfolia	Jungli
Syzygium rubecundum	Tamun	Asparagus racemosus	Satavai
Tamarindus indica	Amli	Bongainvillea spectabilis	Boganvel
Tecomella undulate	Ragat Rohido	Cucurbita maxima	Kolu
Terminalia bellerica	Behdo	Passiflora edulis	Krishna Kamal
Terminalia chebula	Herde	Quisqualis indica	Madhu Malti
Terminalia cranulata	Sadad	Grass	
Terminalia catappa	Badam	Bothriochloa pertusa	Zenzvo
Zizyphus mauritiana	Bor	Cynodon dactylon	Darb
Zizyphus xylopyrus	Ghat Bor	Heteropogon contortus	Dabhsuliu

EXPANSION IN EXISTING CAPTIVE POWER PLANT

✓ FAUNA

During the site visit some migratory birds have also been seen in the company premises. Study area is rich with respect to fauna. Faunal detail is based on visual observation, literature published by Gujarat government and forest department and local people. Presence of sensitive migratory birds in company premises indicate that the environment of company is good.

Common Name	Scientific Name	Vernacular Name
	A. Mammals	
Buffalo	B. bubalus	Buffalo
Cow	Bus indica	Cow
Dog	Canis famiaris	Dog
Goat	Capra hiscus	Goat
Common langur	Semnopithecus entellus	Vandra
Common mongoose	Herpestes edwardsi	Nurulia, Noria
Grey musk shrew	Suncus murinus	Chhuchhundar
Fivestriped palm squirrel	Funambulus penanti	Khiskoli
	B. Birds	
Indian pond heron	Ardeola grayii	-
Cattle egret	Bubulcus ibis	-
Little egret	Egretta garzetta	-
Common pariah kite	Milvus migrans	govinda Samadi
Scavenger vulture	Neophron percnopterus	-
Common peafowl	Pavo cristatus	Mor
Red-wattled lapwing	Vanellus indicus	Titodi
Indian river tern	Sterna aurantia	-
Blue rock pigeon	Columba livia	Parevun
Indian ring dove	Streptopelia decaocto	Dhol
Roseringed parakeet	Psittacula krameri	Sudo, Popat
Indian cuckoo	Cuculus micropterus	-
Koel	Eudynamys scolopacea	Koyal
Jungle owlet	Glaucidium radiatum	Ghubad
Common Indian nightjar	Caprimulgus asiaticus	Deshi chhapo
Common kingfisher	Alcedo atthis	Lagothi
Green bee-eater	Merops orientalis	Nano patrangiyo
Common swallow	Hirundo rustica	-
Golden oriole	Oriolus oriolus	Peelak
Blackheaded oriole	Oriolus xanthornus	-
Black drongo	Dicrurus adsimilis	Kalo koshi
Brahminy myna	Sturnus pagodarum	-
Indian myna	Acridotheres tristis	Kabar
Jungle myna	Acridotheres fuscus	Vana kabar
House crow	Corvus splendens	Kagdo
Jungle crow	Corvus macrorhynchos	Girnari kagdo

Table No. 3.10.2 Details of Wild Life

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Pycnonotus cafer	Bulbul
Turdoides caudatus	Sheradi
Turdoides striatus	Vana laledo
Muscicapa parva	-
Prinia sylvatica	-
Orthotomus sutorius	Darjido
Copsychus saularis	Daiyad
Saxicoloides fulicata	Deoli
Parus xanthogenys	-
Motacilla flava	Matano pilakya
Nectarinia asiatica	Phul chakli
Aethopyga siparaja	-
Passer domesticus	Chakli
Ploceus philippinus	Sughari
-	Garoli
Calotes versicolor	Kachindo
Calotes rouxi	Kachindo
Calotes calotes	Kachindo
Sitana ponticeriana	-
Chameleon zeylanicus	Sarado
Mabuya carinata	Sani mashi
Ramphotyphlops braminus	An-sap
	Dhaman
	Dendu
Naja naja	Nag
Echis carinata	Tarachha
D. Invertebrates	
Hirudinaria granulose	Leech
	Earth Worm
Araneus diadematus	The garden spider
Nereis bumerilii	Sand Worm
Seolopendra marsidens	Millipede
Acheta domestica	House Cricket
Anax janius	Dragon Fly
	Grass Hopper
Glossina palpalis	Fly
	Fly Ant
Glossina palpalis	
Glossina palpalis Myrmecocytus setipes	Ant
	Turdoides caudatusTurdoides striatusMuscicapa parvaPrinia sylvaticaOrthotomus sutoriusCopsychus saularisSaxicoloides fulicataParus xanthogenysMotacilla flavaNectarinia asiaticaAethopyga siparajaPasser domesticusPloceus philippinusC. ReptilesHemidactylus flaviviridisCalotes versicolorCalotes rouxiCalotes calotesSitana ponticerianaChameleon zeylanicusMabuya carinataRamphotyphlops braminusPtyas mucosusXenochrophis piscatorNaja najaEchis carinataHirudinaria granuloseMegascolex mauripiiAraneus diadematusNereis bumeriliiSeolopendra marsidens

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PEACOCK & MIGRATORY BIRDS IN ATUL PREMISES

Sr. No.	Species	Sr.	Species
	Marin	e Fishes	
1	White Pomfret	13	Indian Salmon
2	Blach Pomfret	14	Ribbon Fish
3	Bombay Duck	15	Silverbar
4	Thread Fin	16	Perch
5	Jew Fish	17	Smallscineldies
6	Hilsa	18	Shrimp
7	Clupeids	19	Prawans (M)
8	Coilia	20	Prawns (J)
9	Shark	21	Lobster
10	Mullet	22	Crab
11	Cat Fish	23	Levta
12	Eel	24	Leather Jacket
	Inlan	d Fishes	
1	Catla	11	Mullet
2	Rohu	12	Fel
3	Mrigal	13	Shrimps
4	Kalbasu	14	Prawns (M)
5	Minor Crap	15	Prawns (J)
6	Vallagoattu	16	Bekti
7	Scorpion	17	Crab
8	Murrel	18	Levta
9	Cut Fish	19	Mahseer
10	Bombay Duck	20	Hilsa

Table No. 3.10.3 Details of Fishes

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.11 SOCIO-ECONOMIC ENVIRONMENT

Socioeconomics (also known as **socio-economics** or **social economics**) is the social science that studies how economic activity affects social processes. In general it analyzes how societies progress, stagnate, or regress because of their local or regional economy, or the global economy.

In order to assess and evaluate the likely impacts arising out of any new or existing projects in Socioeconomic environment, it is necessary to gauge the apprehension of the people in the surrounding areas. Socio-economic survey serves as an effective tool for fulfilling this requirement.

The rapid industrialization of the study region has greatly influenced the socio economic and health environment in the villages. Increasing industrialization and population density has increased pressure on resources, civic amenities and public infrastructure. Economic conditions of the local people have improved with the increasing industrialization and greater employment opportunities.

The Socio Economic environment includes demography structure, Population density, literacy Level, and employment levels. The data establish a baseline for the prediction of likely impacts of the proposed activity on the socio economic environment. Secondary information pertaining to the study area villages was collected from Government Agencies, Census data for the year 2001 & 2011, and statistical abstracts to compile the socio economic data.

3.11.1 Socio-Economic Survey Methodology

Socio-economic survey tools provide a means of improving understanding of local resource management systems, resource use and the relative importance of resources for households and villages. They can also be used to elicit insights on interaction with government decision-making systems, community perceptions of trends and priority issues, and community-based institutions and their role in the sustainable use and conservation of natural resources.

Data Collection: Following steps were considered for the collection of secondary data and generation of primary data while carrying out ecological survey of the study area.

1. Identification of Study Area: The study area was identified before carrying out the survey. All the related information which could affect the prosperity, development & literacy were also collected.

2. Site Visit: Location wise survey plan & format for data collection were prepared for site visit. Data regarding Land Characteristics, Population, Literacy, Workers and Amenities were collected during the survey.

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Analysis of Data: The data collected by primary survey were verified with secondary data collected from sources like Government Agencies, Census data for the year 2001 and 2011, and statistical abstracts.

Figure 3.11.1 Socio-economic survey Photographs

Gram Panchayat Office, Chanvai

Sarpanch's House, Chanvai

Discussion with Sarpanch and Villagers, Chichwada

Gram Panchayat Office, Magod

Gram Panchayat Office, Tithal

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.11.2 Demography

Almost all Villages in the Study Area are experiencing a rapid growth of population due to industrialization. The total Population of study region is summarized in **Table No. 3.11.1**.

3.11.3 Population Density

Population density in the study area varies from 383 - 2586 person/sq. km. Details of the same are tabulated in **Table No. 3.11.1.**

Villages	No. of Household	Total population	Total area Hector	Population density Person/sq.km
Umbergaon	63205	296964		
Fansa	2963	14459	1720.4	840.44
Kalai	673	3191	481.66	662.50
Pali Karambeli	475	2356	426.04	553.00
Mohan	1334	6225	933.74	666.67
Jamburi	392	1868	264.96	705.01
Pali	451	2241	583.9	383.80
Kalgam	2182	10687	2148.02	497.53
Punat	530	2621	578.52	453.05
Eklahare	345	1696	232.74	728.71
Nahuli	352	1644	315.62	520.88
Valwada	876	3922	602.79	650.64
Achchhari	404	2047	455.18	449.71
Bhathi Karambeli	445	2056	327.99	626.85
Angam	528	2477	402.14	615.95
Maroli	3081	15678	1870.28	838.27
Tadgam	513	2514	460.63	545.77
Sarai	429	2391	302.02	791.67
Manda	1165	6022	1064.07	565.94
Boralai	634	3193	622.41	513.01
Borigam	659	3233	747.68	432.40

Table No. 3.11.1 Details of Population in Study Area

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Kachigam	755	3375	596.1	566.18
Dhanoli	544	2826	383.45	736.99
Mamakwada	328	1515	233.25	649.52
Seronda	646	2978	719.71	413.78
Manekpur	589	2919	464.71	628.13
Talwada	229	1223	201.73	606.26
Nagwas	333	1743	336.39	518.15
Zaroli	1093	5469	936.84	583.77
Nandigam	372	1971	339.63	580.34
Malav	535	2788	567.83	490.99
Vankas	462	2472	473.5	522.07
Khattalwada	4018	21036	3455.24	608.81
Ahu	301	1490	319.29	466.66
Nargol	1775	8045	938.89	856.86
Tumb	641	3539	690.4	512.60
Sarigam (CT)	4647	19903	1312.35	1516.59
Bhilad (CT)	1998	9022	747.1	1207.60
Daheli (CT)	2188	10475	961.01	1090.00
Sanjan (CT)	3253	15544	600.92	2586.70
Dehari (CT)	1793	7892	1078.25	731.93
Namdha	456	1938	211.62	915.79
Chandor	538	2389	405.01	589.86

3.11.4 Sex Ratio

The sex ratio i.e. the number of females per 1000 males is in range of 819 - 1070 with lowest in Sarigam and highest in Bhathi Karambeli. The Sex ratio i.e. the number of females per 1000 males indirectly reveals certain sociological aspect in relation to female births, infant mortality among female children. Details of the same are tabulated in **Table No. 3.11.2**.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 3.11.2: Details of Sex Ratio in Study Area

Zone of Study	Male Population	Female Population	Total Population	Sex Ratio (Female to 1000 Male)
Umbergaon	154630	142334	296964	920
Fansa	7324	7135	14459	974
Kalai	1637	1554	3191	949
Pali Karambeli	1223	1133	2356	926
Mohan	3160	3065	6225	970
Jamburi	936	932	1868	996
Pali	1130	1111	2241	983
Kalgam	5335	5352	10687	1003
Punat	1312	1309	2621	998
Eklahare	890	806	1696	906
Nahuli	838	806	1644	962
Valwada	2041	1881	3922	922
Achchhari	1064	983	2047	924
Bhathi Karambeli	993	1063	2056	1070
Angam	1254	1223	2477	975
Maroli	8029	7649	15678	953
Tadgam	1307	1207	2514	923
Sarai	1220	1171	2391	960
Manda	3001	3021	6022	1007
Boralai	1656	1537	3193	928
Borigam	1624	1609	3233	991
Kachigam	1799	1576	3375	876
Dhanoli	1424	1402	2826	985
Mamakwada	784	731	1515	932
Seronda	1479	1499	2978	1014
Manekpur	1465	1454	2919	992
Talwada	605	618	1223	1021
Nagwas	869	874	1743	1006
Zaroli	2744	2725	5469	993
Nandigam	960	1011	1971	1053
Malav	1402	1386	2788	989
Vankas	1271	1201	2472	945
Khattalwada	10538	10498	21036	996
Ahu	750	740	1490	987
Nargol	4069	3976	8045	977
Tumb	1743	1796	3539	1030

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Sarigam (CT)	10943	8960	19903	819
Bhilad (CT)	4803	4219	9022	878
Daheli (CT)	5398	5077	10475	941
Sanjan (CT)	7922	7622	15544	962
Dehari (CT)	4124	3768	7892	914
Namdha	1036	902	1938	871
Chandor	1215	1174	2389	966

3.11.5 Literacy Rate

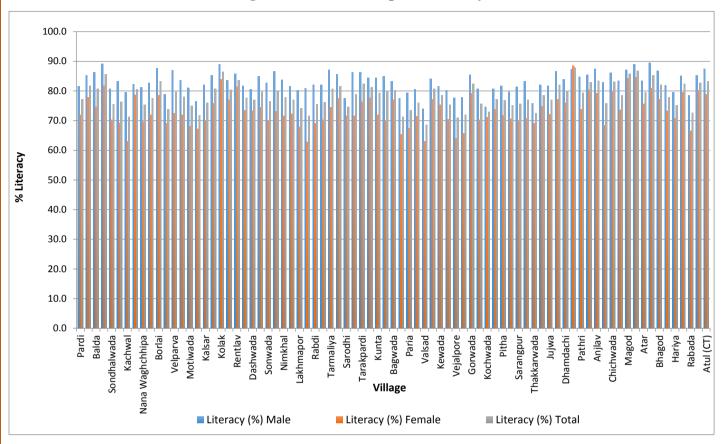
The literacy level of the study area is summarized in **Table No. 3.11.4** and graphically presented in **Figure No.3.11.1**.

Village	Literate			Literacy (%)		
vmage	Male	Female	Total	Male	Female	Total
Umbergaon	118312	90668	208980	76.5	63.7	70.4
Fansa	5830	5169	10999	79.6	72.4	76.1
Kalai	1287	1022	2309	78.6	65.8	72.4
Pali Karambeli	994	838	1832	81.3	74.0	77.8
Mohan	2554	2202	4756	80.8	71.8	76.4
Jamburi	709	607	1316	75.7	65.1	70.4
Pali	830	637	1467	73.5	57.3	65.5
Kalgam	4310	3824	8134	80.8	71.4	76.1
Punat	1040	841	1881	79.3	64.2	71.8
Eklahare	767	625	1392	86.2	77.5	82.1
Nahuli	667	558	1225	79.6	69.2	74.5
Valwada	1614	1305	2919	79.1	69.4	74.4
Achchhari	813	608	1421	76.4	61.9	69.4
Bhathi Karambeli	748	618	1366	75.3	58.1	66.4
Angam	839	639	1478	66.9	52.2	59.7
Maroli	6293	5085	11378	78.4	66.5	72.6
Tadgam	1069	853	1922	81.8	70.7	76.5
Sarai	873	599	1472	71.6	51.2	61.6

Table No. 3.11.4 Details of Literacy Rate in Study Area

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT


Manda	1998	1507	3505	66.6	49.9	58.2
Boralai	1127	793	1920	68.1	51.6	60.1
Borigam	1330	1049	2379	81.9	65.2	73.6
Kachigam	1459	1025	2484	81.1	65.0	73.6
Dhanoli	940	717	1657	66.0	51.1	58.6
Mamakwada	627	470	1097	80.0	64.3	72.4
Seronda	1121	920	2041	75.8	61.4	68.5
Manekpur	915	663	1578	62.5	45.6	54.1
Talwada	398	268	666	65.8	43.4	54.5
Nagwas	640	444	1084	73.6	50.8	62.2
Zaroli	1974	1489	3463	71.9	54.6	63.3
Nandigam	617	479	1096	64.3	47.4	55.6
Malav	928	645	1573	66.2	46.5	56.4
Vankas	976	669	1645	76.8	55.7	66.5
Khattalwada	7531	5805	13336	71.5	55.3	63.4
Ahu	523	429	952	69.7	58.0	63.9
Nargol	3442	3059	6501	84.6	76.9	80.8
Tumb	1012	693	1705	58.1	38.6	48.2
Sarigam (CT)	8261	5592	13853	75.5	62.4	69.6
Bhilad (CT)	3713	2681	6394	77.3	63.5	70.9
Daheli (CT)	3838	3063	6901	71.1	60.3	65.9
Sanjan (CT)	6096	4983	11079	77.0	65.4	71.3
Dehari (CT)	3435	2687	6122	83.3	71.3	77.6
Namdha	879	616	1495	97.5	68.3	77.1
Chandor	945	790	1735	80.5	67.3	72.6

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No. 3.11.2: Graph of Literacy Rate

Among all the villages of study area Eklahare is having high literacy rate i.e. 82.08 %. There is not much difference between female literacy rate and male literacy rate in the study region. Female literacy rate is an important indicator for social change.

3.11.6 Economic Aspects

Economic aspects of the study area include the economical structure of the people of the surrounding area. It can be predicted that economic structure of the study area will be improved with time, because it consists large industrial estate and hence there are more employment opportunities.

According to working status, whole population of the study area is divided into,

- Marginal workers
- Non workers
- Main workers

Census department has defined 10 categories of workers in Main workers. It consists of cultivators, agricultural, labourer those engaged in livestock, forestry, fishing, mining and quarrying, manufacturing,

EXPANSION IN EXISTING CAPTIVE POWER PLANT

processing and repairs in household industries and other services. Workers engaged in the work for a period less than 6 month during the reference year falls under marginal workers. Workers engaged in unpaid household duties e.g. students, retired person, dependents etc. falls under non-workers. Detail of occupational structure is shown in **Table No. 3.11.5**.

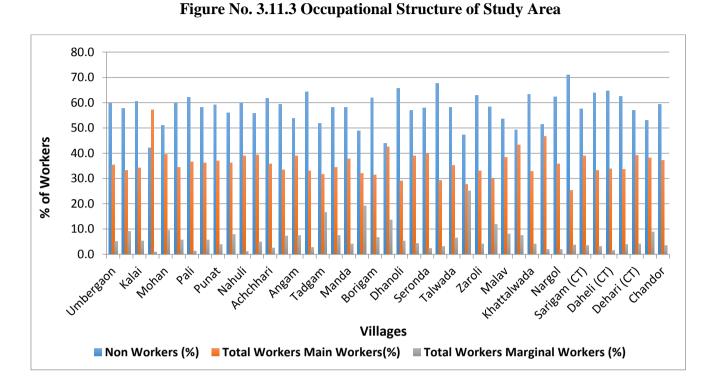
Zono of Study	e of Study Non-Workers (%)		Total Workers		
Zone of Study	Non-workers (%)	Main Workers (%)	Marginal Workers (%)		
Umbergaon	59.6	35.3	5.0		
Fansa	57.8	33.2	9.0		
Kalai	60.5	34.2	5.3		
Pali Karambeli	42.1	57.0	0.8		
Mohan	51.0	39.6	9.5		
Jamburi	59.9	34.4	5.7		
Pali	62.0	36.6	1.4		
Kalgam	58.2	36.2	5.6		
Punat	59.1	37.0	3.9		
Eklahare	56.0	36.2	7.8		
Nahuli	59.9	38.9	1.2		
Valwada	55.8	39.3	4.9		
Achchhari	61.7	35.9	2.5		
Bhathi					
Karambeli	59.4	33.4	7.2		
Angam	53.7	38.9	7.4		
Maroli	64.3	33.1	2.6		
Tadgam	51.8	31.6	16.6		
Sarai	58.2	34.4	7.4		
Manda	58.2	37.7	4.1		
Boralai	48.9	32.0	19.1		
Borigam	61.9	31.4	6.7		
Kachigam	43.9	42.5	13.7		
Dhanoli	65.7	29.0	5.2		

Table No. 3.11.5 Details of Occupational Structure

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Mamakwada	56.9	38.9	4.2
Seronda	58.0	39.7	2.4
Manekpur	67.6	29.2	3.2
Talwada	58.2	35.2	6.5
Nagwas	47.3	27.6	25.1
Zaroli	62.9	32.9	4.2
Nandigam	58.4	29.8	11.8
Malav	53.7	38.3	8.0
Vankas	49.3	43.3	7.4
Khattalwada	63.2	32.7	4.0
Ahu	51.4	46.7	1.9
Nargol	62.3	35.8	1.9
Tumb	71.0	25.2	3.8
Sarigam (CT)	57.5	39.0	3.5
Bhilad (CT)	63.8	33.2	3.0
Daheli (CT)	64.6	33.9	1.5
Sanjan (CT)	62.4	33.7	3.9
Dehari (CT)	56.9	39.1	4.1
Namdha	53.0	38.1	8.9
Chandor	59.3	37.2	3.6


Pali Karambeli has significant employment i.e. 57.0 % as main workers, while the lowest employment as main workers in Tumb i.e. 25.2%. Almost all the villages have more than 50 % people as non-workers. Rapid industrialization in the last two decades has resulted in significant changes in the occupational profile of the local people. There is an overall trend among the youth to opt for employment in service sector and move away from traditional occupation.

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

No.	Description	Available around the project
1	Marine Sanctuary	No
2	Airports	Daman Airport: Appx. 15.2 km (SW)
3	Railway station	Atul Railway Station: Appx. 1.5 km (NW)
4	Bus Station	Yes
5	National Highways	National Highway No. 8: Appx. 2.0 km (EEN)
6	School/College	In Valsad, there are primary, secondary, Higher
		Secondary and CBSE schools as well as Arts,
		Commerce & Science colleges.
7	Hospital	In the study area villages have either primary health
		centers or sub centers. Some villages have medical
		facilities within distance of 3-5 Km. Civil Hospital
		and private experts of every medicine are available in
		Vapi & Valsad.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER – 4 PROBABLE IMPACT & MITIGATION MEASURES

4.1 INTRODUCTION

The preliminary importance of preparing this chapter is to disclose the environmental consequences of the proposed expansion. After review of these consequences, an exhaustive EMP has been prepared to ensure that it minimizes the adverse impacts of the proposed expansion project on any of the environmental attributes. This chapter presents identification and prediction of impacts of the proposed expansion project on the study region. Predictions are then superimposed over the baseline (pre-project) status of environmental quality and the ultimate scenario (post project) of environmental conditions is obtained. On the basis of this study, the EMP is prepared and implemented in such a way that the deterioration of the environmental quality will be minimized.

As a part of present EIA study, anticipated environmental impacts associated with the proposed expansion project activity of the unit have been identified. Various activities during the construction & operation phase of the project, which are likely to cause an impact on various environmental components, have been listed. For evaluation of impacts due to proposed expansion, the baseline data generated for environmental parameters presented in chapter-3 of this report has been utilized. For the purpose of identification, prediction and quantification of the impacts due to the proposed expansion project, assessment task is performed for both Construction as well as Operation stage. All possible care to maximum extent is taken for assessment of temporary, short term, long term, direct, indirect as well as reversible and irreversible impacts. It is also borne in mind that the impact caused by activities of the construction phase will be temporary and restricted to a period of construction of the project.

With the very inception of the EIA study, details regarding the project components, processes, materials and allied factors are necessary to be collected along with the base line environmental status. These all need to be considered individually and collectively with each other for better identification, prediction and quantification. These all together helps in identification and quantification of the impacts to be posed by the proposed expansion project. Further, it also helps in determination of the proper mitigation measures for the identified adverse impacts.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

For the purpose of impact assessment with above consideration, all possible stages of impact assessment are narrated with broad vision of sustainable development. In this chapter the effect due to Construction & Operational activity of the proposed project is explained. Finally the description is illustrated in tabular form which is commonly known as "Impact matrix".

4.2 IDENTIFICATION OF ENVIRONMENTAL ATTRIBUTES

Before EIA, it is necessary to focus on environmental parameters. The major concern of selecting the environmental parameters is for impact identification, prediction and quantification. These parameters may be independent or inter-related with each other as well as related with the proposed expansion project. The selected parameters for the EIA are illustrated below:

- **Physico-Chemical Parameters:** Surface water quality, Ground water quality, Air quality & Climate, Soil Quality and Land use.
- Ecological Parameters: Floral Communities, Faunal Communities.
- Socio-Economic Environment: Aesthetic Conditions, Public Services, Health & Safety, Socio-Economic activities, Employment.

4.3 IDENTIFICATION OF IMPACT ACTIVITY

Environmental impacts due to proposed expansion project during construction and operation phase activity are identified as under:

4.3.1 Construction phase

During the construction phase, the following activities are considered to be important towards development of impacts:

- Site preparation
- Excavation and backfilling
- Transportation of construction materials, equipments & machineries
- Erection of concrete structures
- Road construction
- Clean up operations

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.3.2 Operation phase

During the operation phase, the following activities are considered to be important towards development of impacts:

- Plant Operation
- Fuel storage & handling
- Hazardous/Solid waste storage and handling
- Utilities & services
- Landscaping and Green belt development

4.4 ENVIRONMENTAL FACETS & PARAMETERS

For the purpose of assessment of anticipated environmental impacts, some environmental facets/regimes were selected considering the probable impacts. Further, for in-depth study for assessment of impacts various parameters were selected. The environmental facets/regimes along with the parameters selected for the study are as below:

1. Air Environment

- Emission Sources & Quantity
- Emission Control Measures/Technology
- Environment, Health & Safety Management Strategies
- Emission & Ambient Air Quality
- 2. Water Environment
- Water Consumption & Wastewater generation
- Water and Wastewater Management System & Technology
- Water & Wastewater Quality
- Environment, Health & Safety Management Strategies
- 3. Land Environment
- Potential of land use & Land cover change
- Potential of Land Contamination Sources & Control Measures
- Potential change in Soil Quality

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4. Ecology

- Biotic Components (Flora & Fauna) of the area
- Change in Habitat and Vegetation
- Control Measures and Ecological & Environment Management Strategies

5. Socio Economic Environment

- Demographic Characteristics
- Employment Potential & Allied Issues
- Amenities & Infrastructure
- Management Strategies & Social/Community Welfare Plan
- Occupational/Community, Health & Safety Management Plan
- 6. Noise Environment
- Ambient Noise Condition
- Major Sources of Noise from Project
- Control Measures for high noise area
- Environment, Health & Safety Management Strategies/Plan

7. Occupational Health & Safety

- Nature & Type of Operation works
- Raw Material and its management (Handling, Storage, Transportation)
- Operation hazards & Control Measures (Precaution & Prevention Measures)
- Management Strategies & Planning for Employee Safety, Welfare & Health
- Occupational Health & Safety Plan,
- Emergency Measures & Action Plan
- Disaster Management Plan

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.5 TYPES & NATURE OF IMPACTS CONSIDERED

The impact can be classified in various categories depending upon various aspects. Typical types of impacts considered for the present study are described below:

A. Direct (Primary) and Indirect (Secondary) Impacts

Direct impacts occur through direct interaction of an activity with an environmental, social or economic component. These effects are generally associated with the construction, operation, or maintenance of a facility or activity and are obvious as well as quantifiable. Indirect impacts on the environment are those which are not a direct result of the project involving a number of factors, often produced as a result of a complex impact pathway. The indirect impacts are also known as secondary or even tertiary level impacts. These are generally induced changes in the environment, population, economic growth and land use.

B. Short-Term (Temporary) and Long-Term (Permanent) Impacts

Impacts can be short-term or long-term depending upon the persistence or duration of the impacts. The duration of impacts have a lot to do with the project phase in which they occur: pre-operational (e.g., construction), operational, or post-operational (e.g., after project completion or commissioning).

C. Positive (Beneficial) and Negative (Adverse) Impacts

Even though the term "environmental impact" has come to be interpreted in the negative meaning, many actions have significant positive effects that should be clearly defined and discussed. This is particularly appropriate for redevelopment or corrective actions whose specific purpose and need is to mitigate any undesirable condition.

D. Cumulative Impacts

Cumulative impacts are those environmental impacts that result from the incremental impact of the proposed action on a common resource when added to other past, present, and reasonably foreseeable future actions. The assessment of cumulative impacts is difficult in part due to the exploratory nature of the possible future actions and in part due to the complex interactions that need to be evaluated when considering collective effects. Air quality modeling provides a means to study effects of cumulative impacts.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.6 ANTICIPATED ENVIRONMENTAL IMPACTS & MITIGATION MEASURES

4.6.1 Air Environment

A. Construction phase

The only major impacts on air environment are predicted to be caused due to airborne dust arising from the construction activities. The dust may also arise during the activities of storage and handling of construction materials. The airborne cement particles can have significant impacts on environment.

For control of the airborne particles from construction materials, storage facility shall be covered with tarpaulin sheets throughout the construction phase. Personnel Protective Equipments (PPEs) shall be provided to the construction workers. Sprinkling of water would be undertaken at the construction sites for the suppression of fugitive dust. Hence there will be no significant impacts due to the dust particle.

Further, the air pollutants like PM, SOx, NOx, HC and CO will be emitted from the exhaust of transport vehicles and construction machineries. During transportation, trucks may be passing through kachcha roads which may primarily cause some dust pollution to the ambient air thereby causing temporal disturbance to the population residing nearby. For control of emission from the exhaust of transport vehicles and construction machineries, Regular maintenance/inspection of vehicles used at site shall be done. Vehicles having PUC certificate shall only be allowed to enter the site. Trucks used for transportation of construction materials shall be covered with tarpaulin sheet to avoid dust dispersion at site. Proponent shall develop pacca road up to the CPP area for the movement of trucks for transportation of fuel.

The impacts on the air environment generated during construction phase will be limited to the construction tenure and will be local. Hence looking to the overall facts described above, it can be concluded that the impacts on air due to the construction activities will be minimum or negligible. It is also concluded that by implementing the proper mitigation measures, the adverse impacts will be almost eliminated or minimized to the lowest extent of damage.

B. Operation Phase

To determine the significance of impacts of proposed expansion projects with reference to the baseline air quality, detailed study has been carried out for various emissions from the proposed expansion project which is described below:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1. Fugitive Emission:

The operational activities will have considerable sources of stationary & fugitive emissions. There is no use of any solvent or volatile material in the process, hence impacts due to the same are ruled out. Main source of air pollution will be fugitive dust arising from the handling of coal &/or lignite as well as handling of fly-ash. The following mitigation measures are practiced in the existing facility and shall be carried out for the proposed expansion also.

- Coal & lignite are stored in covered/closed storage yard with natural ventilation. The proponent will construct additional coal storage yard of 5400 m² to store additional quantity of fuel due to proposed expansion.
- As per existing practice, proponent has constructed additional concrete silos for storage of fly ash for the proposed expansion.
- Water is/shall be regularly sprinkled on coal & lignite stock, to minimize the dust emission.
- 60 nos. of sprinkler with pipeline network are provided in the existing CPP area. For additional quantity of fuel, additional numbers of sprinklers will be installed at the proposed storage yard and CPP area.
- Coal is/shall be transferred through closed conveyors belt with dust extraction system to reduce the chances of fugitive emission.
- The generated ash is/shall be transferred directly from the ESP and Dust collection system to storage silos through a closed 'dense phase pneumatic conveying system' to prevent/minimize fugitive particulate emissions.
- The existing coverage of greenbelt around the plant also acts as a natural barrier to stop the carryover of dust along with the wind current outside the plant premises. Moreover proponent shall develop additional greenbelt of 1420 m² around the proposed CPP area.
- Regular cleaning & maintenance of the air pollution control system is also carried out. The same shall be continued after proposed expansion.

The above mentioned mitigation measures are effective in minimizing the impacts on the air environment occurring due to the operation of the proposed expansion plant.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

2. Utility Emissions:

In the proposed expansion, two new of additional boilers with 50 TPH capacity will be installed. Thus the stationary emissions from the proposed new boiler shall be significant and hence adequate mitigation needs to be provided. To evaluate the probable impacts of emission on the air quality, modeling of expected Ground Level Concentration (GLC) of pollution parameters is required. Details of flue gas emissions and air pollution control measures at existing and proposed scenario are mentioned in below table:

Table No: 4.1 Flue gas emissions and air pollution control measures at existing and proposed scenario

Sr. No.	Stack attached to	Capacity (TPH)	Type of fuel	Stack Height (m)	Permissible Limit	Air Pollution Control system
			EXIST	ING		
			EAST S	SITE		
1.	FBC boiler E1	34	G 1 0	56		ESP
2.	FBC boiler E2	34	Coal & lignite	56	$PM < 150 mg/m^3$	ESP
3.	FBC boiler E3	50	Inginte	80.3	SO ₂ < 100 ppm	ESP
4.	Hot oil Unit (Resorcinol Plant)	32.5	FO	32.5	NOx < 50 ppm	
			WEST S	SITE		
5.	FBC boiler W1	45		70		ESP
6.	Coal fired boiler W1	18.18	Coal	35	2	Scrubber
7.	Coal fired boiler W2	19.18		35	$PM < 150 mg/m^3$ $SO_2 < 100 ppm$	Scrubber
8.	Hot Oil Plant Shed B	19	FO	19	NOx < 50 ppm	
9.	Oil Burner Shed B (stand by)	17	LDO	17		
			NORTH	SITE		
10.	Thermic Fluid Heater of DCO/DAP Plant	12	LDO	12	$\begin{array}{l} PM < 150 \ mg/m^3 \\ SO_2 < 100 \ ppm \\ NOx < 50 \ ppm \end{array}$	

ECO CHEM SALES & SERVICES

PAGE 185

EXPANSION IN EXISTING CAPTIVE POWER PLANT

			PROPO	SED		
11.	AFBC boiler (2 Nos.)	50	Coal & lignite	106	$PM < 150 mg/m^3$ $SO_2 < 100 ppm$ NOx < 50 ppm	Sulphur capture system with ESP

Note: Two number of coal fired boilers (i.e Coal fired boiler W1 & W2) will be discontinued after commissioning of proposed 2 nos. of AFBC boilers with 50 TPH (each) capacity.

In order to predict the impacts of air pollutants on ambient air quality, the incremental GLC has been computed using Industrial Source Complex – Short Term dispersion model (ISCST3) which is a steady-state Gaussian plume model. The guidelines and methodology prescribed by CPCB have been followed for the measurement of the Incremental GLC.

Modeling Concept:

Upon discharge to atmosphere, the emissions from stationary sources are subjected to the following physical and chemical processes:

- An initial vertical rise, called plume rise, due to initial buoyancy and momentum of discharge.
- Transport by wind in its direction.
- Diffusion by turbulence, and
- Gravitational settling, chemical transformations, deposition, washout and other complex reactions.

Stack Emission Details:

Values of all parameters related to emission characteristics include:

- Exit gas temperature and velocity (7-8 m/sec).
- Stack top dia meter and height from ground level.
- Site specific and monitored details considered for input data

The dispersion modeling for prediction of GLC was carried out based on the following considerations:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

For the existing scenario:

1. East Site

- a. Stack attached to 34 TPH FBC boiler E1
- b. Stack attached to 34 TPH FBC boiler E2
- c. Stack attached to 50 TPH FBC boiler E3

2. West Site

- a. Stack attached to 45 TPH FBC boiler W1
- b. Stack attached to 18.18 TPH coal fired boiler W1 not considered for modeling as it is replace by proposed boilers.
- c. Stack attached to 19.18 TPH coal fired boiler W2 not considered for modeling as it is replace by proposed boilers.

For the proposed scenario:

- a. Stack attached to 50 TPH two nos. AFBC Boilers
- The GLC have been predicted for 3 parameters, namely SPM, NOx & SO₂.

Emission rates for PM have been calculated on the basis of following considerations:

- A mixture of fuels has been considered for each of the Boiler.
- An ash content of 45% has been considered for Indian coal, for estimating the PM emissions based on the analysis reports.
- It has also been assumed that 20% of the ash is retained in bed and 80% is generated as the fly ash.

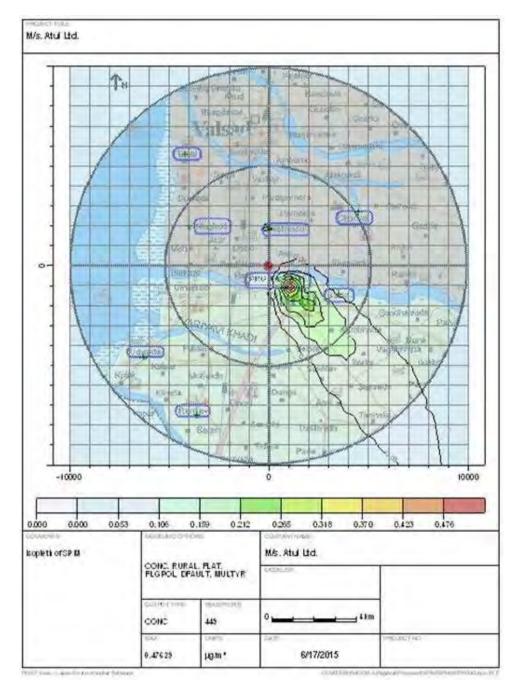
Furthermore, the % efficiency of control system based on the USEPA– AP42 document for each of the particle size is considered as below:

• Efficiency for ESP: 99.9 % for PM>10, 99.5 % for PM2.5 to 10 and 95 % for PM2.5.

Emission rates for Sulphur Dioxide have been calculated on the basis of following considerations:

- A mixture of fuels has been considered for each of the Boiler.
- Sulphur content of 0.5% and 0.66% has been considered for Imported Coal and Lignite (By adding limestone) respectively for estimating the emissions for Sulphur Dioxide, based on the analysis reports.

ECO CHEM SALES & SERVICES

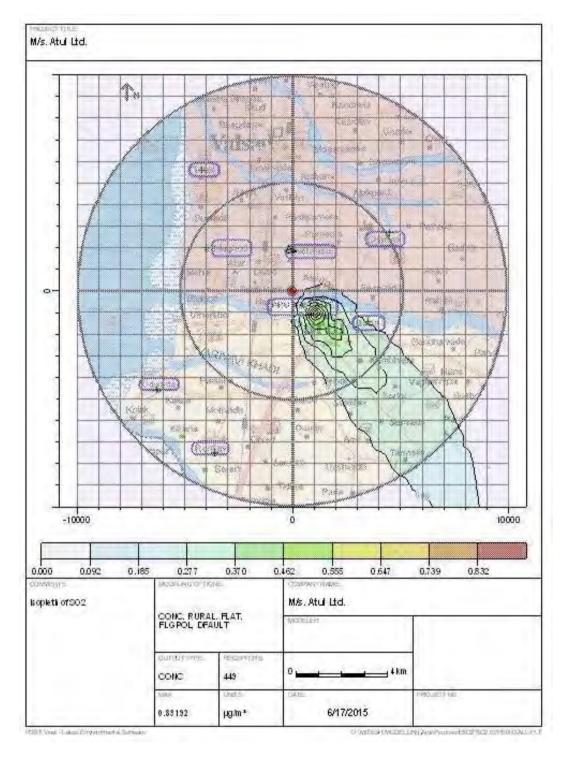


EXPANSION IN EXISTING CAPTIVE POWER PLANT

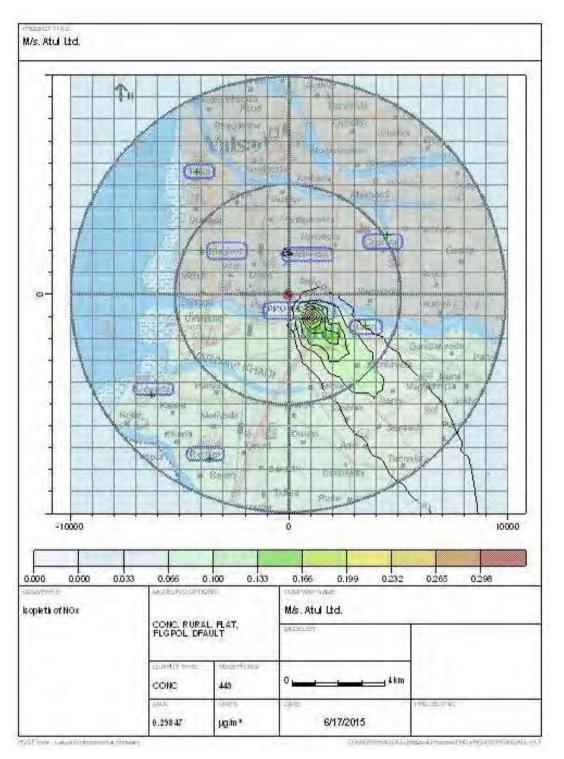
• It has also been assumed that 85% of the Sulphur in the fuel is converted to Sulphur Dioxide.

Furthermore, an efficiency of 90% has been considered for Sulphur capture system i.e. lime dosing/blending.

SUMMARY OF ISCST3 MODEL OUTPUT FOR PM


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT



EXPANSION IN EXISTING CAPTIVE POWER PLANT

SUMMARY OF ISCST3 MODEL OUTPUT FOR NOX

ECO CHEM SALES & SERVICES

PAGE 190

EXPANSION IN EXISTING CAPTIVE POWER PLANT

No	Pollutant	Max. Baseline conc. (ug/m ³)	Incremental Conc. (ug/m ³)	Resultant Conc. (ug/m ³)	GPCB limit (ug/m ³)
1	PM ₁₀	97.5	0.0561	97.5561	100
	PM _{2.5}	57.4	0.0561	57.4561	60
2	SO ₂	34.3	0.0981	34.3981	80
3	NO _X	47.5	0.0352	47.5355	80

Maximum Probable Resultant Concentration

Conclusion of air quality model study

The modeling study has proved that the air emissions from the proposed expansion would not affect the ambient air quality of the region in any significant manner. Moreover, proponent will provide highly efficient air pollution control equipment to control the emissions. Ambient air quality around the project site will remain within the national ambient air quality standards (NAAQS) meant for residential area.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.6.2 Water Environment

A. Construction Phase

During the construction phase, water will be required only for civil works and domestic activities. Water will mainly require for preparation & mixing of concrete, cooling of construction equipment, usage in spray and sprinklers for dust suppression etc. The water will be sourced from the Par River. The unit already has obtained the permission for withdrawal of water from Par River. Moreover, groundwater will not be drawn for the construction activities; hence no impacts on groundwater resources are anticipated. The water requirement during construction work will be temporary requirement and the quantity will not be significant as construction works will be moderate in size.

Sewage generated during the construction phase will be treated in Soak pit/Septic system. Existing sanitation facilities will be made available for construction workers. Thus, there will be no considerable impacts due to disposal of sewage. The labour force employed will be provided potable water to avoid any waterborne diseases. There would not be any kind of effluent generation during the construction phase; hence issue of effluent disposal & impacts due to the same shall not arise.

Due care shall be taken to see that the construction equipments are washed properly only at designated washing area. Construction activity may also cause formation of stagnant pools of water, due care shall be taken to avoid such conditions as it may lead to unhygienic conditions.

Water conservation actions shall be taken during the construction phase by associated workforce & officials. Curing water shall be sprayed on concrete structures. After liberal curing on the first day, all concrete structures shall be painted with curing chemical to save water. This shall stop daily water curing hence save water. Concrete structures shall be covered with thick cloth/gunny bags and then water should be sprayed on them. This shall ensure sustained and complete curing.

These impacts will be temporary in nature and limited to the construction phase only. In addition to this, proper and effective Environment Management Planning will be implemented to minimize these temporary effects.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

B. Operation Phase

Effluent generated shall have an adverse effect on the final discharge source if not treated adequately. Existing source of water is Par River and same shall be used for additional water after proposed expansion. As mentioned in earlier Chapter-2, the total water consumption of Atul limited including existing process plant and CPP is 22,569 KLD (21,632 KLD Industrial + 937 KLD Domestic) and the wastewater generation is 20,810 KLD (19,873 KLD Industrial + 937 KLD Domestic). For Existing CPP water requirement is 3,905 KLD and wastewater generation is 2,749 KLD.

The total existing wastewater (including process plant and existing CPP) is treated in full-fledged ETP of 20 MLD capacity. The ETP consists of conventional primary, secondary and tertiary treatment units. The final treated effluent from the ETP confirming the GPCB norms is collected in guard pond and then discharged through closed pipeline to estuary zone of river Par via a diffuser.

In addition to the existing water requirement additional 2,095 KLD (2,094 KLD Industrial + 1 KLD Domestic) water will be required for the proposed expansion. Additional 271 KLD (270 KLD Industrial + 1 KLD Domestic) will be generated due to proposed expansion.

Domestic sewage is treated in Septic tank/soak pit system for existing unit and same system shall be followed after proposed expansion.

Wastewater generation after proposed expansion will be from utilities i. e. Pretreatment plant for water, blow down from boilers and cooling tower, condensate from turbine etc. will be collected in a collection sump of 1500 KL capacity. This wastewater will be having TDS in range 400-500 ppm and will be same as raw water. This waste water will be used for ash quenching, fire hydrant make up and dust suppression. Hence, there will be no additional effluent load due to proposed expansion on the existing 20 MLD ETP.

Details of water requirement, Wastewater/Sewage generation & Management for the proposed expansion project, water balance diagram of existing and after proposed expansion are illustrated in Chapter-2.

Ground water will not be extracted to meet the water requirement for the proposed expansion. Hence, there will be no impacts on ground water due to water consumption. Moreover, rainwater harvesting is carried out in existing unit and collected water will be utilized in process water. There will not be any toxic material release in the sub soil region, hence no adverse impacts on ground water are envisaged.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Looking to the overall scenario of wastewater management, the proposed expansion project does not have the potential of impacting the ground water quality and quantity. There will not be any toxic material release in sub soil region, hence no adverse impacts on ground water are envisaged. Also there shall be no impact on drainage pattern and total recycling of additional wastewater generated from proposed expansion shall be done to achieve zero discharge goal. Hence, no significant impact on water environment during the operation phase.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.6.3 Land Environment

A. Construction Phase

As the proposed project is an expansion project, impacts due to the change in land use or land cover are not envisaged as the proposed expansion will be carried out in existing premises. On the contrary, no requirement of additional land and the utilization of existing spare land for the proposed expansion can be considered as a beneficial impact in terms of resource maximization.

Some minor impacts on land environment are likely to occur due to site preparation activities like construction and erection of the different units of the CPP, foundation works for the shed and silos, which are expected to be of short duration and not much significant. Excavated earth shall be stored in stockpiles and covered with plastic/tarpaulin sheets or stored in closed room and reused for landscape development along the corridor.

Some minor impacts are envisaged due to spillage & leakage of fuel as well as contamination of land due to construction material. However, the impacts are not significant as the land impacted by the temporary construction material shall be cleared off immediately. Further, the proponent has planned to prevent any kind contamination of spillage & leakage by providing well lined/paved area for the works having potential of leakage/spillage of fuel or any other material. Hence, issue of contamination of land will not arise.

Other impacts on land are likely to occur because of disposal of sewage & garbage generated during the construction works from domestic activities of engineers, official & other workers. Hence, considering the probable impacts, the proponent has planned to provide sanitation facilities in the existing unit for the staff engaged in construction work. Thus, it shall prevent the impacts due to waste dumping on land. The sewage shall be disposed of through the existing septic tank/soak pit system. Thus, impacts on land due to sewage or domestic waste are least envisaged.

Clearance of vegetation is not required for the proposed expansion. Further, it is also noteworthy that the existing unit has developed a green belt cover within the existing premises and it is also planned to develop additional 1420 m² greenbelt for the proposed expansion, which shall lead to beneficial changes in land use & land cover. The greenbelt development will also result in many beneficial secondary & tertiary impacts like improvement in ecological condition, prevention of air pollution, abatement of noise, etc.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Thus looking to the overall scenario the proposed expansion project would have considerable beneficial impacts as well as significant green belt development within the premises.

B. Operation Phase

The proposed project is expansion within the existing unit. The details of the land requirement and planning for development of the proposed expansion projects have already been described in chapter -2 along with the layout showing details of land utilization.

There will not be any considerable source of impacts on land. However, the land contamination due to leakage/ spillage of material or contaminated water or hazardous waste may cause impacts on land/ soil. Currently the material handling, storage and transportation is being done carefully & designated storage area for fuels, solid waste and hazardous waste etc. is provided. Coal is stored in yard & the total area of the coal yard is 2700 m^2 and additional 5400 m^2 will be provided for storage of additional quantity of fuel. The area is equipped with water sprinkling and pipeline system for control of fugitive emission. Additional numbers of water sprinklers shall be provided for proposed coal yard and CPP area. Ash is conveyed and stored in a silos and additional ash after proposed expansion will be stored in additional 2 nos. of silos. Hence, the potential of soil contamination due to the materials is not visualized to be considerable.

Due to the proposed expansion, Used oil and Discarded Containers will be generated as hazardous waste. As a solid waste additional fly ash and bed ash shall be generated due to proposed expansion. Detailed hazardous/solid waste generation is mentioned in the **table no. 4.2**

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 4.2 – Hazardous/Solid	Waste Generation Details
---------------------------------	--------------------------

Sr. No.	Name of Waste	Existing	Proposed	Total	Waste Disposal & Management
Haza	ardous Was	ite			
1.	Used Oil lit/year		20	10	Collection, Storage, Transportation & Disposal by selling to registered recyclers
2.	Discarded Containers Nos./year		2	1	Collection, Storage, Transportation & Disposal by selling to GPCB approved scrap dealers
Solic	d Waste				
3.	Fly Ash MT/Month	7,108.00	6,019.20	13,127.20	Collection,Storage,Transportation&DisposalatcementManufacturing&company's own brick manufacturing
4.	Bottom Ash MT/Month	1,403.00	1,504.00	2,907.00	Collection, Storage, Transportation & Disposal at cement Manufacturing & company's own brick manufacturing

Note: Fly ash & Bottom ash generation have been calculated on the basis of worst case scenario of 100% Indian coal.

Used oil will be sold to registered refiners approved by GPCB/MoEF and discarded containers are/will be sold to registered dealer approved by GPCB/MoEF. The collection, storage and disposal of solid/hazardous waste shall be carried out as per Hazardous Waste Management & Handling Rules, 1989. Separate hazardous/solid waste storage area shall be developed for the storage of above mentioned hazardous/solid waste.

A well planned ash handling system is in place, where the ash is collected in silo and send to cement manufacturer industries. Also industry has own brick manufacturing plant located within premises for the reuse of ash. Same practice will be followed after the proposed expansion. Thus considering the above probable impacts, waste generation and planned mitigation measures it is envisaged that there will not be any major impacts on the Land Environment during the operation phase.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.6.4 Noise Environment

A. Construction Phase

The average construction noise level generated during day time will depend on the number & type of equipments deployed and their workings such as "on-time" percentages and distances from receiver locations. The noise and vibration generating machines are Earth moving machines like roller, tractors, trucks, etc., Material handling machines like concrete mixers, cranes, etc; and Stationary machines like pump, generator and compressor.

During the construction phase, noise will be generated due to movement of vehicles and operation of light & heavy construction machineries, which are expected to emit sounds with moderate to high decibel value. Noise levels can affect the local residents both during transportation and construction. Hence, transportation activities will be restricted during daytime only. The noise impact will be relatively more on construction workers during their duty hours. Occupational health issues associated with high noise level may be observed.

Considering the adverse impacts on personnel engaged in construction works and due to construction equipments, efficient mitigation measures shall be planned & implemented. The most efficient mitigation shall include provision of PPEs like earmuffs/earplug to avoid adverse effects of noise on health and hearing capacity of workers as well as planning of working hours and shift of workers as per Factory Act. The machinery used for construction shall be of high standard of reputed make and shall adhere to Standard requirements. These Standards itself take care of noise pollution control, vibration control and air emission control. The noise level of the machineries/equipments shall be minimized by proper lubrication, modernization, maintenance, muffling and provision of silencers wherever possible.

Further to minimize the above potential impacts, major construction activities would be scheduled during normal daylight working hours and would be implemented consistent with the applicable standards. Vibration control damped tools shall be used and the number of hours that a worker uses them must be limited. It is also understood that the impacts caused by the increase in noise level would not be considerable.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

B. Operation Phase

Noise anticipated from the proposed expansion project shall be confined only within the plant boundary and more precisely within the source area. The main sources of noise within the plants are steam turbine, boiler, air compressor and transferring pumps.

For abatement of noise arising from equipments/machineries, acoustic enclosures, silencers or mufflers, anti-vibrating pads shall be provided, wherever possible. The issue of impacts of noise levels on personnel employed in high noise generating areas shall be controlled by providing PPEs like earmuffs/earplug in order to mitigate the adverse health effects. The adequate greenbelt developed in and around the plants and additional green belt shall greatly serve as an efficient barrier for prevention of noise propagation outside the plant premises.

4.6.5 Ecological Environment

A. Construction Phase

The site of proposed expansion is within the existing premises of Atul Limited. Thus the site preparation will not involve the clearance of any vegetation. As mentioned in earlier sections, the construction work shall be moderate and not have much pollution potential. Also the impacts of construction are most likely to be restricted within the site. Hence, issue of impacts on ecology during the construction phase are least envisaged.

However, it is suggested to provide some standard mitigation measures like sprinkling of water on stock piles & unlined land area, prevention of runoff from the site and storage of construction materials like cement in enclosed storage area. Such mitigation measures shall ensure that there is no carry-over of air borne particulate matter on the nearby area. Also it is planned to transport the construction materials in covered trucks to prevent the air borne particulates during the transportation activities. It is also recommended to avoid night traffic & loud noise in trucks to prevent any kind of considerable impacts on nearby area especially on the fauna of the area falling in the route of the transportation.

B. Operation Phase

With respect to the local terrestrial ecological component, it has been noticed that the impacts due to proposed expansion project would not be considerable as there would be no major source of pollution to have impact on ecology of the area. Even the most considerable source of pollution-emission, is not

EXPANSION IN EXISTING CAPTIVE POWER PLANT

likely to cause any harm to the local agricultural & terrestrial ecological components as the incremental GLC values are found almost negligible for all the pollutants. Besides this, the issue of deposition of particulates emitted from the project is also found to be insignificant to cause any damage to the nearby area as the proponent has planned efficient control measures by creating a green belt to serve as a barrier for preventing the escape of particulates outside the plant boundary. Thus considering the present situation of the ecology in the area, it is envisaged that there will not be any adverse impacts on ecology but the Greenbelt developed in the premises of proposed expansion project will have significant beneficial impacts on ecology.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.6.6 Socio-Economic Environment

A. Construction Phase

The construction phase will generate around 500 employment opportunity in the skilled as well as unskilled categories. Although the workforce requirement will be temporary in nature, it will be met from the local populace as far as possible hence there will be positive impact in terms of local resource utilization. They will require essential basic infrastructure facilities viz. safe drinking water, adequate sanitation, etc. The contractor will provide all required facilities to the workers to reduce the impact on the existing facilities in the study area. Local businessmen will get opportunity to supply construction materials. Demands generated from the employees working at site for basic facilities will increase the local business activity of the area. Any development, either temporary or permanent will support the family of many villagers. Thus, positive impacts on socio-economic environment are envisaged during construction phase.

B. Operation Phase

The operation phase will provide significant opportunities for employment in different categories. This would multiply economic opportunities, and henceforth enhance the livelihood patterns of this region. The proposed expansion project would require 10-20 employments. The maximum of the human resource requirement will be met by local employment. Thus the proposed expansion project would be considerably beneficial to the socioeconomic conditions of local area. Thus looking to the overall scenario of activities and probable impacts of the proposed expansion project, it has been envisaged that there will be an overall improvement in socioeconomic layout of project area which will be the key benefit of the proposed expansion project.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.7 RENEWABLE RESOURCES DURING CONSTRUCTION & OPERATION PHASE

Potential adverse effects from the use of renewable resources are associated with the construction of the project components that will require the use of renewable and non-renewable resources including wood, gravel, sand, steel, concrete and paper products.

Electricity will be used during construction to provide power to construction equipment, in operation for lighting of buildings and running utilities equipments. Electricity consumption will be kept at a minimum when possible by adopting electricity conservation measures.

The project proponent will ensure that the contractor selected to construct the project will implement best management practices to conserve renewable resources.

For conservation of energy, following measures shall be adopted:

- Construction will be done during day time only.
- Purchase of energy efficient appliances.
- Promoting use of renewable energy, wherever possible and viable.
- Adjusting the settings and illumination levels to ensure minimum energy used for desired comfort levels.
- Use of CFL and low voltage lighting.
- Sunscreen films on windows to reduce heating inside the office/admin buildings.
- Promoting awareness on energy conservation within the premises.
- Usage of Solar lights in roads and landscape area.
- Training staff on methods of energy conservation and to be vigilant to such opportunities.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.8 IMPACT DUE TO INCREASE IN TRAFFIC DENSITY

Traffic to the site during construction will be more intensive. The present road conditions are good and presently, the traffic on the connecting road is very limited to the company and used basically by the villagers only. Hence, it can cater the load of traffic during the construction phase.

During the operation phase, the traffic density will be raised due to the increase in industrial activities as well as commercial activities shall be done as per the requirement. The project site is at @ 2.00 km away from the NH No. 8. The road connected to NH No. 8 is in good condition and having width of 10 m. There will be no requirement of additional road development for the proposed expansion project. The existing road is capable to cater additional load of the traffic after proposed expansion.

4.9 IMPACT ANALYSIS BY MATRIX METHOD

The impacts of the man-made activities, unlike its type, can be assessed by matrix analysis, which is very well known as LeoPold Matrix System among the environmentalists of the world. For the purpose of the impacts of the proposed expansion project, it was assessed by method adapted from the LeoPold method and the outcomes of the analysis are tabulated on subsequent pages.

The environmental indices identified in Chapter 3 can further be classified into the following:

Physical Parameters	:	Surface water quality
	:	Ground water quality
	:	Air quality & Climate
	:	Soil Quality

Land use pattern & Topography

Ecological Parameters	:	Flora & Fauna
Social Parameters	:	Aesthetics
	:	Local Housing structure
	:	Services
	:	Health & Safety
Economic Parameters	:	Industries
	:	Employment

PAGE 203

EXPANSION IN EXISTING CAPTIVE POWER PLANT

The impact assessment of the general impacting activities on the above parameters of environmental indices can be done by establishing a co-relation by "Cause and effect relationship" with the help of impact matrices. The matrices for both the construction and operation phase are presented. The environmental impact matrices can be prepared for two conditions:

- 1. Without mitigation/control measures.
- 2. With proposed mitigation measures for adverse / beneficial effects.

The criteria for evaluation of qualitative matrix are presented herewith:

- 1. No Impact (0): This indicates that the project activity is unlikely to have any impact on an environmental attribute.
- 2. Negligible Adverse Impact (-1)/Negligible Beneficial Impact (+1): It signifies that the actions have minor effect, adverse or beneficial, on the environmental parameters concerned.
- **3.** Significant Adverse Impact (-2)/Significant Beneficial Impact (+2): The activities and their environmental Impacts are judged to be significant if they create, or have the potential to create concern in the public or professional community.
- 4. High Adverse Impact (-3)/High Beneficial Impact (+3): The action that can create or have a potential to create controversy in the public or professional community due to its long-term effect. They may be at times irreversible.

The environmental Impact matrix without mitigation/control measures during the construction phase is given in **Table 4.3**, while the matrix with proposed mitigation measures during the construction phase is given in **Table 4.4**. The environmental Impact matrix without mitigation/control measures during the operation phase is given in **Table 4.5**, while the matrix with proposed mitigation measures during the operation phase is given in **Table 4.6**.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 4.3 – Environmental Impact Assessment Matrix without Mitigation Measures

(Construction Phase)

				-		Proj	ect Ac	tivitie	s				
No.	Parameters	Excavation	Water Requirement	Civil Works	Mechanical Works	quipment & Machine Operation	Landscaping	Filling	Surface Paving	isc. Human Activities	ansportation activities	Demands of Public facilities	TOTAL
А.		•	P	HYSIC	CO-CHE	MICAL PA	RAM	ETEF	RS		1		·
1.	Surface Water Quality	0	-1	0	0	0	0	0	0	-1	0	0	-2
2.	Ground Water Quality	0	-1	-1	0	0	0	0	0	-1	0	0	-3
3.	Air Quality & Noise	-2	0	-2	-2	-2	2	0	-1	-1	-2	0	-10
4.	Soil Quality	-1	0	-2	-1	0	1	0	-1	-2	-1	0	-7
5.	Land use /Land cover	-1	0	-2	-1	0	1	0	0	-1	0	0	-4
В.		•		ECO	OLOGIC	CAL PARA	мете	RS					
1.	Flora & Fauna	-1	0	-1	0	-2	2	0	-1	-1	-2	0	-6
2.	Marine Ecosystem	0	0	0	0	0	0	0	0	0	0	0	0
C.				:	SOCIAL	PARAME	TERS		-	-			
1.	Aesthetics	-1	0	0	-1	-1	0	0	0	-1	-1	0	-5
2.	Local housing structure	0	0	0	0	0	0	0	0	-1	-1	0	-2
3.	Services	0	0	0	0	0	0	0	0	-1	-1	-1	-3
4.	Health & Safety	-2	0	-2	-2	-2	2	-1	-1	-1	-2	0	-11
D.				EC	CONOM	IC PARAM	ETER	RS					
1.	Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
2.	Industries	0	0	0	0	0	0	0	0	0	0	0	0
3.	Employment	1	-1	2	2	1	1	0	0	0	1	0	7
	TOTAL	-7	-3	-8	-5	-6	9	·1	-4	-11	-9	-1	-46

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 4.4 – Environmental Impact Assessment Matrix with Mitigation Measures

(Construction Phase)

						Proje	ct Acti	vities					
No.	Parameters	Excavation	Water Requirement	Civil Works	Mechanical Works	Equipment & Machine Operation	Landscaping	Filling	Surface Paving	Misc. Human Activitie	Transportation activitie	Demands of Public facilities	TOTAL
А.			РНҮ	SICO-	-CHEM	ICAL PA	RAMF	TER	S				
1.	Surface Water Quality	0	0	0	0	0	0	0	0	0	0	0	0
2.	Ground Water Quality	0	-1	0	0	0	0	0	0	0	0	0	-1
3.	Air Quality & Noise	-1	0	-1	-1	-1	1	-1	0	0	-1	0	-5
4.	Soil Quality	0	0	0	0	0	1	0	0	0	0	0	1
5.	Land use /Land cover	0	0	0	0	0	1	0	0	0	0	0	1
В.]	ECOL	OGICA	L PARAN	IETEF	RS					
1.	Flora & Fauna	0	0	0	0	-1	2	0	0	0	0	0	1
2.	Marine Ecosystem	0	0	0	0	0	0	0	0	0	0	0	0
C.				SO	CIAL P	ARAMET	ERS	•					
1.	Aesthetics	0	0	0	0	0	1	0	0	0	0	0	1
2.	Local housing structure	0	0	0	0	0	0	0	0	0	0	0	0
3.	Services	0	0	0	0	0	0	0	0	0	0	0	0
4.	Health & Safety	1	1	-1	-1	-1	0	0	0	0	-1	0	-2
D.				ECO	NOMIC	C PARAMI	ETER	5					
1.	Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
2.	Industries	0	0	0	0	0	0	0	0	0	0	0	0
3.	Employment	1	0	2	2	1	1	0	0	0	1	0	8
	TOTAL	1	0	0	0	-2	7	-1	0	0	-1	0	4

PAGE 206

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 4.5 – Environmental Impact Assessment Matrix without Mitigation Measures

(Operation Phase)

							Pr	oject Ac	tivities					
No.	Parameters	Commissioning & Operational Activities	Water Requirement	Domestic activities & Wastes disposal	Air Emissions	Fugitive Emissions	Noise	Hazardous Waste generation	Material Storage & Handling	Hazards from operations & Activities	Breakdown of Control Equipments	Transportation Activities	End use of Products	TOTAL
А.		-	PHYSICO-CHEMICAL PARAMETERS											
1.	Surface Water Quality	0	-1	-1	0	-1	0	0	-1	-1	-1	0	0	-6
2.	Ground Water Quality	0	0	-2	0	0	0	0	0	-1	0	0	0	-3
3.	Air Quality & Noise	-2	0	-1	-2	-2	-1	-1	-2	-2	-2	-2	0	-17
4.	Soil Quality	0	0	-2	-1	-1	0	-2	0	-2	0	0	0	-6
5.	Land use /Land cover	1	-1	0	0	0	0	0	0	0	0	0	0	0
В.				E	COL	OGIC	AL P	ARAMI	ETERS					
1.	Flora & Fauna	-1	0	-1	-1	-1	-2	-1	-1	-1	-1	-1	0	-11
2.	Marine Ecosystem	0	0	0	0	0	0	0	0	0	0	0	0	0
C.		•			SO	CIAL	PAR	AMETE	CRS					
1.	Aesthetics	-1	0	-1	-1	-1	-1	-1	-1	-2	-1	-1	0	-11
2.	Local housing structure	-1	-1	-2	-1	-1	-1	-2	-1	-1	0	-2	0	-13
3.	Services	0	0	0	0	0	0	0	0	-1	0	-1	0	-2
4.	Health & Safety	-1	-1	-2	-3	-2	-3	-3	-3	-2	-2	-2	0	-24
D.		ECONOMIC PARAMETERS												
1.	Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	Industries	0	0	0	0	0	0	0	0	0	0	0	2	2
3.	Employment	3	0	0	0	0	0	0	1	0	0	2	1	7
	TOTAL	-2	-4	-12	-9	-9	-8	-10	-8	-13	-6	-7	3	-84

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 4.6 – Environmental Impact Assessment Matrix with Mitigation Measures (Operation

Phase)

		Project Activities												
No.	Parameters	Commissioning & Operational Activities	Water Requirement	Domestic activities & Wastes disposal	Air Emissions	Fugitive Emissions	Noise	Hazardous Waste generation	Material Storage & Handling	azards from operations & Activities	Breakdown of Control Equipments	Fransportation Activities	End use of Products	TOTAL
A.		PHYSICO-CHEMICAL PARAMETERS												
1.	Surface Water Quality	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	Ground Water Quality	0	0	0	0	0	0	0	0	0	0	0	0	0
3.	Air Quality & Noise	0	0	0	-1	-1	-1	-1	-1	-1	-1	1	0	-6
4.	Soil Quality	0	0	0	0	0	0	0	0	0	0	0	0	0
5.	Land use /Land cover	0	0	0	0	0	0	0	0	0	0	0	0	0
B.				EC	OLOG	ICAL	PAI	RAMET	ERS					<u> </u>
1.	Flora & Fauna	2	0	0	0	0	0	0	-1	-1	0	1	0	1
2.	Marine Ecosystem	0	0	0	0	0	0	0	0	0	0	0	0	0
C.				I	SOCI	AL PA	RAN	METERS	5					<u> </u>
1.	Aesthetics	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	Local housing structure	1	0	0	0	0	0	0	0	0	0	0	0	1
3.	Services	1	0	0	0	0	0	0	0	0	0	0	0	1
4.	Health & Safety	2	1	0	0	0	0	0	-1	-1	0	-1	0	0
D.	ECONOMIC PARAMETERS													
1.	Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	Industries	0	0	0	0	0	0	0	0	0	0	0	2	2
3.	Employment	3	0	2	0	0	0	0	2	1	0	3	3	14
	TOTAL	9	1	2	-1	-1	-1	-1	-1	-2	-1	4	5	13

EXPANSION IN EXISTING CAPTIVE POWER PLANT

From overall study and evaluation of impacts, it can be concluded that the overall negative impact from various activities on different environmental parameters is negligible with proper EMP in place. Even the negative impacts can be converted into positive beneficial impact with proper and timely implementation of EMP. Hence, project can be considered environmentally safe & fit.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER – 5 ENVIRONMENTAL MONITORING PLAN

5.1 GENERAL

Environmental Monitoring is an essential tool for sustainable development & ensuring effective implementation of Environmental Management Plan &Mitigation Measures adopted. It also updates the environmental management system for effective conservation of environment in-line with the ongoing project activities/operation. A periodic Environment Monitoring Plan enables environmental management system with early forecasts for additional action required and modification of ongoing actions for environment management, improvement & conservation. It provides the exact idea for mitigation measures to be implemented as it is linked with actual distraction of environmental quality due to the project activities. Hence, monitoring of critical parameters of environmental quality is very essential in the routine activity schedule of the project operation. Thus, a well implemented Environmental Monitoring Plan enables the proponent to identify the deviation of environmental quality due to the proposed expansion project activities.

5.2 ENVIRONMENTAL MONITORING PLAN

An Environmental Monitoring Programme shall be scheduled for the following major objectives:

- To verify the result of the impact assessment study in particular with regards to existing as well as proposed expansion developments.
- To follow the trend of parameters which have been identified as critical.
- To check or assess the efficiency of controlling measures.
- To ensure that new parameters, other than those identified in the impact assessment study, do not become critical through the commissioning of the expansion.
- To monitor effectiveness of control measures.
- Regular monitoring of environmental parameters will be done to find out any deterioration in environmental quality.
- Monitoring of the existing as well as proposed expansion project area will be regularly conducted.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.3 ENVIRONMENTAL ASPECTS TO BE MONITORED

Since the project is an expansion project, the unit has a well-established environmental and safety department which undertakes measures for environmental protection and mitigation of environmental impacts. Several measures have been proposed in the environmental mitigation measures for minimizing the adverse impacts of the proposed expansion. These shall be implemented as per the proposal and monitored regularly to ensure compliance with environmental regulations and also to maintain healthy environmental conditions around the unit.

A major part of the sampling and measurement activity shall be concerned with long term monitoring aimed at providing an early warning of any undesirable changes or trends in the natural environment that could be associated with the plant activity. This is essential to determine whether the changes are in response to a cycle of climatic conditions or are due to impact of the plant activities. In particular, a monitoring strategy shall ensure that all environmental resources which may be subject to contamination are kept under review and hence monitoring of the individual elements of the environment shall be done.

During the operation phase, Environmental Management Department shall undertake all the monitoring work to ensure the effectiveness of environmental mitigation measures. The suggestions given in the Environmental Monitoring Programme shall be implemented by the Environmental Management Department by following an implementation schedule.

In case of any alarming variation in ground level concentration of ambient air, stack emissions, work zone air and noise levels, performance of effluent treatment facilities etc. and the same shall be discussed in the Environmental Management Department and the variance from norms shall be reported for immediate rectification action at higher management level. In addition to the monitoring programme, the following shall also be done to further ensure the effectiveness of mitigation measures:

- Internal environmental audits shall be carried out to check the compliance with standards/applicable norms by in-house experts.
- In addition to the above, all necessary steps shall be taken to implement the measures suggested by CPCB in the Charter on Corporate Responsibility for Environmental Protection (CREP) for power plant. These measures have already been included in the plant design, for example:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Hazardous wastes to be handled and disposed off strictly in accordance with Hazardous Wastes (Management, Handling and Trans boundary Movement) Rules, 2008.
- Promotion of Energy Optimization Technology including periodic energy audits.
- All new stacks installed after proposed expansion shall be provided with stack monitoring facilities like port hole, ladder, etc.

The environmental aspects to be monitored for proper implementation and effectiveness of various mitigative measures envisaged/adopted during the design and commissioning stage of the proposed expansion plan are described here under:

5.3.1 Ambient Air Quality

Monitoring of ambient air quality at 10 locations within and around the plant premises is already being carried out and same shall be considered for proposed expansion. Ambient air monitoring is carried out by Atul Limited at different location are mentioned in the **Table No.** – **5.1.** Monitoring shall be carried out for Respirable Suspended Particulate Matter (RSPM), Suspended Particulate Matter (SPM), Sulphur Dioxide (SO₂) and Oxides of Nitrogen (NOx) & shall be regularly monitored for the compliance of prescribed limits of CPCB / GPCB.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table No. 5.1 – Locations of Ambient air monitoring carried out by Atul Limited

Sr. No.	Sampling Location	Parameters	Sample Size	No. of samples / Month	Responsibility
1.	Near Main guest house				
2.	At Wyeth Colony				
3.	Gram Panchayat Hall				
4.	Near Main Office North site				
5.	Near 66KVA substation	SPM, SO ₂ ,	24 hrs	1	Plant In-
6.	Water tank Haria road	NOx	24 IIIS	1	charge
7.	Opposite shed D				
8.	ETP North site				
9.	Near TSDF				
10.	ETP west site				

5.3.2 Stack Emissions Monitoring

Unit already carries out periodical monitoring for existing stacks and same shall be carried out for additional stacks after proposed expansion. PM_{10} , $PM_{2.5}$, SO_2 , NOx in flue gas stacks shall be analyzed to assess the performance of pollution control facilities installed for the unit. In case emissions are found to exceed the norms, the on duty personnel shall check the relevant parameters and take appropriate corrective actions. Along with the performance test of main plant, equipment performance test of pollution control equipment shall be made on a regular basis. Environmental Management Department shall also be a part in the preliminary and final acceptance tests. A detailed maintenance schedule shall be drawn for all pollution control systems. The maintenance shall be done strictly as per the schedule.

5.3.3 Solid / Hazardous Waste Generation & Utilization

Maximum re-cycling and utilization of generated solid waste shall be done as per the guidelines. Unit has already prepared Hazardous waste disposal plan as per applicable statutory conditions under the Hazardous Wastes Act, 2008 and same shall be implemented after the proposed expansion.

The cell will monitor and keep a record of the following:

- Generation of solid wastes
- Disposal of balance solid/hazardous materials to a proper disposal facility.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Prepare a site manual on the total program and activities of solid/hazardous waste management.
- Keep record of all hazardous waste disposal data and update regularly on GPCB website.

5.3.4 Green Belt Development

Unit has already developed 16,500 m^2 greenbelt near the existing CPP area and additional 1420 m^2 greenbelt shall be developed during the proposed expansion. The following plan has been made for implementation:

- Annual program for tree plantation with specific number of trees to be planted every year is/shall be made. The implementation of the plan is/shall be monitored by the Environmental Management Department every six months.
- A plan for post plantation care will be reviewed in every month's meeting.
- Watering of the plants, manuring, weeding & hoeing will be carried out as a part of post plantation care.

5.3.5 House Keeping

The Safety Department is keeping/shall keep a very close monitoring of house-keeping activities and organize regular meetings of joint forum at the shop level (monthly), zonal level – (once in two months) and apex level (half yearly). The individual area concerned is/will be taking care for the house keeping of area.

5.3.6 Occupational Health and Safety

Unit has already prepared key safety measures implemented in the existing plant and same shall be implemented for the proposed expansion. Routine medical examination of personnel shall be carried out. A systematic programme for medical check-up at regular intervals is already carried out, which is attached as **Annexure-9** and same shall be followed for newly employed workers to ascertain any changes in health condition due to the working conditions.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.3.7 Socio-Economic Development

Expansion in existing CPP will improve the infra-structure & economic conditions of the locality thereby, uplifting the social development of the same. It is suggested that the plant management should have structured interactions with the community to disseminate the measures taken by the industry and also to elicit suggestions for overall improvement for the development of the area.

5.3.8 Effluent Quality

The additional sewage generated from the plant shall be treated in existing Septic tank/Soak pit system. Additional effluent after proposed expansion shall be utilized for suppression of ash quenching, dust suppression and fire hydrant make up. Hence the same will not increase ETP load.

5.3.9 Work Zone Air Quality& Noise

Work zone air quality is/shall be monitored as per the directives of GPCB to assess the levels of Particulate matter, NOx and SO_2 in the work zone. Noise levels is/shall be measured at the source of generation.

Various noise attenuation measures have been taken at the design stage of expansion. However in case of high noise generating equipment which are not frequented by the plant personnel, the area shall be cleanly marked as High Noise area and the employees shall be provided with PPEs like ear plugs/ear muffs before entering such areas.

The Noise level monitoring is carried out once in a month for existing unit at selected ambient air locations and same shall be implemented after the proposed expansion. Data obtained after noise monitoring shall be carefully evaluated to identify changes, if any. Gross deviation from the baseline will require a thorough review of operations at the proposed project to identify the reasons of high noise generation.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.4 FREQUENCY OF MONITORING PARAMETERS

The Frequency of monitoring parameters shall be as follows:

Table No. 5.2 – Frequency of Environmental Monitoring Parameters

Sr. No.	Item	Parameters	Frequency
1.	Ambient Air quality	PM ₁₀ , PM _{2.5} , SO ₂ and NOx	Monthly
2.	Stack emissions quality	PM, SO ₂ , NOx,	Monthly
3.	Treated Effluent	pH, TDS, TSS, BOD, COD, Oil & Grease, Color, etc.	Monthly
4.	Ground & Surface water	pH, TDS, TSS, Sulphate, Hardness, metal analysis, etc.	Half Yearly
5.	Noise	Equivalent noise level - dB (A) (min. 10 locations)	Monthly
6.	Greenbelt	Number of trees planted, Number of Survived Plants/Trees, Number of Poor Plant/Trees	Yearly
7.	Haz. Waste management	Maintaining records of generation, receipt & disposal in Form 3	Routine
		Filing of Annual Returns in Form 4 for Haz. Waste handling	Yearly by 30 th June
		Submission of returns of used oil in Form 13	Yearly by 30 th June
8.	Overall Environmental Audit	As per Direction of Honorary High Court, Gujarat	Yearly
9.	Renewal of Consents and Authorization	Renewing consent to operate under applicable acts	90 days before expiry of validity
10.	Compliance of EC conditions	Submission of 6 monthly compliance reports	Half yearly
11.	Water cess	Filing of annual returns for cess incurred on water consumption.	Yearly by 30 th Sept
12.	Medical surveillance program	The health status of all the workers in respect of occupational health hazards.	Half Yearly

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.5 MONITORING METHODOLOGIES

Monitoring of environmental components shall be done as per the guidelines provide by MoEF/CPCB/ GPCB. The following methods are recommended/standard method approved/recommended by MoEF/CPCB.

Sr. No.	Attributes	Method							
51.140.	Attributes	Sampling / Preservation	Analysis						
1.	Ambient Air Quality	As per IS: 5182, ASTM & Instruments Manual	As per IS: 5182 & ASTM						
2.	Water & Waste Water I. Ground Water II. Surface Water III. Effluent Sample	StandardMethodsforExaminationofWaterandWastewaterAnalysis, 21^{st} editionAPHA, 2005	IS: 3025 & Standard Methods for Examination of Water and Wastewater Analysis, 21 st edition APHA, 2005						
3.	Noise	Instrument: Noise level meter	EPA						
4.	Soil Quality	IS: 2720 & Laboratory Standard Methods	IS: 2720 & Laboratory Standard Methods						

Table No. 5.3 – Method of Environmental Sampling & Analysis

5.6 LABORATORY FACILITIES

Existing laboratory with adequate manpower and facilities for self-monitoring of pollutants generated in the industry carries out the waste analysis. The laboratory is equipped with instruments and chemicals required for monitoring following pollution parameters. Hence, self-monitoring of the pollution parameters for the proposed expansion shall be carried out in the existing laboratory of Atul Limited.

Water: pH, Temp, BOD, SS etc.

Ambient Air: PM₁₀, PM_{2.5}, SO₂, NOx.

Meteorology: Wind speed and direction, temperature, relative humidity and rainfall

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PHOTOGRAPHS OF R&D LAB

5.7 DOCUMENTATION & RECORDS

The environment department which is responsible for operation of pollution control facility will maintain following records:

- Instruction manual for operation and maintenance of pollution control devices/equipment/facilities.
- Log sheet for self-monitoring of pollution control.
- Instruction manual for monitoring of Water, Solid and Gaseous parameter discharged from the company and also for various parameters of pollution control facilities.
- Stationary records as per the Environmental Acts.
- Monthly and annual progress reports.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.8 BUDGETARY PROVISION FOR ENVIRONMENTAL MANAGEMENT SYSTEM

On regular basis, environment management cell shall inspect the necessity & availability of the materials, technologies, services, maintenance works and make appropriate budget for the purpose. Regular record review for change in financial requirement of environment management shall be done and appropriate budgetary provisions shall be made. With other budget, budget for environment management shall be prepared and revised regularly on requirement.

Table No. 5.4 – Budgetary Provision for Environment Management System

Sr. No.	Description	Amount (Lacs)
1.	Environment Management System (For APC and Hazardous waste Management)	555.00
2.	Green belt development	5.00
	TOTAL	560

Recurring cost for Environmental management system will be 55.00 Lacs/Annum

The above budget shall include for the provisions of:

- Environmental Monitoring Program
- Operation & Maintenance of Environmental Technologies/Equipments
- Laboratory works for Environmental management activities
- Emergency Purchase of necessary material, equipments, tools, services, etc.
- Greenbelt development.
- Social & Environmental Welfare and Awareness programs/training.
- Annual Environmental Audit.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER – 6 ADDITIONAL STUDIES

6.0 GENERAL

An additional study including Risk Assessment (RA), Disaster Management Plan and Occupational, Health & Safety Management System has been carried out for the proposed expansion project to identify main hazards, to review the effectiveness of selected safety measures and to expand the safety measures in order to achieve a zero risk culture at the company. The study has been incorporated in the Environmental Impact Assessment (EIA) report to support the Environmental Management Plan. The study for the project has been further divided into the following sections:

- Risk assessment (Part 01)
- Disaster Management Plan (Part 02)
- Occupational Health and Safety Management System (Part 03)

6.1 SCOPE OF THIS STUDY

The Qualitative Risk Assessment (QRA) study for proposed expansion has specifically been conducted considering the Terms of References (TORs) given by the State Expert Appraisal Committee for Environment Clearance (EC).

The study has been carried out with a view to comply the following TORs:

- Objectives and methodology of risk assessment
- Details of storage facilities
- Process safety, fire-fighting systems, safety features and emergency capabilities to be adopted.
- Identification of hazards
- Consequences analysis
- Recommendations on the basis of risk assessment done
- Disaster Management Plan

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PART - 01

RISK ASSESSMENT

ECO CHEM SALES & SERVICES

PAGE 221

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.2 GENERAL

The company shall deal with fuels such as Imported Coal, Indian Coal & Lignite only. Fire, explosion, combustion or combinations of them are the hazards associated with the unit. Comprehensive, systematic and sophisticated methods of Safety Engineering, such as, Hazard Analysis and Quantitative Risk Assessment have been developed to improve upon the integrity, reliability and safety of the industrial plant.

6.3 OBJECTIVES OF RISK ASSESSMENT

Risk analysis involves an extensive hazard analysis. It involves the identification and assessment of risks to which the plant personnel, neighboring populations and the surrounding environment are exposed as a result of the hazards present. This requires a thorough knowledge of failure probability, credible accident scenario, vulnerability of population etc. Much of this information is difficult to get or generate. Consequently, the risk analysis is often confined to maximum credible accident studies. It provides basis for what should be type and capacity of its on-site and off-site emergency plan and the types of safety measures to be required for the same.

Objectives of risk assessment are:

- To identify hazard and risks resulting from the hazards
- To study and foresee the effects of such risks on the workers, public, property and the environment
- To find out necessary control measures to prevent or minimize risk
- To comply the legal requirement by various safety and environment laws of the country.
- To get the necessary information for Emergency planning and evacuation.

The Risk Assessment presented in this report has been conducted with a view to cover risks arising from the following:

- 1. Storage and handling of combustible materials like fuels i.e. diesel, lignite & coal.
- 2. Operation of DG Set, Boiler & Utility section.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.4 METHODOLOGY ADOPTED

As a conservative approach, the risk has been analyzed qualitatively. In **Qualitative Risk Assessment**, risk has been analyzed using the Hazards Identification & Risk Assessment (HIRA) methodology. In HIRA, major manual activities carried out by the plant personnel as well as contract labors have been considered. For Qualitative Risk Assessment, the Risk Matrix given in 6.3 has been used.

The comprehensive methodology adopted for various kinds of risks is summarized below:

Risk Source	Methodology Adopted for Risk Assessment	Clause no. in Report
Storage and handling of combustible materials	Hazards Identification and Risk Assessment based on Risk Matrix	Clause no.: 6.5.6
Operation of DG Set, Boiler & Utility section	Hazards Identification and Risk Assessment based on Risk Matrix	Clause no.: 6.5

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.5 RISK MATRIX

		SEVERITY									
LIKEHOOD/ PROBABILITY		Catastrophic (Death/Syste m Loss)	(Death/Syste		Minor/Margi nal (Minor Injury/Illness)	Insignifican t/Negligible (No injury/illnes s)					
			2	3	4	5					
Almost Certain	Е										
Likely	D										
Possible	С										
Unlikely	В										
Impossible	А										

Risk Range	Risk Acceptability Criteria	Remarks
	Unacceptable/ High	Management's Decision/Action Plan Required. Potential off-site Impact.
	Medium	Generally Minor off-site Impact. Acceptable with Management's Review. Specific monitoring or SOP to be followed.
	Low	Acceptable without Review. Manage through Routine Procedure.

6.6 DETAILS OF STORAGE FACILITIES

The storage locations have been marked on layout map (Figure-6.2). Details of the same have been given in the table no 6.1-A.

1. Coal/Lignite Storage, 2. Solid/Hazardous waste storage area

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Figure No: 6.2 Firefighting Layout

ECO CHEM SALES & SERVICES

PAGE 225

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table 6.1-A: Storage Details of Raw Material

Sr. No	Item	Monthly additional requirement	Max. Storage capacity at site	Mode of Storage	Storage Location	Hazards	Mode of transfer from storage to process plant	Safety Features/Fire Fighting arrangements
1	Indian Coal and/or Imported Coal and/or Lignite	Max. 16,725 tons/Month	7,000 tons	-	Coal Storage Yard	Combustible	Closed Conveyor belt system	Water sprinklers shall be used to control the dusts. Firefighting network shall be provided. Greenbelt shall be provided in and around the coal stack.
2	HSD	300 Lit/hr	10 kl	Drum		 Spillage of HSD leading to fire due to: Tanker Leakage Hose Failure Improper connections Transfer line leak 		Firefighting network shall be provided. Diesel storage tank shall be earthed. Dyke wall shall be provided. Flame proof electrical fittings to be used.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table 6.1-B: Raw Materials Consumption details

No.	Type of Fuel	Fuel Consumption (TPM)	Suppliers	Mode of Transport
1.	100 % Imported coal	10,166	Local & Overseas	By Rail & Road
2.	100 % Indian coal	16,725	Local	By Rail & Road
3.	50 % Indian coal + 50 % Imported coal	13,644	Local & Overseas	By Rail & Road
4.	100 % Lignite (By adding limestone)	14,400	Local	By Rail & Road
5.	70 % Indian Coal + 30 % Lignite (By adding limestone)	15,948	Local	By Rail & Road
6.	HSD	3,00 Lit/Hr	Local	By Road

Table 6.1-C: Products details

Sr. No.	Product Name	Existing MW	Proposed MW	Total MW
1	Captive Power Plant (CPP)	34	22	56

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.7 QUALITATIVE RISK ASSESSMENT AND MITIGATION MEASURES

Risks involved in various process equipments and some processes cannot be addressed by consequence analysis. As a conservative approach, these risks have been considered separately under this topic. The approach is to identify hazards associated in the operation of equipments as well as processes & utilities, assessing its impacts, ranking the risk posed by it and finally to propose remedial actions/mitigation measures such that risk is minimized to tolerable level. The Risk Matrix presented under the clause no.: 6.3 should be referred in evaluating this assessment.

6.7.1 Boilers

$[\sqrt{}]$ Risks and Recommendations:

Sr. No.	PROCESS OR ACTIVITY	ASSOCIATED HAZARDS	HEALTH & SAFETY IMPACT (RISK)	SEVERITY	LIKELIHOOD	RISK	PROPOSED MITIGATION MEASURES
1.	Boiler feed pump, Suction Strainer cleaning	Water spillage Pressurized water	Personnel injury	2	С		Only after doing proper Isolation, draining shall be carried out.
2.	Working near Boiler	High noise	Noise induced hearing loss	3	D		Use of proper PPEs shall be ensured. Periodic Noise Survey and medical examination of employees.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.	Monitoring of rotary equipment	Noise Ash Rotating Parts	Hearing loss Dust exposure Cuts/Severe bodily injury, may be fatal.	3	D	Use of proper PPEs shall be ensured. Personal vigilance shall be carried out strictly. Proper guarding of the rotating parts shall be ensured.
4.	Boiler maintenance (cleaning, Repairing Greasing)	Mechanical Hazard Hot surfaces /Substances	Body injury Possible severe bodily injury due to burns to skin or scalding from ill fitted joints, hot surfaces and substances	5 3	D D	Use of proper PPEs shall be ensured. Proper training shall be imparted to the workers. Check for leaks/hotness of the body parts shall be ensured before starting work. Work permit system shall be followed.
5.	Leakage, spillage, maintenance work etc.	Fire/Explosion	Risk of severe bodily injury Possible fatality Building/equipment damage	4	D	It shall be ensured that full pre commissioning checks including dry run tests have been carried out. Care shall be taken that the work is carried out by fully qualified and highly trained engineers only. Leak detection equipment shall be used. Liquid spills shall be cleaned immediately.
6.	Incomplete Combustion	Asphyxiation from carbon monoxide	Possible fatality	3	D	Ventilation and flue gases shall be checked / tested for the presence of carbon monoxide within the installation before commencing work. Flue gases shall be passed through Electrostatic

ECO CHEM SALES & SERVICES

PAGE 229

EXPANSION IN EXISTING CAPTIVE POWER PLANT

						Precipitator to collect the fly ash associated with flue gases and there by discharging the clean flue gases in to an open atmosphere through the Chimney.
7.	Maintenance work	Slips, Trips and Falls	Possible severe bodily injury	3	С	It shall be ensured that access to and from the site is gained via designated routes only. Spillages shall be treated immediately and cleaned up. It shall be made mandatory for engineers/operators to wear suitable safety footwear at all times.
8.	Operator vigilance for feeding.	Noise Dust	Hearing loss Dust exposure	4	В	Use of proper PPEs shall be ensured.
9.	Electrical maintenance work	Electricity	Possible fatality due to Electric shock Possible burns	3	D	No cables shall be unplugged with running unit. Flameproof and water proof fittings shall be used. Access to such unit under maintenance shall be restricted.
						Use of proper PPEs shall be ensured. Earthing shall be provided to all the required equipments.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

10.	Maintenance of burner.	Withdrawal of pressure jet burner body on guide rails to access burner head.	injury if stop pins are not in place and boiler	3	D	It shall be ensured that the guide rails stop pins are in place prior to withdrawing the burner body. Burner information shall be made available to the concerned persons and shall be referred before starting the work.
11.	Boiler Operation (Over pressure in the boiler, Water level indicator not working. Temperature indicator fails.)	· 5 ·	Minor Injury Loss of human life Loss of property	4	С	Level/Temperature Indicators shall be checked regularly for proper functioning. Good quality water shall be used. Inter locking systems shall be provided on pumps, FD fan, ID fan. Periodical checking & inspection shall be carried out.

6.7.2 DG Set

$[\sqrt{}]$ Risks and Recommendations:

Sr. No.	PROCESS OR ACTIVITY	ASSOCIATED HAZARDS	HEALTH & SAFETY IMPACT (RISK)	SEVERITY	LIKELIHOOD	RISK	PROPOSED MITIGATION MEASURES
1.	Working near DG room	Apparently High noise	Noise induced hearing impairment or hearing loss	3	D		Use of proper PPE's like ear plugs, ear muffs etc. shall be made mandatory. Acoustic enclosures shall be provided.
2.	Maintenance work	Electrocution	Death, burns, serious injury	3	D		Units shall be regularly tested for electrocution; care shall be taken not to plug any item with power on. No cables shall be unplugged with running unit. Flameproof and water proof fittings shall be used. Access to unit under maintenance shall be restricted. Earthing and flange-to-flange bonding shall be provided at required places.
Slips, Trips and Possible severe bodily 4 B Falls			Access to and from the site shall be gained via designated routes only. It shall be made mandatory for				

EXPANSION IN EXISTING CAPTIVE POWER PLANT

						engineers/operators to wear suitable safety footwear at all the times. Proper Housekeeping shall be ensured.
3.	Charging of Hot Oil / Hot Fumes/Diesel.	Fire	Risk of severe bodily injury Possible fatality Building/equipment damage	3	D	 Fuels shall be stored in sealed containers, away from the source of ignition and generator. Filling of generator shall be done using funnel or spout when generator is off and cold to touch. It shall be ensured that generators are placed on firm ground, in well-ventilated areas free from obstructions, away from heat and ignition sources. Fire extinguishers shall be made available in close proximity to the re-fueling activity; Only fully qualified and highly trained engineers shall be allowed to do the work.
		Hot Parts of Generator. Inhalation of exhaust fumes	Severe burns, Injury, asphyxiation	4	D	Proper insulation and guards shall be provided. Exhaust shall be pointed away from public. Leak detection systems shall be installed.
		Dermatitis from diesel and lube oil.		4	D	Proper PPEs shall be used. Spillages shall be treated immediately and practice shall be made to minimize the same by using funnels.
4.	DG set maintenance	Mechanical Hazard.	Body injury.	5	D	Use of PPEs like - gloves, eye protection and possible FR clothing for refueling jobs shall be

ECO CHEM SALES & SERVICES

PAGE 233

EXPANSION IN EXISTING CAPTIVE POWER PLANT

(cleaning, Repairing Greasing)	Hot surfaces /Substances	Possible severe bodily injury due to burns to skin or scalding from ill fitting joints, hot surfaces and substances	3	D		ensured. Personal vigilance shall be carried out. Proper training shall be imparted to the workers. Temperature check shall be done before opening. Hot parts shall be labeled as "HOT". All joints shall be checked for leaks before starting work. Adequate fire fighting equipment and First aid kit shall be made easily available. Area shall be identified as 'No Smoking' Zone.
--------------------------------------	-----------------------------	--	---	---	--	---

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.7.3 Material Handling/Transportation

$[\sqrt{}]$ Risks and Recommendations:

Sr. No.	PROCESS OR ACTIVITY	ASSOCIATED HAZARDS	HEALTH & SAFETY IMPACT (RISK)	SEVERITY	LIKELIHO OD	RISK	PROPOSED MITIGATION MEASURES
1.	Loading /Unloading of goods	Dust exposure, Fire	Damage to internal body parts/skin irritation etc. Risk of severe bodily injury Possible fatality Building/equipment damage.	3	С		Closed conveyor belt system shall be provided. House-keeping shall be maintained properly and surrounding area shall be made free from obstructions, heat and ignition sources. Fire extinguishers shall be made available in close proximity. Coal wetting shall be done before unloading from truck to reduce the dust levels significantly.
2.	Storage & Transportation of coal/solid/hazar dous waste	Dust exposure Fire	Injury to body. Health damage, impairment to internal body parts etc.	4	С		Dust suppression system shall be provided over storage of coal. Use of proper PPEs like face mask, hand gloves, chemical resistant clothing and safety goggles shall be ensured. Asphalt road network shall be provided in the whole area for truck movement to prevent dust emission. Trucks used for transporting the goods shall be totally enclosed/covered by the tarpaulin and overloading in truck shall be avoided to prevent the dusting and spillage of goods from the truck.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.7.4 Storage of Combustible Material (HSD & Coal & lignite)

$[\sqrt{}]$ Risks and Recommendations:

Sr. No.	PROCESS OR ACTIVITY ASSOCIATED HAZARDS		HEALTH & SAFETY IMPACT (RISK)		LIKELIHO OD RISK		PROPOSED MITIGATION MEASURES	
1.	Fuel (Like Diesel, Coal lignite etc.) Storage Area	1	Severe body injury Possible fatality	3	С		Sprinkler system shall be employed in storage area. Fire extinguishers and fire hydrant shall be made available in close proximity. Fire/smoke detectors shall be made available to detect small fire so as to take immediate action. Housekeeping shall be taken care. Air monitoring shall be carried out to check for any dust/fume emissions.	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.8 RECOMMENDATIONS

Recommendations for the proposed project based on Risk Assessment are summarized as below along with other safety measures.

6.8.1 For Boilers

- Only after doing proper Isolation, draining shall be carried out.
- Proper guarding of the rotating parts shall be ensured.
- Proper training shall be imparted to the workers.
- Check for leaks/hotness of the body parts shall be done properly before starting work.
- It shall be ensured that full pre commissioning checks including dry run tests have been carried out.
- Care shall be taken that the work is carried out by fully qualified and highly trained engineers only.
- Leak detection equipment shall be used.
- Liquid spills shall be cleaned immediately.
- Ventilation and flue gases shall be checked / tested for the presence of carbon monoxide within the installation before commencing work.
- It shall be ensured that access to and from the site is gained via designated routes only.
- Spillages shall be treated immediately.
- It shall be made mandatory for engineers/operators to wear suitable safety footwear at all times.
- Personal vigilance shall be carried out strictly.
- No cables shall be unplugged with running unit. Flameproof and water proof fittings shall be used.
- Access to such unit shall be restricted.
- Use of proper PPEs shall be ensured.
- Earthing shall be provided to all the required equipments.
- It shall be ensured that the guide rails stop pins are in place prior to withdrawing the burner body.
- Burner information shall be made available to be referred before starting the work.
- Regular testing & certification of safety valve, rupture disc shall be done.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.8.2 For DG Set

- Acoustic enclosures shall be provided for DG room (OR) generator shall be installed in open area away from the work site, for dispersal of noise.
- Units shall be regularly tested for electrocution; care shall be taken not to plug any item with power on.
- No cables shall be unplugged with running unit. Flameproof and water proof fittings shall be used.
- Access to the maintenance unit shall be restricted.
- Earthing and flange-to-flange bonding shall be provided at required places.
- Access to and from the site shall be gained via designated routes only.
- Proper Housekeeping shall be ensured.
- Fuels shall be stored in sealed containers, away from the source of ignition and generator.
- Filling of generator shall be done using funnel or spout when generator is off and cold to touch.
- It shall be ensured that generators are placed on firm ground, in well-ventilated areas free from obstructions, away from heat and ignition sources.
- Only fully qualified and highly trained engineers shall be allowed to do the work.
- Proper insulation and guards shall be provided.
- Exhaust shall be pointed away from public.
- Leak detection systems shall be installed.
- Spillages shall be treated immediately and practice shall be made to minimize the same by using funnels.
- Use of PPEs like gloves, safety footwear, eye protection and possible FR clothing for refueling jobs shall be ensured strictly.
- Personal vigilance shall be carried out.
- Proper training needs shall be imparted to the workers.
- Temperature check shall be done before opening any equipment for maintenance.
- Hot parts left unattended shall be labeled as "HOT".
- All joints shall be checked for leaks before starting work.
- Adequate firefighting equipment and First aid kit shall be made available easily.
- Area shall be identified as 'No Smoking Zone'.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.8.3 for Material Handling/Transportation/Storage

- Closed conveyor belt system shall be provided.
- Housekeeping shall be maintained properly and surrounding area shall be made free from obstructions, heat and ignition sources.
- Coal wetting shall be done before unloading from truck to reduce the dust levels significantly.
- Use of proper PPEs like face mask, hand gloves, chemical resistant clothing, safety goggles shall be ensured.
- Asphalt road network shall be provided in the whole area for truck movement to prevent dust emission.
- Trucks used for transporting the goods shall be covered by the tarpaulin and overloading in truck shall be avoided to prevent the dusting and spillage of goods from the truck.
- Sprinkler system shall be employed in storage area.
- Fire extinguishers and fire hydrants shall be made available in close proximity.
- Fire/smoke detectors shall be made available to detect small fires so as to take immediate action.
- Air monitoring shall be carried out to check for any dust/fume emissions.

OTHER SAFETY MEASURES TO BE EMPLOYED DURING THE PROPOSED PROJECT:

To maintain high standards in Health, Safety and Environment, various activities shall be undertaken at the site.

The following key safety measures shall be a part of the proposed project to be implemented by the proponent:

6.8.4 Personnel Safety Measures:

- Safety Training shall be regularly provided to the employees.
- Safety Sirens with Alarm System in case of emergency shall be provided.
- Emergency Control Room shall be established.
- Assembly point shall be predetermined and provided as per the requirement.
- Sprinkler Systems shall be provided as per the need.
- Fire Hydrant System shall be installed.
- Fire Extinguishers are also proposed to be provided.
- Mock drills shall be periodically conducted and factors like response time to be evaluated.
- Fire squad team shall be formed for handling any emergency situation.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- First Aid Facility and training shall be regularly provided.
- Personal protective gears and equipments shall be provided to the employees.
- Health checkups shall be organized at regular intervals.
- Safety / Health records and MSDS shall be maintained.

6.8.5 Noise Environment:

- Use of PPE like ear plugs and ear muffs shall be made compulsory near the high noise generating machines.
- Moreover, the personnel shall be provided breaks in their working hours with the continuous exposure not increasing more than three (3) hours.
- The plant and equipments are designed with a view to minimize noise pollution.
- To reduce noise, pipe lines shall be liberally sized for low velocities.
- Safety blow off valves, discharge pipes, relief valves, etc. shall be equipped with silencers. Hearing Conservation program shall be imparted where noise level exceeds 90dB(A).

6.8.6 Coal Handling System:

- A standard Coal handling system with screening, coal crushing and conveying system shall be installed for the CPP.
- Water sprinklers shall be used to control the fugitive dusts.
- All necessary equipments/machineries shall be maintained in good condition for proper operation.
- Enclosure for transport vehicles /storage vessel, spraying of water on road & ground shall be provided to control the coal dust problem. During the operation phase, proper EMP shall be in place for handling of Coal and/or Lignite.
- Asphalt Road Network shall be provided in the whole premises for truck movement in order to prevent dust emissions.
- Greenbelt shall be provided in and around the premises area, around the coal stack yard and along the roads to minimize the generation of fugitive coal dust.
- For transportation, loading & unloading of goods, closed conveyor belt system shall be provided.
- To control the fugitive dusts from coal and/or Lignite handling, adequate moisture content shall be provided.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Enclosures for transport vehicles/storage vessel, spraying of water on road & ground shall be effectively implemented to control the coal dust problem. During the operation phase proper EMP shall be in place for handling of Coal and/or Lignite.
- Overloading in trucks shall not be allowed, to prevent the dusting and spillage of goods from the truck.
- A fire hydrant system line shall be provided for immediate response to the unlikely spontaneous combustion in the stored fuel.
- For the proposed plant, a water spraying system shall be provided for coal wetting before unloading from truck to reduce the dust levels significantly.
- Employees shall be given proper training as well as display of the summarized Environmental Management & Safety Procedures shall be made available at the site through signboard.
- Regular Air monitoring and inspection of the environmental management practices shall be carried out and the necessary documents/records shall also be maintained.

SAFETY MEASURES TO CONTROL ENVIRONMENTAL POLLUTION FOR THE PROPOSED PROJECT:

- For the proposed project, the flue gases from the boiler shall be continuously removed through Chimney through appropriate APC and the fly ash shall be collected.
- Domestic effluent shall be treated in the proposed septic tank/soak pit system.
- Air pollution control devices shall be provided to achieve regulatory norms of GPCB.
- The disposal of solid/hazardous waste for collection, storage and disposal shall be carried out as per the Hazardous Waste Management Rules, 2008.
- A separate chamber provision shall be provided for online dosing of good quality lime stone in the TPH boiler, for control of Sulphur Dioxide emissions.
- Necessary green belt shall be developed in & around the proposed plot for abatement of air and noise pollution.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.9 SYSTEMS FOR FIRE FIGHTING:

In a CPP, management of risk arising from fire hazards is a critical part. Coal i.e the raw material is a combustible material. High-temperature steam pipes can also be a cause of fire, if not properly insulated.

The risk to people after a fire has started shall largely depends on the adequacy and maintenance of means to escape, the alarm system, training of the workforce in fire routine and evacuation procedures. At Atul Ltd. management has proposed to employ well-resourced and adequate fire fighting network. Details regarding the firefighting capacity of the unit are given below:

Type of Fire Extinguishers	Number of Fire extinguis hers	Fire water Reservoir Capacity	Fire pump capacity	Hydrant Pressure	Details Deluge valve arrangements	Foam type and quantity	Other relevant details
 CO2 ABC Foam Water CO2 	145	45000 m ³	275 m ³ /hr	7 Kg/m ²	04	Mechanic al Foam Concentra te 200 lit	Fire // // // // // // // // // // // // //

EXPANSION IN EXISTING CAPTIVE POWER PLANT

FIRE HYDRANT LAYOUT

ECO CHEM SALES & SERVICES

PAGE 243

EXPANSION IN EXISTING CAPTIVE POWER PLANT

FIRE FIGHTING TRAINING & FIRE HYDRANT

Additional firefighting measures for proposed expansion are as follows:

- Safety Sirens with Alarm System in case of emergency shall be provided.
- Emergency Control Room shall be established.
- Assembly points shall be identified.
- First Aid Facility and training shall be provided for the proposed project.
- Personal protective gears and equipments shall be provided for the proposed project.
- Health checkups shall be organized at regular intervals.
- Safety Training shall be provided to the employees.
- Sprinkler Systems shall be provided as and when needed.
- Mock drills shall be periodically conducted and factors like response time shall be evaluated.
- Fire squad team shall be formed for handling any emergency situation.
- Fire Hydrant System shall be installed which shall be used for the proposed project.
- Fire Extinguishers shall be provided.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PART - 02

DISASTER MANAGEMENT PLAN

ECO CHEM SALES & SERVICES

PAGE 245

EXPANSION IN EXISTING CAPTIVE POWER PLANT

The proponent shall develop an emergency management system to tackle the emergency situations (if any) arising at any stage of the proposed project. The details of Disaster Management System are discussed in the following sections.

6.10 NATURE OF THE EMERGENCY

Level of emergency can be classified into three categories:

LEVEL - 1:

The leakage or emergency, which is confined within the plant premises.

It may be due to -

a) Small fire in the plant

- b) Low toxic gas release for short duration.
- c) Collapsing of equipment that do not affect outside the premises.

LEVEL - 2:

The emergency, which is confined within the factory premises. It may arise due to -

- a) Major fire inside the factory premises.
- b) Medium scale explosion confined to the factory premises.
- c) Heavy toxic / flammable gas leakage for short duration.

LEVEL - 3:

The emergency, which is not confined within the factory premises and general public in the vicinity are likely to be affected. It may arise due to -

- a) Explosion of high magnitude affecting the adjacent area
- b) Natural Calamities like Tsunami/Cyclones/Storm Surges/Earthquakes
- c) Heavy / Profuse leakage of toxic / flammable gases for a long duration.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.10.1 Objectives of Emergency Management System

The objectives of the emergency management system are summarized as under:

- To identify and assess type of emergencies arising due to different types of hazards.
- To work out plan with all provisions to handle emergencies and safeguard employees, people and the environment in the vicinity of the factory.
- To provide for emergency preparedness and the periodical rehearsal of the plan.
- To plan mode of proper communication and actions to be followed in the event of an emergency.
- To keep all necessary information with respect to hazard/accident control and emergency contacts in one document for easy and speedy reference.
- To inform employees, general public and the authorities about the hazards/risks (if any) and the role to be played by them in the event of an emergency.
- To control and contain the accident.
- To effect rescue and treatment of casualties.
- To inform and help relatives of the casualties.
- To secure rehabilitation of affected area and restore normalcy within a short period.
- To provide information to media and government agencies.
- To preserve records and equipments for investigating the cause of emergency.
- To be ready for "mutual aid" if need arises to help the neighboring units.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.11 ONSITE EMERGENCY PLAN

The existing unit has an Onsite Emergency Plan to deal with any emergencies arising within the plant. Responsible personnel for the same have also been defined and the same shall be responsible for the proposed expansion.

6.11.1 Purpose:

This plan is prepared to cope up with any emergency, which could occur during operation. The purpose of this plan is to protect the employees, people residing in the neighboring areas, the company's properties and environment to the maximum possible extent in the event of fire, explosion, toxic spillage's / releases due to our own operations, or operations of neighboring companies or natural calamities like flood, cyclone earthquake etc.

6.11.2 Types of Emergencies:

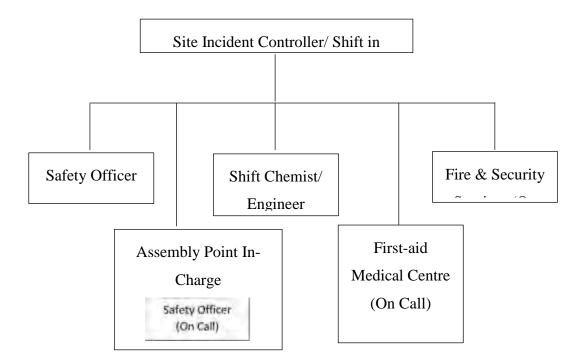
FIRE: In ATUL– East & West Sites flammable fuel are stored. These substances can catch fire by source of ignitions like sparks, static electricity, welding and cutting operations, electrical short circuits, smoking in non-smoking area etc.

INJURY TO PERSONNEL: Hazards of unsafe actions or condition caused by poor housekeeping may result into minor major physical injury. The splashes of chemicals, release of gases may also cause injury to personnel working in the nearby.

6.11.3 Control Room

SHE Office phone 5265 / 5246 shall be converted into a Control Room for any emergency and the Site Main Controller according to situation shall operate from this place. If situation demands then Occupier / Directors office phone 5800 shall be converted in to a Control Room.

6.11.4 Organisation for Tackling Emergency:


During normal working hours and except on holidays, the Site Main Controllers, Incident Controllers, Deputy Incident Controllers, key personnel, essential workers, Security Officer, Fire officer and Safety Officer are available at factory premises. On hearing the emergency siren they will start emergency procedure as laid down in the following part. After normal working hours and on holidays Security Officer, Fire Officer, Safety Officer, Incident Controllers/Deputy incident Controllers (See annexure 14,15,33) site main controllers (see Annexure 18) will be called to attend emergency by shift chemist with the help of Security personnel. Duty schedule of incident controllers for any day is available at Security office / Control Room.

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

Organogram for Plant Emergency Response

Duties of persons responsible for combating Emergency

i.) Site Incident Controller / Shift In-Charge:

- 1. Raise the emergency alarm, if it is not already sounding.
- 2. Arrange to secure all ignition sources.
- 3. Assign specific duties to the staff / workmen to bring the critical of the emergency.
- 4. Assess the severity of the incident and the likely extent of the emergency.
- 5. Determine actions necessary to overcome the course of the incident and linit the extent of its effects.
- 6. Advise plant personnel on how to combat the emergency with due care for personal safety.
- 7. Provide guidance to firefighting personnel on -
 - Type of fire extinguishers, and
 - Type of personal protective to be used

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- 8. Ask for evacuation of the plant, if necessary.
- 9. Nominate someone to act as Assembly Point In-Charge and to obtain head count.
- 10. Provide information to and seek guidance from the safety Officer and Departmental Heads on their arrival.
- 11. Along with Plant In-Charge, Safety Officer and Manufacturing Head decide whether nearby Plants are likely to be affected and whether on-site emergency should be declared or not.

Once the emergency is attended to and the incident is under control, arrange to give all clear siren.

- ii.) Safety Officer:
 - 1. On hearing Siren, reach the incident site immediately.
 - 2. Find out about the type emergency, whether it is due to toxic gas leak, fire or explosion.
 - 3. Provide advice on use of appropriate personal protective equipment by personnel assigned to tackle the emergency.
 - 4. Check wind direction and inform the nearby Plants.
 - 5. Guide the Security staff for cordoning off affected area, if such isolation is required
 - 6. Send persons for medical treatment, if required.
 - Depending on the severity, take joint decision with the Site Indent Controller whether senior management should be alerted and whether Main Centre Controller should be called.

iii.) Shift Chemical / Engineer.

- 1. On hearing siren receiving message on telephone proceed th the incident site immediately.
- 2. Assist the Site Incident Controller.
- 3. Make arrangement to obtain help and resources (men, materials and machinery from other Plants, if necessary
- 4. If plant evacuation is necessary then after shutting sown plant to safe condition, ask he plant personnel to proceed to assembly point. Nominate someone as assembly point In charge to take attendance and receive further instructions.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- iv.) Fire & Security Personnel:
 - 1. On hearing siren reach the incident site immediately.
 - 2. Seek information from Shift Chemist / Safety Officer about the nature of the emergency and precaution to be taken in tacking the emergency.
 - 3. Ensure use of proper personal protective equipment while operating in dangerous area or zone.
 - 4. Limit use of fire hydrant to permissible areas only.
 - 5. Help to cordon the area of incident and do not allow any unauthorised persons to go near the affected area.
 - 6. If required carry out search and rescue operation the control of Fire Officer / Shift / Chemist.

v.) Trained / Experiences worker:

He will start combating emergency and call for help if emergency is in area. Otherwise he shall give charge of his work to the supervisor and go to the site of emergency and help in combating emergency. Each plant will nominate at least one such worker per shift.

vi.) Assembly – point In-charge:

- 1. As soon as the siren is heard, take charge of the assembly point nearest to the plant giving due consideration to the wind direction and severity of fumes or fire in the plant (as seen from outside)
- 2. Take head count in case shed evacuation is ordered. Record the names and identity of persons reaching the assembly point.
- 3. Communicate the data to the Site Incident Controller and Safety Officer (highlight the names of persons who may be missing).
- 4. Check and record if anyone is injured or affected by chemicals.
- 5. Send affected persons to the First-aid Centre or Atul Medical Centre, as required.
- 6. Inform the Medical Centre the name of chemical causing the emergency.
- vii.) First-aid Centre :
 - 1. The male nurse provide first-aid treatment to any casualties sent from the plant.
 - 2. The male nurse or Ambulance attendant will liaise with Transport Section for transporting the victims from the incident site to Atul Medical Centre.

ECO CHEM SALES & SERVICES

PAGE 251

EXPANSION IN EXISTING CAPTIVE POWER PLANT

viii.) Atul Medical Centre :

On hearing the siren for on-site emergency, the Doctor on duty should come to the Atul Medical Centre immediately to treatment casualties, if any.

If any required, the Doctor must inform the Civil Hospital, Valsad or other hospital in Valsad. Asking for readiness to handle casualties, giving information on nature of injuries, chemicals involved and number of affected persons who may be referred.

ix.) Duties & Responsibilities:

The person is assigned with the duties under this plant. Any person failing to perform his duties shall be properly dealt with.

x.) Emergency Alarm System

Though out factory area of Atul Limited switches are installed and housed in a small box with glass cover / push buttons.

In case fire / accident / emergency the glass of housing should be broken with hammer provided or by passing electric push button switches. The fire siren will be actuated automatically. There will be audio visual indication of location at respective fire stations of Atul.

6.11.5 Telephone Communication Guide Line

KEY PERSONNEL OF THE ORGANIZATION WHO WILL ASSUME RESPONSIBILITIES IN CASE OF AN EMERGENCY:

INCIDENT CONTROLLERS

Concern divisional GM (Mfg) will act as Incident Controller. He will be responsible for physically tackling the emergency at site. He will judge the situation and brief SMC (Site Main Controller) to take decision for on-site emergency. Division wise list of Incident Controller and their alternatives are as under

In absence of incident controller alternative incident controller will take charge of incident controller. In normal case, second incident controller (Runner) will remain available for helping incident controller to control the emergency.

If both the persons i.e. incident controller and alternative (Deputy) incident controller are not available in campus, they have to ensure that second incident controller is available in campus / colony area on call, to act as incident controller.

Sr. No.			Inciden	t controller's			Runners			lunners	
	Name	Designation		avai In the	ace of lability Residence address		ne No. Residence		ne & mation	Place of availabilit y	Phone No.
1	Mr. Parag Shah	GM-Mfg		East Site/BI Office		5645		Dr. Doshi			5119 233170(P&T)

ECO CHEM SALES & SERVICES

PAGE 253

EXPANSION IN EXISTING CAPTIVE POWER PLANT

	Mr. R. K. Arora	GM-Mfg	 	Down Colony	4215	234310	Prajapati		4255/6484 233228(P&T)
	Mr. Ravishankar Sharma	GM-Mfg		Wyeth Colony	3446	230194	Naik		3502/6212 233816(P&T)
	Mr. N. S. Daga	GM-Mfg		O type colony		7485/2334 48		Office of Epoxy Plant	3454/6221 233087
5	Mr. Sujoy M	GM-Mfg	Producti on Office/		5572/ 2265	7055		0 0	5283/7425 234267
	Mr. S. J. Hansoti	G.M.	Producti on Office/ East	Down Colony		7031/ 233389 P&T	C. Patel		5317/ 230388

EXPANSION IN EXISTING CAPTIVE POWER PLANT

DEPUTY INCIDENT CONTROLLERS						
Sr. No	Division	Name & Designation	Place of availability	Contact No.		
1.	BI	Mr. Ashish Gandhi	TE Office	9824106258		
2.	COLOR	Mr. Vrajesh Parikh	TE Office	4245/9824136657		
3.	PI	Mr. H R Patel	TE Office	4278 9925149538		
4.	РО	Mr. M. R. Simpi	TE Office	4471/9723551353		
5.	СР	Mr. Prashant Sonawane	TE Office			
6.	IN	Dr. D. V. Doshi	TE Office	9924143624		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.11.6 Fire:

- a. The person noticing the emergency should the alarm from the nearest fire alarm switch. He shouts or help calling 'Fire-Fire' and workmen working in the affected area who are trained in firefighting immediately start combating the fire, with fire extinguishers.
- b. Shift chemist should rush to the site and take charge emergency operation and should arrange to inform Fire/ Security and he should instruct workmen for shut down procedure in the nearby area.
- c. Other workmen of the section also the persons who are combating emergency by bringing firefighting equipment, removing flammable combustible material from nearby area clearing the passage for firefighting personnel, under instructions of shift chemist.
- d. Fire / Security Officer & Fireman :
 - They rush to the emergency with fire tender and help combating fire.
 - One of the Firemen immediately rushes to the fire pump room and starts the fire pump and wait there for further instruction.
- e. Security Officer/main gate Watchman informs Safety Officer Incident Controllers and site Main Controller according to duty / Schedule given, regarding emergency.

The watchman at the main gate shall direct any outside person e.g. members of mutual aid team, representative of govt. From district authorities or a press representative, to the SHE office.

6.11.8 Injury:

- a. Workman at the site help the injured person to go into open area and take him to the Ambulance Room for first aid, by Ambulance.
- b. Male nurse at ambulance room arranges to send the injures person to Atul
- c. Medical centre or company's Doctor.
- d. As advised by doctor, the injured person is taken to Valsad or Pardi Hospital.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

e. Responsible man is deputed by Plant Manager or Factory Manager to accompany the injured person along with company's Medical Officer's report when sending to Valsad or Pardi Hospital.

6.11.9 Declaration of Major Emergency

The persons on emergency duty along with concerned G. M. Mfg. / Plant Incharge in consultation with Safety Manager decide about the gravity of the situation and inform the control room to declare on site emergency. In this case continuous is sounded for 4 minutes.

6.11.10 Giving all clear signal:

After the Emergency is brought under control G.M. MFG. / Occupier / Factory Manager will decided and give instructions for all clear siren (i.e. One minute continuous siren)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.12 OFF SITE EMERGENCY:

If nearby colonies / villages required then off site emergency is declared by sounding 10 minutes continuous siren of all 3 companies. In case of offsite emergency separate procedure ACDCP (Atul Complex Disaster Control Plan) is when and that document must be used.

6.12.1 Communication In Case Of Major Emergency

On declaration of major emergency, the Atul complex Disaster Control Plant becomes operative. The GM Corporate-SHE/Factory Manager who are members of the Main Control sub Committee of ACDCP will inform the following persons about the disaster and ask for help to combat the situation. They remain in touch with Director / Occupier for guidance if needed.

Name	Designation	Telephone No.	Represent
District Collector, Valsad	Chairman D.C.C.	O-0262-253613,	Government
	of		
Occupier / Director,	Vice Chairman DCC	O-233261	Atul Ltd.
Atul	of		
Dy. Director ISH Valsad	Secretary DCC of	O-253612,	Government
District Supdt. of	Chairman P&G	O-254222,	Government
Police, Valsad	Sub		
Atul Police Station, Atul		233515	Government
Atul Gram Panchayat,		O-234562	Government
G.P.C.B. Vapi	Regional Office	O-0260-2432089	Government

D.C.C. = Disaster Control Committee, P & G:

The District Collector Valsad shall arrange help from Valsad Municipality, Zilla Panchayat, and other Government and non-Government Organizations. The District authorities shall inform nearby villages for evacuation and / or other measures in case of emergency arose.

6.12.2 MUTUAL AID

We have arrangements with the neighboring sites situated in the campus namely Atul

- (East, PP Site & West Site), to help each other in case of any emergency. The transport facilities, firefighting facilities/ equipment, personal protective equipment and other emergency equipment is available for mutual aid.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.13 GENERAL

- a. Shift Chemist Control the people of their section ensure that people who are trained in the fire fighting and first aid are relieved to go to the spot of emergency.
- b. Incident controller, safety Officer and Fire / Security Officer shall check the spot after fire is extinguished (or emergency is over) and declare the area safe for cleaning or putting back to operation and blow siren for all clear. This all clear SIGNAL is continuous siren for 1 minute.

6.13.1 Accident Investigation A\and Reporting*

Every accident that has resulted in personal injury, likely danger to human life or property damage shall be investigated thoroughly departmentally.

Departmental head may take help of safety Department and / or other experts from outside for the investigation. A report shall be mode indicating the root cause of the incident and proposed remedial measures.

- a. Preliminary written report from Department Manager is sent to safety, Health and Environment Department, Director, Vice President and GM mfg. within 24 hours (even if oral information is given) after the incident. This is being discussed in safety committee meeting.
- b. Factory manager will inform the Factory inspector and/or other Government authorities as required.

6.13.2 Public Relation

The occurrence of a serious disaster in only factory would be a matter of public interest. Misunderstanding of Reporters has sometimes led to distorted and exaggerated stories, which reflect unfavorably upon the company. Speed and frankness in supplying accurate of the company. Factory Manager or in his absence person appointed by Director will provide the facts and accurate picture of the situation to the following:

He will inform :

- 1. Personnel Managers Factory Managers of the neighboring companies.
- 2. Sarpanches of villages likely to be affected by the emergency.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- 3. Dy. Director ISH
- 4. Collector at Valsad
- 5. M.L.A's at Valsad and Pardi and M.P. Valsad only if the accident leads to off site emergency
- 6. News correspondents at Valsad

Person responsible for giving Information ensure the following:

- 1. Do not try to hide the facts. They will come out later any way.
- 2. Do not release estimates of damage without consulting occupier.
- 3. Do not speculate, stick to the facts.
- 4. Do not attempt to blame anybody.

6.13.3 Plant Evacuation Procedure:

It may be necessary to evacuate the building and / or surrounding buildings where emergency has occurred. The evacuation instructions are given by Site Main Controller after assessing the situation in emergency.

6.13.4 Personal Protective / Emergency Equipments

Personal protective equipments / Emergency equipments are to be used according to the nature of emergency such as fire, toxic spill gas leakage etc. List of personal protective equipment /Emergency equipment with its location is circulated separately to all departments. The responsibility for maintenance of such equipment is as under:

1. Fire Fighting Equipment	: Security & Fire Department
----------------------------	------------------------------

- 2. Personal protective equipments : Plant Incharge / concerned department
- 3. Communication & Other instrumental : Electrical & Instruments Dept. equipment

Safety Devices *

The safety devices provided to safe guard against hazard are maintained in upto date working condition and tested for their performance from time as per the preventive maintenance schedule prepared in advance.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.13.5 Revision & Updating:

The plan is subject to revision due to the following reasons.

- 1. To fulfill new statutory requirements if any.
- 2. To incorporate additional Hazards and risk identified on the basis of risk analysis.
- 3. Organizational changes, in the company if any.
- 4. Introduction of new / additional facilities in the form of equipment, mutual aid etc to combat emergencies of fire, toxic release / spill or physical injury.

6.13.6 MOCK DRILLS & TRAINING.

The success of this plan will depend upon the education of all concerned and practice of the same at regular intervals. The periodic drill is carried out to check performance of the men and equipments. Regular training programs or firefighting, Use of gas masks and first aid are conducted. This training also include tabletop and functional drill of the plan. The full-scale drill is carried out in presence of statutory authorities, press, and police for handling situation effectively.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PART - 03

OCCUPATIONAL HEALTH AND SAFETY

ECO CHEM SALES & SERVICES

PAGE 262

EXPANSION IN EXISTING CAPTIVE POWER PLANT

6.14 GENERAL

For large industries, where various activities are involved during construction, erection, testing, commissioning, operation and maintenance; the men, materials and machines are the basic inputs. Along with its boons, industrialization generally brings several problems like occupational health and safety.

The proponent therefore has properly planned and taken steps to minimize the impacts of industrialization and to ensure appropriate occupational health and safety including fire plans.

The key safety measures mentioned under shall be a part of proposed expansion project.

6.15 OCCUPATIONAL HEALTH

Occupational health needs attention both during construction/erection and operation/maintenance phases. However, the problem varies both in magnitude and variety in the above phases.

6.15.1 Construction and Erection

The occupational health problems envisaged at this stage can mainly be due to constructional accidents and noise generation. To overcome these hazards, in addition to arrangements to reduce it within the Threshold Limit Values (TLVs), necessary protective equipments shall be supplied to the workers.

6.15.2 Operation and Maintenance

The problem of occupational health in the operation and maintenance phase is primarily due to noise which could affect consultation. The necessary personal protective equipments shall be given to all the workers exposed to high noise. The working personnel shall be given the following **appropriate personnel** protective equipments.

- Industrial Safety Helmet;
- Welders equipment for eye and face protection;
- Cylindrical type earplug;
- Ear muffs;
- Safety belt/line man's safety belt;
- Leather hand gloves;
- Asbestos hand gloves;
- Electrically tested electrical resistance hand gloves; and
- Industrial safety shoes with steel toe.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Atul also has a **Department of Health** (**DoH**) for regularly checking health of the employees and providing medical aid in case of injury to the personnel. The DoH is responsible for Occupational Health & Safety of the employees at Atul Ltd.

A) DEPARTMENT OF HEALTH (DOH) at ATUL LTD

- 1. Medical Centres:
 - DoH Main (Department of Health) within Atul complex
 - OHC (Occupational Health Centre, 24x7) within Factory premises.

2. Scope of Services:

- Primary healthcare for employee & family
- Occupational healthcare
- Health monitoring
- Employee health check-ups
- EMS (Emergency) 24x7
- AOD (Accident on duty) management 24x7
- OHC services 24x7
- Medical Laboratory
- Referrals

3. Systems & facilities available:

- HMIS (Hospital management & information systems)
- Office automation
- ECG machine (two)
- Multipara Monitor with O2 Saturation (one)
- Finger pulse oximeter (one)
- Glucometer (two)
- Otoscope cum Ophthalmoscope (one)
- AED (automated external defibrillator) (one)
- Suction machine (two)
- Fully automated biochemistry analyzer (one)
- Fully automated hematology analyzer (5-part) (one)
- Automated Centrifuge (two)
- Microscopes (two)
- Blood Roller Mixers (two), Pipettes & Other Lab accessories
- Needle cutters (three)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Oxygen cylinders (ten)
- Ambulance van with stretcher (two)
- Emergency observation beds (five)
- Medical assistance/aid visit bag (two)
- Dr Consultation equipment
- Antidotes as applicable
- First aid boxes as required
- 4. Manpower:
 - Full-time Drs Three (residing in campus)
 - Contract Dr One (Medical Advisor)(residing at Valsad)
 - Lab Technician One
 - Nurse One (Male)
 - Medical Assistants Five (Male)
- 5. Software Use:
 - On line software for health monitoring and medical history for all employees

EMP for the Occupational Safety & Health hazards so that such exposure can be kept within Permissible Exposure Level (PEL)/Threshold Level Value (TLV) so as to protect health of workers.

- 1. An EMP for Occupational Safety and Health shall be proposed to implement with the following objectives:
 - To keep air-borne concentration of toxic and hazardous chemicals below PEL and TLV.
 - Protect general health of the workers likely to be exposed to such chemicals.
 - Providing training, guidelines, resources and facilities to the concerned department for occupational health hazards.
 - Permanent changes to workplace procedures or work location to be done, if it is found necessary on the basis of findings from the Workplace Monitoring Plan.
 - It is proposed that this EMP be formulated on the guidelines issued by the Bureau of Indian Standards on OH&S Management Systems: IS 18001:2000 Occupational Health and Safety Management Systems
 - Proposed EMP shall be incorporated in Standard Operating Procedure also.
 - The proposed EMP shall also include measures to keep air-borne concentration of toxic and hazardous chemicals below its PEL and TLV, like...

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- o Leak Surveys
- Separate storage for toxic chemicals
- o Exhaust Ventilation
- Proper illumination
- o Close processes to avoid spills and exposures
- o Atomization of process operations to hazards of manual handling of chemicals
- Supply of proper PPEs like Air mask, Berating canisters, SCBA sets, On-line breathing apparatus at the places where there is possibility of presence of toxic chemicals
- Regular maintenance program for pumps, equipment, instruments handling toxic and corrosive chemicals
- Display of warning boards
- Training to persons handling toxic and combustible materials/chemicals.

Workplace Monitoring Plan

- It is proposed that a Workplace Monitoring Plan shall be prepared & implemented in consultation with FMO.
- Each workplace must be evaluated to identify potential hazards from toxic substances or harmful physical agents. Air-borne concentration of combustible material shall be measured and record shall be kept.

Health Evaluation of Workers

- It is proposed that management shall device a plan to check and evaluate the exposure specific health status evaluation of the workers.
- Workers shall be checked for physical fitness with special reference to the possible health hazards likely to be present where he/she is being expected to work before being employed for that purpose. Basic examinations/tests like Liver Function tests, chest x ray, Audiometry, Spirometry, Vision testing (Far & Near vision, color vision and any other ocular defects) ECG, etc. shall be carried out. However, the parameters and frequency of such examination shall be decided in consultation with Factory Medical Officer.
- While in work, all the workers shall be periodically examined for the health with specific reference to the hazards which they are likely to be exposed to during work. Health evaluation shall be carried out considering the bodily functions likely to be affected during work. The parameters and frequency of such examination shall be decided in consultation with Factory Medical Officer and

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Industrial Hygienists. Plan of monthly and yearly report of the health status of workers with special reference to Occupational Health and Safety.

6.16 SAFETY PLAN DURING PROJECT EXECUTION STAGE (CONSTRUCTION & COMMISSIONING)

Safety of both men and materials during construction and operation phases is of concern. Safety plan shall be prepared and implemented in the proposed project activity. The preparedness of an industry for the occurrence of possible disasters is known as emergency plan. The disaster in the plant is possible due to collapse of structures and fire/explosion etc. The proposed project would formulate safety policy keeping in view the safety requirement during the construction, operation and maintenance phases, with the following regulations:

- To allocate sufficient resources to maintain safe and healthy conditions of work;
- To take steps to ensure that all known safety factors are taken into account in the design, construction, operation and maintenance of plants, machinery and equipment;
- To ensure that adequate safety instructions are given to all employees;
- To provide wherever necessary protective equipment, safety appliances and clothing and to ensure their proper use;
- To inform employees about materials, equipment or processes used in their work which are known to be potentially hazardous to health or safety;
- To keep all operations and methods of work under regular review for making necessary changes from the point of view of safety in the light of experience and up to date knowledge;
- To provide appropriate facilities for first aid and prompt treatment of injuries and illness at work;
- To provide appropriate instruction, training, retraining and supervision to employees in health and safety, first aid and to ensure that adequate publicity is given to these matters;
- To ensure proper implementation of fire prevention methods and an appropriate fire fighting service together with training facilities for personnel involved in this service;
- To organize collection, analysis and presentation of data on accident, sickness and incident involving people injury or injury to health with a view to take corrective, remedial and preventive action;
- To promote through the established machinery, joint consultation in health and safety matters to ensure effective participation by all employees;
- To publish/notify regulations, instructions and notices in the common language of employees;

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- To prepare separate safety rules for each type of occupation/processes involved in a plant; and
- To ensure regular safety inspection by a competent person at suitable intervals of all buildings, equipments, work places and operations.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Chapter – 7 Project Benefits

7.1 GENERAL

The proposed project is an expansion project proposed by Atul Ltd, which is an integrated chemical company manufacturing about 1350 products and formulations serving about 4000 customers across the globe. The proposed expansion envisages a new 22 MW CPP to meet the power and steam requirements of the additional production capacity of Atul. Atul Limited is a member of Lalbhai Group, one of the oldest business houses of India, with interests mainly in textiles and chemicals. Atul's registered office is in Ahmedabad whereas its corporate headquarters are located in Atul, Gujarat. Atul has grown into a diversified chemical conglomerate, with about 1,350 products and formulations with 13 subsidiary and associate companies.

The Group is strongly committed to serve the society in the fields of education, health as well as culture. Atul foundation is serving the society in fields of conservation, education, empowerment, infrastructure, health and relief.

7.2 IMPROVEMENTS IN THE PHYSICAL & SOCIAL INFRASTRUCTURE

Atul has always engaged its efforts in social welfare activities & programs. It directly organizes various programs for social welfare & upliftment or indirectly contributes in such activities conducted by other organizations by providing financial & other aid. It is committed to contribute in social welfare & upliftment activities on regular basis. Atul will continue such activities to fulfill the requirements of its social responsibility under CSR Programs. The proponent is committed to fostering sustainable socio-economic upliftment in the lives of the under privileged through relevant interventions mainly through six programs namely: education, empowerment, health, relief, conservation and infrastructure.

For the past year 2014-2015, the proponent had allocated a budget of Rs. 3.94 crores for CSR activities and spent the same for activities identified under the following areas:

- Education
- Empowerment
- Health
- Relief
- Conservation
- Infrastructure

EXPANSION IN EXISTING CAPTIVE POWER PLANT

The following activities were carried out by the proponent for upliftment of the surrounding community:

Program	Projects I Activities	Village/Town/City	Amount (Rs. Crores)
Education	Institutionalizing best in class education practices in <i>Kalyani</i> <i>Shala</i>	Atul	0.50
	Enhancing quality of education in <i>Ashramshala</i>	Balda	0.03
Empowerment	Bringing disadvantaged communities into mainstream by skill development through Atul Institute of Vocational Excellence (AIVE)	Dharampur	0.21
Health	Providing quality health care through Atul Medical Diagnostic Centre	Atul	2.29
	Constructing amenity blocks	6 villages	0.10
Conservation	Supporting biogas project	Mount Abu	0.03
Infrastructure	Supporting gas based cremation facilities	Atul	0.05
Others	Rural development Sports promotion	23 villages Valsad, Mumbai	0.65
Total expenditure		·	3.86
Administrative overh	eads		0.09
Total (Direct + Overl	neads)		3.95

EXPANSION IN EXISTING CAPTIVE POWER PLANT

7.2.1 Education: Activities related to educational infrastructure were carried out in the following

institutes:

- Schools
 - Atul Vidyalaya
 - Atul Vidyamandir
 - Kalyani Shala
- Ashramshalas

	Institute	No of beneficiaries			
No		2014-15 (currently on rolls)	Cumulative (passed out)		
1	Atul Vidyalaya	1,112	1,288		
2	Atul Vidyamandir	299	351		
3	Kalyani Shala	1,750	9,490		
No o	of beneficiaries	3,161	11,129		

Atul Vidyalaya

Atul Vidyamandir

Chattralaya, Mama Bhacha

Kalyani Shala

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

7.2.2 Empowerment:

- Vocational training- I (<1 year)
 - Atul Institute of Vocational Excellence
 - Atul Rural Development Fund
- Vocational training- II (>1 year)
 - Atul ITI, Khergam
 - Atul ITI, Sagbara

No	Course	No of beneficiaries			
INO		2014-15	Cumulative		
01	Sewing and stitching (W)	349	1,784		
02	Data entry operation	353	1,239		
03	Soft toys making (W)	56	656		
04	Chemical (Process I Instruments)	30	159		
05	Electrical	57	124		
06	Hardware maintenance	40	114		
07	Food and nutrition (W)	86	86		
08	Welding	33	80		
09	Mobile repairing	19	52		
10	Micro entrepreneurship development (W)	46	46		
11	Plumbing I Masonry	0	46		
12	Beauty and styling (W)	12	12		
No o	f beneficiaries	1,081	4,398		

***W: women empowerment course**

Sewing and stitching

Soft toys making

Computer repairing

Masonry

Safety

Sewing and stitching

EXPANSION IN EXISTING CAPTIVE POWER PLANT

7.2.3 Health:

- Eye camps
- Blood donation camps
- Medical camps
- Atul Club
- Atul Medical Diagnostic Centre (under construction)

NT		No of	camps	No of beneficiaries		
No	Particulars	2014-15	Cumulative	2014-15	Cumulative	
1	Eye camps*	8	138	2,890	50,890	
2	Blood donation camps*	11	191	1,492	35,492	
3	Mega medical camps*	1	21	2,000	22,000	
4	Medical camps*	2	22	667	7,667	
No of beneficiaries				7,049	1,16,049	

* in collaboration with different NGOs

EXPANSION IN EXISTING CAPTIVE POWER PLANT

7.2.4 Conservation:

- Floras
 - Plantation of trees (70,000 in 2014-15)
- Bio-diversity
 - Migratory birds
- Other initiatives
 - Biogas plant

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

7.2.5 Infrastructure:

- Amenity blocks
- Community assets
- Electrification
- Roads

Construction of amenity blocks was carried out in 6 villages. Construction, repairing of schools and building up of civic amenities in nearby villages. For improvement in domestic spheres and communal bonding, community kitchen sheds were constructed. For economic assistance to the farmer community, farm kit and subsidized fertilizers were distributed to the farmers. Supporting/financial aid for gas based cremation facilities. Improvement in dining facility for home for differently abled children.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CSR ACTIVITIES CARRIED OUT IN THE YEAR 2014-15:

- Construction of individual toilets for families in Atul, Haria village and Atar village (26 nos).
- Making paver block based roads in Umersadi Machhivad village.
- Supply of drinking water to Atul and Haria village.
- Project partner in construction of a gas based cremation facilities at Atul. This will substantially reduce use of wood for cremation.
- Infrastructure development work in Kalyani School.
- Facilitating bio gas project at Bhamahakumaris at Mount Abu.
- Skill development programme/vocational training in 12 different courses. This is for empowerment of rural youth and women.
- Promoting sports in surrounding area.
- Various rural development programme in health, education and infrastructure development in 23 villages.
- Plantation of 70000 trees during the year.

CSR ACTIVITIES CARRIED OUT IN THE YEAR 2015-16:

- Construction of approximately 600 no of toilets in 6 surrounding villages.
- Construction of a medical diagnostic centre in Atul village for providing quality health care.
- Making paver based roads in Haria and Bhagod Village
- Constructing a prayer room in Haria village.
- Installing railing over 3 culverts in Haria village.
- Constructing one Aaganvadi and major repairs to Gram Panchayat building in Bhagod village.
- Providing street light fittings in Bhagod village.
- Substantially improving educational facilities in Kalyani School.
- Continuing existing skill development programme and expanding the same on completion of a full fledged vocational excellence centre at Dharampur. Also adopting ITI at Khergam and Sagbara

EXPANSION IN EXISTING CAPTIVE POWER PLANT

FUTURE PLAN:

After the proposed expansion, the company has allocated some budget for CSR activities, which shall lead to improved social infrastructure has decided to allocate Rs. 6.35 crores towards the Social welfare program based on locals need. Moreover, employment to approx. 10-20 additional people is directly benefited.

The future CSR Plan prepared by the company is as follows:

Program	Projects/Activities	Budget* (`cr)	Implementing Agency	Timeline
Education	Institutionalizing best in class education practices in <i>Kalyani Shala</i>	1.00	AKM**	Dec 15
Empowerment	Bringing disadvantaged communities into mainstream by skill development through Atul Institute of Vocational Excellence	1.00	ARDF***	Dec 15
Health	Constructing amenity blocks	0.90	ARDF	Sep 15
	Providing quality health care through Atul Medical Diagnostic Centre	2.00	ARDF	Feb 16
Infrastructure	Rural development	0.75	ARDF	Feb 16
Others	Projects specified by Govt I PPP I seed money for incubating innovative ideas I upgradation of skills	0.50		
Others	Overheads	0.20		
Total		6.35		

* subject to revision

** Atul Kelavani Mandal

*** Atul Rural Development Fund

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER-8 ENVIRONMENTAL MANAGEMENT PLAN

8.1 ENVIRONMENTAL MANAGEMENT SYSTEMS (EMS)

The Environmental Management Plan (EMP) constitutes an important part of the EIA report. The main purpose of the Environmental Management Plan (EMP) is to identify project specific actions that will be undertaken by the project authority for mitigation of the specific impacts identified for the proposed expansion project. EMP ensures an effective implementation methodology and alternatives for mitigation measures planned / recommended to reduce or eliminate the adverse impacts to maximum possible extent during the operation of the project. These actions will be incorporated into project management system and integrated into the implementation at various stages of project development. The EMP describes both generic good practice measures and site specific measures, the implementation of which is aimed at mitigating potential impacts associated with the expansion activity.

A. OBJECTIVES AND TARGETS:

An effective EMP ensures that these environmental requirements and objectives are satisfied during all phases of project. The long-term objectives of the EMP for all the environmental attributes are as under;

- To comply with all the regulations / applicable laws stipulated by Central & State Pollution Control Boards.
- To remediate wastewater, hazardous waste and air emissions posing adverse impacts on the environment by installing adequate pollution control technology and equipments.
- To create good working conditions for employees by implementing mitigation/control measures for Occupational Health and Safety and by improving condition of workplace environment.
- To streamline environmental activities to add value in efficiency and effectiveness.
- To encourage and achieve highest performance and response from individual employees and contractors.
- To plan out the complete strategy to take care of stakeholder engagement.
- To make budgetary provision and allocate funds for environment management system and to ensure timely revision of budgetary provisions.
- To encourage, support and conduct developmental works for the purpose of achieving environmental standards and to improve methods of environment management.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- To implement and ensure effective implementation of Planned Mitigations including R&D program for innovative technologies for better environment, resource conservation/recovery/recycling/reuse especially to promote waste utilization and wastewater recycling/reuse.
- Continuous development and search for innovative technologies for a cleaner and better environment.
- To contribute significantly for sustainable development.

8.2 SUMMARY OF ANTICIPATED ENVIRONMENTAL IMPACTS

A detailed study for the identification & prediction of anticipated environmental impacts of the proposed expansion project was carried out and the outcomes of the study are described in earlier Chapter-4. The major impacts which require mitigation measures to protect the environmental health are further considered for formulation of this "Environmental Management Plan (EMP)". The summarized list of the major impacts considered for EMP is illustrated below.

Impacts on Land Environment

- Land use/ Land cover change due to construction activity and clearance of vegetation at the project site.
- Disposal of construction waste.
- Contamination of land due to Solid waste/Hazardous waste during the construction phase as well as the operation phase.
- Contamination of land due to disposal of untreated effluent and sewage during the construction & operation phase.

Impacts on Air Environment

- Air pollution due to site preparation works as well as air borne construction materials during construction phase.
- Air pollution from transportation vehicles during the construction & operation Phase.
- Air pollution due to stationary emissions from stacks and fugitive emissions from coal/lignite & fly ash handling during the operation phase.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Impacts on Water Environment

- Water pollution due to runoff from construction site containing soil particles & construction materials.
- Impacts on water resources due to abstraction to meet the water requirement of the proposed expansion.
- Water pollution due to disposal of untreated sewage during the construction & operation phase.
- Water pollution due to disposal of untreated effluent during the construction & operation phase.

Impacts on Noise Environment

- Impacts due to noise generation by transportation activities during construction & operation phase.
- Noise generation from construction works.
- Noise generation during operation phase due to working of boiler and auxiliary equipments.

Impacts on Ecological Environment

- Impacts due to site preparation activities.
- Impacts on flora & fauna of the nearby area.
- Direct & Indirect impacts on vegetation due to disposal of untreated sewage/effluent as well as process and flue gas emissions

8.3 ENVIRONMENTAL MANAGEMENT PLAN

8.3.1 Air Environment

a. Construction Phase

Potential sources of air pollution during the construction phase are (i) dust emissions from vehicle movement on unpaved roads, and (ii) exhaust emissions from diesel generators, heavy construction equipments and vehicles (iii) Air borne construction material. These impacts on air quality will be minimized through following mitigation measures:

- Dust suppression by regularly spraying water on roads and work sites shall be practiced.
- Wetting or covering stockpiles, the proper location of material stockpiles and enclosed trucks during transportation of material shall be ensured.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Use of low-emission vehicles and wherever feasible, construction equipments powered by electricity shall be preferred.
- Maintenance of engines and use of vehicles with PUC Certificates. Contractors will be required to strictly implement these measures.
- Engines of idle vehicle machineries/equipments shall be turned off.
- Regular inspection for efficient implementation of mitigation measures shall be done.

b. Operation Phase

Fugitive emissions will be generated due to the handling of coal and fly ash during operation. On-going emissions from Hot oil Unit, Coal fired boilers & Thermic Fluid Heater are the main source of air pollution. In addition to these existing sources, emissions from proposed utilities will also be considerable. The proponent has already provided necessary mitigation measures in existing stacks as a part of its existing environmental management system. Appropriate EMP shall also be provided with proposed additional stacks.

EMP for Stationary Emission:

- Stacks of adequate height & internal diameter are provided for efficient dispersion of emission from existing & shall be provided for the proposed CPP also.
- Sampling port & monitoring point are provided at all stacks and shall be provided at the proposed boiler stacks also.
- Sulphur capture system with ESP will be used as air pollution control device for 50 TPH boilers. After commissioning of 22 MW CPP, existing Coal fired boilers (W1&W2) shall be discontinued.
- Sulphur capture system with high efficiency ESP will be used as air pollution control device for controlling fly ash generated from proposed boilers.
- Optimum air-fuel ratio (AFR) in the CPP shall be ensured throughout operation period.
- In order to carry out efficient dispersion of gaseous pollutants, desired velocity of emission shall been ensured through proper functioning of FD/ID fans.
- Regular monitoring shall be done as per the Environmental Monitoring Plan for checking the efficiency of control equipments.
- Provision for adequate process safety controls,
- Additional greenbelt of 1420 m² coverage around the proposed CPP
- Provision of online monitoring system with proposed stacks.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

EMP for Fugitive Emission for dust suppression:

- After proposed expansion, additional quantity of coal and lignite shall be stored in closed storage area.
- Adequate additional sprinkling system, firefighting arrangements & adequate ventilation shall be provided.
- Dust collection system, Magnetic separator and dust ventilation is being/will be provided to control of fugitive dust emissions during screening & coal crushing.
- Coal shall be conveyed through closed conveyor belt.
- The ash will be transferred directly from the ESP to storage silos through a closed conveying system and controlled by PLC system.
- Internal approach roads up till the new CPP area shall be constructed from concrete/asphalt for prevention of dust during vehicular movement.
- Work place monitoring for AAQM shall be done as per 'Post project monitoring plan' as well as regulatory requirement as per Factory Act.
- Proper implementation of safety procedures and efficient use of safety arrangements, facilities & equipments shall be ensured at all times to prevent accidental release of materials & fuels as well as to prevent fire hazard.
- Ash from silos shall be transferred in transport vehicles directly with efficient arrangement to prevent dusting or air borne particulates.
- Use of vehicles with PUC shall be made compulsory for transportation vehicles.

Existing water sprinkling facility:

1	No of sprinklers	60 nos. of sprinklers
2	Pipe Diameter	1" Diameter
3	Nozzle Diameter	0.3" Diameter
4	Quantity of water Consumption	10 m ³ /week

Additional numbers of sprinklers with adequate diameter shall be provided within proposed CPP area.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.3.2 Water Environment

The additional water requirement for proposed expansion will be fulfilled by existing source i.e. Par River during the construction as well as operation phase. The unit has already obtained permission from irrigation department, which accommodates additional water requirement for proposed CPP expansion.

a. Construction

- Water requirement during the construction phase will be fulfilled by the existing source. No extraction of water shall be done from the groundwater resources for the construction activity.
- Further the proponent shall ensure to implement good operation practices to minimize the use of water, so as to reduce the depletion of water resource to maximum possible extent.
- Proper drinking water facility of existing plant & existing sanitation facility of unit will be made available to the construction workers.
- Due care shall be taken to avoid formation of stagnant pools, which may cause damage to the aesthetic condition as well as other environmental & socioeconomic factors.

b. Operation Phase

During the operation phase, total water requirement on 100% existing production load is 22,569 KLD (21,632 KLD for Industrial purpose + 937 KLD for domestic purpose). Water requirement for existing CPP is 3,905 KLD and additional 2,094 KLD water will be required for proposed expansion. Additional 1 KLD water will be required for additional man power generated due to proposed expansion.

Existing wastewater generated from process and existing CPP is 19,873 KLD, which is treated in fullfledged existing Effluent Treatment Plant (ETP) of 20 MLD capacity. The final treated effluent from the ETP confirming the GPCB norms is collected in guard pond and then discharged through closed pipeline to estuary zone of River Par via diffuser system.

Additional water requirement for proposed expansion will be 2,095 KLD (2,094 KLD industrial + 1 KLD domestic). Additional wastewater generated from proposed expansion will be 270 KLD and sewage generation will be 1 KLD.

Additional sewage will be treated in existing septic tank/ soak pit system. After the proposed expansion, wastewater generation from utilities i. e. Pretreatment plant for water, blow down from boilers & cooling tower, condensate from turbine etc will be collected in a collection sump of 1,500 KL capacity & having

EXPANSION IN EXISTING CAPTIVE POWER PLANT

TDS in range 400-500 ppm and it will be same as raw water. This wastewater will be used for ash quenching & dust suppression and fire hydrant make up.

Hence, no additional load will be generated to existing ETP from proposed expansion.

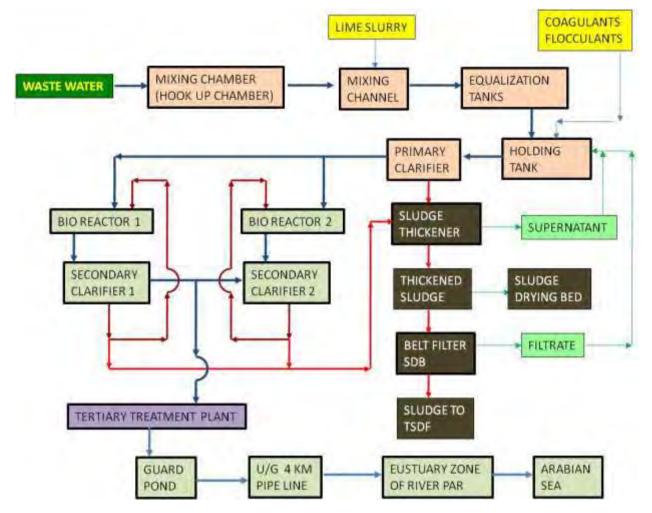
Further, water conservation through rainwater harvesting is already carried out by proponent, which helps to reduce fresh water demand from supply sources during monsoon.

Quality of Raw water:

No.	Parameters	Unit	Raw water	Final collected water
1.	pН	pH unit	7.0 – 7.5	6.5-8.5
2.	Color	Pt.Co, Scale	<5	<5
3.	Total Suspended Solids	mg/L	10-20	15-25
4	Total Dissolved Solids	mg/L	192-300	350-500
5	COD	mg/L	4-10	18-24
6	BOD	mg/L	2-4	4-6
7	Oil and Grease	mg/L	<1.0	<1.0
8	Phenolic compound	mg/L	<0.001	<0.001
9	Ammoniacal Nitrogen	mg/L	1-5	3-10
10	Hexavalent Chromium	mg/L	<0.003	<0.003
11	Sulphide	mg/L	<0.1	<0.1
12	Chloride	mg/L	20-50	35-50
13	Sulphate	mg/L	8-15	20-40
14	Iron	mg/L	0.05-0.2	0.1-0.3
15	Total Chromium	mg/L	0.003-0.01	0.01-0.03
16	Zinc	mg/L	<0.022	<0.1

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Existing Effluent Treatment Plant Units:


Sr. No.	Description	Dimension (m)	Capacity (m ³)	Retention Time (hr)
1.	Lime House	NA	400 MT	
2.	Hook-up Chamber		28	
3.	Equalization tank (P1)	20.00 x 42.05 x 2.05 SWD	1725	2.07
4.	Equalization tank (P3)	20.03 x 42.00 x 2.05 SWD	1680	2.02
5.	Equalization tank (P4)	(69.95 x 42.05 x 2.00) - (41.0 x 28.2 x 2.0) SWD	3200	3.84
6.	Guard Pond (P2)	70.05 x 42.00 x 4.00 SWD	10000	12.00
7.	C-4 pit	8 x 6 x 1.7 SWD 10 x 8 x 2.0 SWD	160	11.52 min
8.	Turbocirculator	dia. 25 x 4.0 SWD	1964	2.35
9.	Secondary pump pit (C-5)	6 x 5.5 x 4.75 SWD	156	11.23 min
10.	Old Aeration tank (C-6)	20 x 40 x 4.5 SWD	3600	4.40
11.	New Aeration tank	41.0 x 28.2 x 4.5	5000	6.00
12.	Secondary Clarifier (C-7 A)	dia. 26 x 3.05 SWD	1620	1.94
13.	Secondary Clarifier (C-7 B)	dia. 26 x 3.05 SWD	1620	1.94
14.	Pulsator	dia. 22 x 3.85 SWD	1464	1.76
15.	Biosludge pit	4.45 SWD	77	
16.	Sludge thickener	dia.15 x 4 SWD	707	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

EXISTING ETP FLOW DIAGRAM

Equalization: Combined equalization cum neutralization lagoon is provided. A high capacity equalization tank is provided for avoiding shock variation due to large range of products made predominantly following batch processes. This also helps to avoid total plant stoppage in case of minor repairs on ETP.

- Neutralization: This is carried out in neutralization tanks using two stage automatic lime stone powder / lime dosing system with incorporation of pH control instruments.
- Turbo circulator: The equalized and neutralized effluent contains traces of floating oil and suspended matter. Removal of these impurities is essential before the bio treatment step and is carried out in the turbo circulator. Turbo circulator is an efficient settling and skimming device with racking arm and provision of continuous removal of suspended matter and oil & grease. Coagulants and flocculation aids are added to promote destabilization and agglomeration of colloidal particles.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

EXISTING ETP UNITS PHOTOGRAPHS

- Bio Treatment: biological treatment with a capacity to treat 3,600 m³ of effluent based on Activated Sludge Process of Degremont. They have installed new bio reactor of 5,000 m³ capacity in the system. Both the bio reactors incorporate nutrient dosing and high-speed aeration with efficient "Degremont Activator" type surface aerator. Overflow from aeration tank is transferred by gravity to two static circular clarifiers of capacity 1,620 m³ with bottom sludge racking as well as surface skimming device. Sludge is pumped for recirculation of biomass to aeration tank and removal of excess sludge for de-watering, in thickener.
- Tertiary Physico Chemical Treatment: Bio treated effluent can be subjected to tertiary Physico chemical treatment comprising of a sludge blanket clarifier of specially designed "Degremont Pulsator". Coagulants and flocculation aids are added to promote destabilization and agglomeration of colloidal particles. This helps in further reduction of BOD/COD values by separating additional sludge and polishing the effluent. The sludge separated in Pulsator also goes to thickener by a pump.
- Sludge disposal treatment: Sludge separated at Turbocirculator, Bio-settling tank and Pulsator is fed to Degremont static Thickener equipped with sludge concentrating racking arm and then taken for dewatering to the Belt filter press in addition to the seven Sludge drying beds. This biological sludge is partly used for trials as a plant growth nutrient and the balance quantity is currently stored along with hazardous waste.
- Guard pond: Tertiary treated effluent from flow measuring Parshall Flume is received in a Guard Pond of capacity 10,000 m³. This can accommodate nearly 12 hr of treated effluent considering the industrial effluent.
- Treated waste water discharge: The 4 km long pipeline for discharge of treated effluent through a diffuser system into estuary zone of River Par.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

General Measures for minimizing water impacts:

- Regular monitoring of water, wastewater shall be done as per the monitoring schedule planned as a part of Environmental Monitoring Plan.
- Optimization of COC in cooling system will be done
- Efficient arrangement & designing of recycling system for recycling/reuse of treated wastewater
- Reduction of water consumption by 100% utilization of wastewater for dust suppression, Ash quenching and gardening.
- Maintaining records of water consumption and wastewater generation records.
- Maintenance of good housekeeping to avoid contamination of storm water.

8.3.3 Land Environment & Solid/Hazardous Waste Management

a. Construction Phase

- The major problem will be disposal of excess excavated earth generated during construction phase which shall be well handled by landfills to level the low lying areas.
- Reuse of construction waste for PCC works, development of roads and misc. filling for construction works.
- Use of excavated soil for landscaping & gardening/greenbelt development
- Storage & handling of construction materials shall be done properly to avoid spillage or leakage.
- Vegetation clearance shall not be a major issue as the proposed expansion will be carried out in the existing premises using spare land.
- Further, the proponent has planned to develop additional Green Belt Area within the premises, which shall prove to be beneficial from all aspects and shall effectively compensate the minor impacts.

b. Operation Phase

- A separate designated storage area shall be provided with sign boards/labels for each category of hazardous waste.
- Handling & transportation facility for Hazardous waste shall be provided.
- Storage silos will be provided for fly ash.
- Closed conveyor belt shall be provided for coal transfer.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Provision of well designed, properly lined and enclosed storage area for materials having direct or indirect potential of land contamination.
- Proper storage of hazardous waste in their designated storage area. Used oil in well labelled drums, discarded containers in storage room etc.
- Transportation of hazardous waste to the own landfill site as per the guidelines.
- Regular training of employees engaged in solid waste management works.
- 100% utilization of ash by own brick manufacturing unit /cement manufacturing industry.(MOU is enclosed)

8.3.4 Biological Environment

a. Construction phase

As discussed earlier, the proposed expansion will be carried out within the existing premises of Atul and there is no ecological sensitive area within 10 km radius of the project site. Hence, the proposed project would not have any direct impacts on the ecological environment during the construction phase. Therefore, no major mitigation measures are required for the construction phase. Besides, it is also planned to develop additional greenbelt area in & around the proposed CPP during the construction phase, which will slightly improve the ecological status of the project site.

The following measures shall be implemented during the construction phase:

- Proper arrangement for materials storage & handling to prevent emissions from construction site/ operation area.
- Water sprinkling in the area under construction site.
- The construction workers shall be instructed to minimize the clearing area to the possible extent.
- All necessary structural mitigation measures suggested/planned for control of air & water pollution.

b. Operation phase

During the operation of the proposed expansion, no major harm will be caused to the ecology as there will be no major source of pollution after implementation of mitigation measures for pollution control using necessary technology/method/system, Moreover there is no ecologically sensitive area is found within 10 km radius.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Further, the additional greenbelt in the project area shall improve the existing ecological condition of the area. Thus no special mitigation measures are required for ecology conservation during the operation phase. However, as it is noticed that the greenbelt development will improve the ecological condition of the area, following care shall be taken as mitigation measures.

- Management shall ensure that all possible efforts are being made to maintain healthy greenbelt developed in & around the plot area.
- The management shall provide all necessary materials/requisites for development, maintenance & protection of the greenbelt.
- Regular irrigation, fertilization & pest control program shall be a part of routine activity during the operation phase.
- The upbringing of Green Belt will prove to be an ideal dwelling place for many avifauna and terrestrial fauna, hence care shall be taken to avoid any harm to the faunal community being settled in the greenbelt.
- Regular records of greenbelt development activities with necessary statistics shall be maintained.

8.3.5 Noise Environment

a. Construction phase

- Management shall ensure that no hazard is caused due to noise generation during the course of work. For this purpose the management shall ensure that the workers are provided with individual protective equipments like ear muffs or ear plugs in areas with high exposure to noise.
- Further, it shall also be ensured to carry out periodic and regular maintenance of the equipments machines and spare parts which shall include lubrication, replacement of defective parts etc. in order to bring down the decibel of noise to maximum possible extent.
- Noise generation due to movement/operation of vehicles & equipment/ machineries shall be well managed by restricting the movement/operation during night hours.
- Regular lubrication & preventive maintenance shall be done to reduce noise generation.

b. Operation phase

• Noise generating equipments like pumps, motors, compressors, blowers, turbine/engines, power generator sets/ engines etc. shall be mounted on sturdy concrete foundations with proper & suitable rubber padding to reduce vibrations & thereby noise generation.

- The major noise producing equipments such as turbine will be provided with sound proof container. Pumps, fans, compressor, etc. will be statically and dynamically balanced.
- Acoustic enclosure for DG set and similar provision like noise attenuator wherever suitable/possible.
- Safety blow off valves, discharge pipes, relief valves, etc. will be equipped with silencers.
- Adequate greenbelt shall be developed and maintained around high noise generating area as well as plant premises to help in attenuation of noise.
- Silencers for Boilers & Turbine shall be provided &/or attached with various noise generating parts of boiler & turbine.
- Regular lubrication & preventive maintenance shall be done to reduce vibration & noise generation.
- Use of PPE like ear plugs and ear muffs is made compulsory near the high noise generating machines.
- Moreover, the personnel are provided breaks in their working hours, with the continuous exposure not increasing three (3) hours.
- All vehicles shall maintain speed limit inside the premises and unusual acceleration of engine & loud horns shall be prohibited.
- Periodic monitoring of noise levels as per post-project monitoring plan shall be done on regular basis.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.3.6 Occupational Health, Safety & House Keeping

Construction Phase

Occupational health & safety of workers & employs will be the prime focus of the proponent. Occupational health & safety of the construction workers shall be ensured by implementing the following measures:

- The management shall ensure that all workers/employees are provided with basic Personnel Protective Equipments (PPEs) like ear plug/muff, safety helmet, face mask, safety gloves, safety goggles, safety shoes etc.
- The management shall also ensure that the quality of these PPEs is properly checked before providing to the workers. It shall also be ensured that all the safety equipments are placed properly and are available instantaneously when required.
- Management shall also ensure to have safety and first aid facility for the workers/employees engaged in the working of the plant in order to provide them with necessary treatments in case of accidental mishaps or their health breakdown.
- Necessary training shall be imparted to the required workers/ employees in various aspects, viz. handling of the materials, precautionary measures to be taken while working, how to use the safety equipments, etc. so as to make all the workers literate, thus minimizing the chances of any accidental mishaps.
- Proper care shall be taken to provide the migrant labourers with clean hygienic residence accompanied by basic amenities like drinking water, sanitation, etc.
- Arrangements for medical facilities shall also be made in case of any disturbance in health during the course of work.

Operation Phase

The company is very much concerned in terms of health, safety and environment protection. Atul's commitment towards safety can be reflected from its 'Health, Safety & Environment Policy' prepared for the existing project.

Atul also has a **Department of Health (DoH)** for regular checking health of the employee regular checking health of the employees and medical aid. Annual health check for employees is carried out and record is maintained. (Record are attached as **Annexure-9**) Regular training to plant personnel in safety

EXPANSION IN EXISTING CAPTIVE POWER PLANT

firefighting and first aid is also provided. The following facilities are provided at the Department of

Health (DoH) at ATUL LTD

Medical Centers:

- DoH Main (Department of Health) within Atul complex
- OHC (Occupational Health Centre, 24x7) within Factory premises.

Scope of Services:

- Primary healthcare for employee & family
- Occupational healthcare
- Health monitoring
- Employee health check-ups
- EMS (Emergency) 24x7
- AOD (Accident on duty) management 24x7
- OHC services 24x7
- Medical Laboratory
- Referrals

Systems & facilities available:

- HMIS (Hospital management & information systems)
- Office automation
- ECG machine (two)
- Multipara Monitor with O2 Saturation (one)
- Finger pulse oximeter (one)
- Glucometer (two)
- Otoscope cum Ophthalmoscope (one)
- AED (automated external defibrillator) (one)
- Suction machine (two)
- Fully automated biochemistry analyzer (one)
- Fully automated hematology analyzer (5-part) (one)
- Automated Centrifuge (two)
- Microscopes (two)
- Blood Roller Mixers (two), Pipettes & Other Lab accessories
- Needle cutters (three)
- Oxygen cylinders (ten)
- Ambulance van with stretcher (two)
- Emergency observation beds (five)
- Medical assistance/aid visit bag (two)
- Dr Consultation equipment
- Antidotes as applicable
- First aid boxes as required

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Manpower:

- Full-time Drs Three (residing in campus)
- Contract Dr One (Medical Advisor)(residing at Valsad)
- Lab Technician One
- Nurse One (Male)
- Medical Assistants Five (Male)

Software Use:

• On line software for health monitoring and medical history for all employees

EXPANSION IN EXISTING CAPTIVE POWER PLANT

PHOTOGRAPHS OF ONSITE MOCK DRILL

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Until now, no major accident has taken Place in the existing unit. Thus from the previous performance of the company, same dedication is to be continued for the proposed expansion project. To maintain high standards in Health, Safety and Environment; various activities are undertaken at the site. Similar practice will be followed after the proposed expansion.

The following key safety measures are implemented in the existing plant and the same shall be a part of proposed expansion project:

- 1. Safety Training is provided to the employees.
- 2. Safety Sirens with Alarm System in case of emergency are provided.
- 3. Emergency Control Room is established.
- 4. Assembly point are defined for safe gathering of the employees during the times of emergency.
- 5. Fire Hydrant System is installed.
- 6. Fire Extinguishers are provided.
- 7. Mock drills are periodically conducted and factors like response time are evaluated.
- 8. Fire squad team is formed for handling any emergency situation & regular training of squad team is conducted.
- 9. First Aid Facility and training are provided.
- 10. Personal protective gears and equipments are provided to employees.
- 11. Health checkups are organized at regular intervals.
- 12. Safety / Health records and MSDS are maintained.

Do's & Don'ts of preventive maintenance

Do's:

- o Store fuel and hazardous waste in isolated space
- o Self-breathing apparatus always keep ready to meet any emergency
- o Always use personal protective apparatus
- o Covered confine area by personnel enclosure,
- o Immediately report leaks, spills or failures of the engineering controls.
- Post "NO SMOKING" signs in certain area

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Don'ts

- Without PPE, don't enter in hazard prone area.
- Do not take any flammable material inside the fuel storage area.
- o Don't be haste and careless. This cause many accidents
- o Don't allow combustibles to accumulate in your work area

Housekeeping

Proper housekeeping is an essential part of sound environmental management. It will be rigorously seen that there is no accumulation of wastes, especially combustible wastes inside the plant area.

In summer, dry grasses & vegetation growing inside the plant area will be cut and removed. All firefighting equipments and warning devices will be kept in perfect working conditions at all the times. It will be seen that all personnel are aware of the implications of environmental pollution and simple practices to avoid pollution.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.4 CLEANER PRODUCTION

8.4.1 Energy Conservation

The energy conservation action for the existing unit as well as the proposed project activity aims at reducing wastage of power as well as fuel. Proponent has already planned & implemented many comprehensively designed actions for energy conservation as their daily routine for the existing production & allied operations. Similar action for energy conservation is planned for the proposed expansion. The major actions planned for energy conservation are listed below.

- Atul shall train and educate employees in areas of energy conservation.
- Atul shall carry regular internal and external audits to identify areas for improvement. Energy audit shall be used as a tool for monitoring purpose.
- Energy efficient machineries will be used during the construction and operation phase as far as possible.
- Enough care will be taken to prevent/minimize energy losses at each stage.
- External lights shall be controlled through timers for auto on/off function based on timings.
- Automated day light control.
- Replacement of conventional lighting fixtures by more energy efficient fittings.
- Periodic monitoring of unit/plant/department wise for energy consumption.
- Preparing annual energy activity plan.

Company shall explore possibility of harnessing solar energy for various infrastructure operations. Unit will also use of Energy Efficient Lighting, Transformers, Use of Energy Efficient Motors, Electrical Appliances to minimize the energy consumption.

8.4.2 Resource Recycle/ Recovery

Recycling of all additional wastewater for dust suppression, ash quenching and fire hydrant make up purpose.

8.4.3 Waste Recycling & Reuse

In existing practices, the non-hazardous wastes like Fly Ash is being recycled by selling it to the brick manufacturers (Ambuja cement, Surat) or use in own brick manufacturing unit. Same practice shall be

EXPANSION IN EXISTING CAPTIVE POWER PLANT

followed after the proposed expansion. Hence, the existing & proposed plan for recycling/reuse of solid wastes is reducing /will reduce the overall impacts on environment.

8.5 TRAFFIC MANAGEMENT PLAN

For the proposed expansion, the only raw materials to be transported outside the factory premises are Coal, lignite & fly ash. These will be transported from railway siding of Atul through roadways by means of trucks. According to the proposed requirement of materials, average 38 trucks are envisaged on a daily basis. The material is transported through rail till Atul railway station which is at an approx. distance of 2 km from the project site. From here, the materials are brought to the site by means of roadways through trucks.

As, discussed earlier, Atul has a good network of internal peripheral roads in the plots for the safety and access requirements to various buildings and yards. Moreover, the project site is having all necessary infrastructure facilities. The access roads to the plant premises are well developed and maintained throughout the year. Valsad is the nearest city situated from the project site which is well connected by road, rail and air to rest of India.

The EMP for traffic management is presented in the following table:

Traffic Management Plan	
-------------------------	--

Objective	To ensure that there is smooth traffic within and outside the facility for the duration of the construction phase and operation phase						
Concern	Trucks, tankers and other vehicles may cause traffic jam outside and within the premises.						
Impacting	Mitigation		Measures for management				
activity	measures	Location	Timing	Responsibility	Monitoring		
Vehicular movement	Controlled vehicular movement (preferably with clearly	Within and immediately outside the site	Construction & operation phase	Contractor/ Project Manager during construction phase. Security and concerned	Security-in charge and security team		

		Γ		1
demarcated			departments during	
entry/exit)			operation phase.	
with				
adequate				
supervision				
Demarcation	Within the	Construction	Contractor/ Project	Security
of separate	site	& operation	Manager during	team
vehicular		phase	construction phase.	
lanes and			Security and	
pedestrian			concerned	
routes			departments during	
			operation phase.	
			operation phase.	
Vehicle	Within and	Construction	Contractor/ Project	Security-in
entry and	immediately	& operation	Manager during	charge and
exit	outside the	phase	construction phase.	security
scheduling	side		Security and	team
so that traffic			concerned head of	
congestion is			department during	
not created			operation phase.	
on the				
external road				
leading to				
the site				
	1	1	1	I

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.6 GREENBELT DEVELOPMENT PLAN

The plan for attenuation of the noise and air pollutant level includes design for greenbelt/plantation around plant boundary, roadside, office buildings and stretches of open land. The vegetation for the attenuation of air pollution shall be most needed in the areas where ground level concentrations of the pollutant are likely to be high. The main objective of green belt development is to provide a barrier between the source of pollution and the surrounding area. The greenbelt helps to capture the fugitive emission and to attenuate the noise generated apart from improving the aesthetics. Development of green belt shall also prevent soil erosion and washing away of the topsoil besides helping in stabilizing the functional ecosystem, make the climate more conducive and restore water balance.

Area covers for green belt development:

Description	Total Area m ²
Existing Greenbelt for CPP area	16,500
Proposed greenbelt near CPP area	1,420
Total	17,920

In addition to this the proponent has carried out plantation of 3,48,300 trees within last five years. Summary of the same is as below:

Summary of Plantation						
Year No. of Plantation						
2010-11	59200					
2011-12	68700					
2012-13	63300					
2013-14	75600					
2014-15	81500					
Grand Total	348300					

ECO CHEM SALES & SERVICES

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

The proponent carries out regular plantation in and around the industrial premises and in the proposed expansion also the proponent has planned to carry out Greenbelt Development & Management.

Photographs of Existing Green belt Area:

Plantation work:

Proponent has already developed 300 acres of greenbelt in and around the Atul complex. Proponent has already developed **16,500** m² of greenbelt near CPP area and additional 1420 m² of greenbelt will be developed in proposed CPP area. In addition to this, afforestation and plantation activities shall be undertaken in all available spaces within the main plant. Afforestation at plant area will be undertaken which will not only act as lung space in the area but will also improve aesthetics.

Multi-layered plantation comprising of medium height trees (7 m to 10 m) and shrubs (5 m height) are proposed for the green belt. In addition to this in future creepers will be planted along the boundary wall to enhance its insulation capacity.

a) Plan for 2015-16

The work plan for the first year, after the start of the project:

- Identification of existing greenbelt species.
- Survey of the area to identify the locations for causality replacement
- Surveillance maintenance and irrigation of the saplings to achieve maximum survival.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

b) Plan for 2016-17

The work plan for the second year

- Identification of locations for planting of new saplings after replacing old dead ones.
- Digging of pits and soil conditioning.
- Planting of saplings (during monsoon season)
- Maintenance and irrigation of species planted earlier
- Plantation of saplings within the premises-around the ETP and along the roads
- Development of lawns and gardens in vacant areas within the premises
- Maintenance and irrigation to achieve a targeted survival rate of 80%.

c) Plan for 2017-18

The work plan for the third year

- Maintenance and irrigation of species planted earlier
- Identification of any remaining area within premises for afforestation and plantation of saplings.
- Development of lawns and gardens in vacant areas within the premises
- Maintenance and irrigation to achieve the targeted rate at 100%.

d) The work plan for subsequent years comprises

- Maintenance of plantation
- Clearing of afforested areas to remove undesirable species
- Replacement of dead and diseased/malformed species with new ones

One such measure to keep the air clean is by using the plants for absorbing and trapping the air pollutants. The hypothesis that trees are important particulate sinks is supported by evidence obtained from studies dealing with diverse particulate including pollen, salt, precipitation, dust and other unspecified particles. So far as gaseous pollutants are concerned, substantial evidence is available to support the fact that plants in general and trees in particular, function as sinks for gaseous pollutants and this is achieved through various physiological processes occurring within the plant system.

The gaseous pollutants are transferred from the atmosphere to the vegetation by the combined forces of diffusion and flowing air movement. Once the gaseous pollutants come in contact with the plants, they may be bound or dissolved on exterior surface or taken up by the plants via stomata. If the surface of the

EXPANSION IN EXISTING CAPTIVE POWER PLANT

plant is wet and if the gas is water soluble, the former process can be very important. As a matter of fact, plants act as bio filters for the air pollutants and play a major role in safeguarding the environment and controlling the increasing level of air and noise pollution.

No.	Common Name
1.	Nilgiri
2.	Mango
3.	Sevin
4.	Khair
5.	Rambaval
6.	Gulmohar
7.	Peltroform
8.	Kajalia
9.	Karanj
10.	Kachnar
11.	Saru
12.	Tulsi
13.	Sadado
14.	Imli
15.	Bamboo
16.	Neem
17.	Agothia
18.	Kaju
19.	Nilgiri
20.	Glaricedia + Croton

List of local tree species for Green Belt Plantation

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.7 DRAINAGE & RAINWATER HARVESTING PLAN

The effectiveness of the drainage system depends on proper cleaning of drainage pipes/channels etc. Regular checking before & during the monsoon shall be done to see that none of the drains/drainage facilities are clogged and are efficient to collect the rainwater under rain water harvesting program. The clogged drains shall be cleaned up immediately on report of any clogging or blockage. This checking and cleaning shall be meticulous during the monsoon season, especially if heavy rains are forecasted.

Atul already carries out rain water harvesting in the existing premises. 128236 m³/year of rain water was collected in Rain water harvesting tank during this year 2013-14 monsoon season. The collected water was transferred to collection tank and reuse in process, which has resulted in decrease in fresh water intake.

Details of the Rainwater Harvesting Plan is described below:

The First rainwater is not allowed to be collected and is discharged as storm water. The second rainwater and subsequent rainwater is conveyed to the Rainwater Collection System. Rainwater falling on all the main shop roofs is transferred to an intermediate collection tank through closed pipes. The rain water is collected in the collection tank and collected water is reused in process. Same practice shall be continued after the proposed expansion.

EXISTING RAIN WATER HARVESTING FACILITY

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Maintenance of the recharging system:

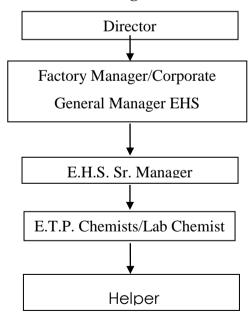
Periodic maintenance is required for reliable and higher quality water supply. During rainy season, the entire system is to be checked before and after rains; and cleaned after every dry period. Before first shower, storage tanks should be cleaned and flushed of all sediments and debris. For the groundwater recharging purpose, only roof top area runoff water will be used. Also, the roof top will be cleaned before monsoon and coarse mesh is used to prevent the debris on the entrance of the water at roof. The first shower should be flushed so that any sediment can be washed away.

8.8 BUDGETARY PROVISIONS FOR EMS:

The total project cost for the proposed expansion will be Rs. 96.82 Crores. The capital cost of environmental control measures, solid waste management facilities and greenbelt development would be Rs. 555 Lacs. The APC, safety measures and other components of the EMP shall be implemented alongwith the commissioning of the proposed expansion. For development of additional greenbelt 5 lacs will be spent. After proposed expansion recurring cost will be Rs. 55.0 Lacs. The Budgetary Provision made for environmental management is illustrated below:

C N-	Destination	INR in Lakhs		
Sr. No.	Particulars	Proposed	Recurring Cost	
1	Environmental Management System (APC, Waste disposal, Environment & Safety training, Other assets/contingency etc)	555.00	55.00	
2	Greenbelt development	5.00		
	TOTAL CAPITAL COST	560.00	55.00	

Table 8.1: Budgetary Provision for Environmental Management



EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.9 ENVIRONMENTAL MANAGEMENT CELL

Atul has already formulated the Environmental Management Division for its existing unit which involves personnel of Plant Level as well as Corporate Level for interaction with technical & statutory bodies to deal with environmental requirements/issues at all level. The same cell shall be responsible for proposed expansion also. Executive Director/Engineer will head the Environmental Management Cell with subordinates involving Environmental Manager, Environmental Engineer, Chemist, Operators, etc. The EMC will be provided with well-equipped laboratory for carrying out analysis of the samples of the water, air etc. The EMC will carry out/oversee the monitoring of the stack emission, noise level, analysis of the water etc. and keep the regional/local statutory body informed about the status of pollution control. Proponent will arrange professional training for personnel of EMC at plant level which shall be provided in area of monitoring and continuous analysis of the pollutants, legal requirement and environmental management system. The EMC will also act to ensure efficient & proper implementation of EMP & mitigation measures suggested for control/prevention of pollution, recycling/reuse of waste & wastewater, conservation of environmental quality, greenbelt and occupational health & safety etc. Conceptually, the Environmental Management Cell has the following organizational structure:

EHS /SH&E Organization Chart

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8.10 UPDATING OF EMP

The periodicity of monitoring is being/will be governed by the directives from statutory authorities and prevailing regulations. The action plan of EMP is being/will be updated every year with respect to the results achieved and to plan activities for the next year.

8.11 IMPLEMENTATION OF EMP AND RESPONSIBILITY

Various measures have been suggested in the EMP for mitigation of impacts. These have to be implemented according to the suggestions and monitored regularly to prevent any lapse. A large part of the sampling and measurement activity will be concerned with long term monitoring aimed at providing an early warning of any undesirable changes or trends in the natural environment that could be associated with the plant facilities. It is the prime responsibility of Head of EMC to ensure that the EMP is implemented & operated efficiently to prevent/control pollution during operational phase of proposed project as well as to improve the environmental health of the area. The head of EMC shall be responsible for reporting any non-compliance to higher authority and stakeholders. It is the responsibility to each personnel of EMC & to ensure that the subordinates function efficiently as per their responsibility to proper implementation of EMP to practice ideal methodology/procedures for prevention /control of pollution as well as improvement of environmental health.

8.12 SOCIAL WELFARE & UPLIFTMENT PLAN

Atul has engaged its efforts in social welfare activities & programs from the very beginning. It directly organizes various programs for social welfare & upliftment or indirectly contributes in such activities conducted by other organizations by providing financial & other aid. Atul is committed to contribute in social welfare & upliftment activities on regular basis. Atul will continue such activities to fulfill the requirements of its social responsibility under CSR Programs.

For the past year 2014-2015, the proponent had allocated a budget of Rs. 3.94 crores for CSR activities and spent the same for activities identified under the following areas:

- Education
- Empowerment
- Health
- Relief
- Conservation
- Infrastructure

ATUL LIMITED EXPANSION IN EXISTING CAPTIVE POWER PLANT

BUDGETARY PROVISIONS FOR CSR:

As a part of the CSR policy, Atul has allocated a budget of Rs. 6.35 Crores towards the Social welfare program based on locals' need, which shall lead to improved social infrastructure.

The future CSR Plan prepared by the company is as follows:

Program	Projects/Activities	Budget* (`cr)	Implementing Agency	Timeline
Education	Institutionalizing best in class education practices in <i>Kalyani Shala</i>	1.00	AKM**	Dec 15
Empowerment	Bringing disadvantaged communities into mainstream by skill development through Atul Institute of Vocational Excellence	1.00	ARDF***	Dec 15
Health	Constructing amenity blocks	0.90	ARDF	Sep 15
	Providing quality health care through Atul Medical Diagnostic Centre	2.00	ARDF	Feb 16
Infrastructure	Rural development	0.75	ARDF	Feb 16
Others	Projects specified by Govt I PPP I seed money for incubating innovative ideas I upgradation of skills	0.50		
Others	Overheads	0.20		
Total		6.35		

* subject to revision

** Atul Kelavani Mandal

*** Atul Rural Development Fund

EXPANSION IN EXISTING CAPTIVE POWER PLANT

CHAPTER – 9 SUMMARY & CONCLUSION

9.1 GENERAL

Atul was founded by a legendary Indian, Mr Kasturbhai Lalbhai, on September 15, 1947, exactly a month after India became independent with the dream to generate large-scale employment, create wealth in rural India and make the country self-sufficient in its requirements of chemicals.

Atul Limited became the first private sector company of India to be inaugurated by Jawaharlal Nehru, the first Prime Minister of the country. The Company thus commenced its business with just a few dyestuffs, the know-how of which was brought from foreign companies. Atul Limited is a member of Lalbhai Group, one of the oldest business houses of India, with interests mainly in textiles and chemicals. The Group is strongly committed to serve the society in the fields of education, health as well as culture.

Atul's registered office is in Ahmedabad whereas its corporate headquarters are located in Atul, Gujarat. The Company is listed on the NSE in India and has over 35,000 shareholders. Atul Limited is an improvement driven, integrated chemical company serving about 4,000 customers belonging to 27 industries across the world. The Company has established subsidiary companies in the USA (1994), the UK (1996), Germany (1998), China (2004) and Brazil (2012) to serve its customers and thus enhance breadth and depth of its business. From a small beginning (one dyestuff and one manufacturing plant), Atul has grown into a diversified chemical conglomerate, with about 1,350 products and formulations with 13 subsidiary and associate companies. The Company has taken small, but firm steps to grow its business with larger purpose.

Atul Limited holds Environmental Clearance (EC) from Ministry of Environment & Forests (MoEF), Delhi vide File No. J-11011/85/2009-IA II (I) dated 13th May, 2009 and also obtained valid Consolidated Consent & Authorization (CC&A) from Gujarat Pollution Control Board (GPCB) vide no. AWH-67717 dated 04/11/2014. Atul Limited is an existing chemical manufacturing complex with existing Captive Power Plant (CPP) of 34 MW and is now planning to expand their existing CPP by installing new 22 MW Coal based CPP with latest technology.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

NEED OF THE PROJECT

- Atul Limited is planning to expand the existing facilities & infrastructure in near future.
- Atul Limited is proposing expansion in current manufacturing capacity, which will increase the power and steam requirement.
- In the existing unit, two numbers of Stoker Fired Boilers (SFB) are provided with Scrubbers for dust collection. As, it is old technology and not feasible to provide ESP with these boilers, the SFBs will be replaced with higher efficiency boilers with adequate APC facility.
- Thus, Atul Ltd. is planning expansion in the unit and replacing the old low efficient SFBs boilers with highly efficient boilers which would be having ESP not only to maintain GPCB norms but also to cater future requirement of captive consumption.
- It is proposed to install 2 × 50 TPH Boilers of Atmospheric Fluidized Bed Combustion (AFBC) type and it will be having highly efficient ESP which can cater dust up to 99.9%.
- The proposed Boilers will be having Dust Extraction System in coal handling plant and pneumatic System for Bed Ash as well as for Fly Ash.

9.2 PROJECT LOCATION

9.2.1 Project Site:

The Atul limited is located at Survey No. 274,275 & 276, At & Post Atul. The project site falls in Valsad district of Gujarat. Atul is surrounded by Vapi in the south, Valsad in the north, Dharampur in the east and Atar village in the west. The project location is well connected with road, rail and air route for transportation activities. The salient features of the project site are mentioned in Table No. – 2.1. The location of the proposed project site on Google map is shown in Figure No. – 2.2. Layout plan showing the existing and expansion location is given in Figure No. – 2.3.

9.2.2 Salient Features of the Project Site

Valsad district is located between $20^{\circ} 07$ " to $21^{\circ} 05$ " North latitude and between $72^{\circ} 43$ " to $73^{\circ} 00$ " East longitude. The Geographical location of the plant site is approximately at latitude of $20^{\circ}36'36''$ N, and longitude of $72^{\circ}55'33''$ E. The nearest town Valsad is located about 7 kms away from the project site. Project site is well connected by Road and Rail line.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

The salient features mentioned below, indicate favorable conditions for industrial development at the project location.

Sr. No.	Particulars	Name	Aerial distance from the Project Site		
1.	Nearest village	Hariya	@ 2.10 km in NW direction.		
2.	Nearest Town	Valsad	@ 7.00 km in N direction.		
3.	Nearest River	Par River	@ 700.00 m in SE direction.		
4.	Nearest National Highway	N. H. No. 8	@ 2.00 km in EEN direction.		
5.	Nearest Railway station	Atul	@ 1.50 km in NW direction.		
6.	Nearest Airport	Daman	@ 15.20 km in SW direction.		
7.	Nearest Tourist Places	Tithal	@ 7.70 km in NW direction.		
8.	Protected areas (National parks/ sanctuaries)		None within 10 km radial periphery		
9.	Defense installations		None within 10 km radial periphery		
10.	Sites of Historical / Archaeological Importance		None within 10 km radial periphery		

Table No. 9.1 – Salient Features of the Project site

Note: All the above – mentioned distance are the aerial distances from project site.

9.3 RESOURCE REQUIREMENT

Resources	Requirements/ Source						
Land							
	Existing:	45,079 1	m ²		U	d is in possession	
					Atul Ltd.		
	Proposed:	No ac	dditional la			re land of 10,000	
		required	1	m^2	shall	be utilized for	
				pro	oposed exp	pansion.	
Capital				·			
requirements	Cost of Pro	posed exp	ansion :			Rs. 96.82 Crores	1
requirements]
Water	Existing	CPP	3,910 KLD		Par Riv	or.	
	Ũ		(Dom+Ind)				
	1 ·		· /		D D'		
	Proposed	CPP	2,095 KLD			er	
	requirement	t ::	(Dom+Ind)				
Power		E-i-time		Duran		T-4-1	
		Existing		Propos	sed	Total	
	CPP	34 MW		22 MV	V	56 MW	
Manpower							
	Constructio	Appx. 500 n	x. 500 nos. New recruitment		ruitment		
	Operation F	Operation Phase Appx. 10-20 no) nos. New recruitment			
			I		1]

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.4 RAW MATERIALS

To carry out the proposed expansion, fuel resources like coal & diesel will be utilized.

Sr. No.	Raw Material	Existing	Proposed	Total
1	Indian Coal and/or Imported	20,200	Max. 16,725	36,925
	coal and/or Lignite	MT/Month	MT/Month	MT/Month
2	Water Requirement	3,905 KL/Day	2,094 KL/Day	5,999 KL/Day

9.5 PRODUCTS & CAPACITY

Sr. No.	Product Name	Existing	Proposed	Total
1	Captive Power Plant (CPP)	34 MW	22 MW	56 MW

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.6 BASELINE ENVIRONMENTAL STATUS

The Base line environmental status for various components of environment like soil, Ground water, surface water, noise and ambient air quality is an important part of environmental impact assessment study. Base line data helps in the prediction and assessment of impacts due to the proposed p

roject. This study illustrates the description of existing environmental status of the study area with reference to the prominent environmental attributes.

The baseline environmental study of Atul Ltd. and its surrounding area was done by following the guidelines of MoEF&CC. The study was carried out according to the ToRs approved by the State Level Expert Appraisal Committee of Gandhinagar. The study area for the proposed project has been considered within the 10 km periphery of the project site. The period of study was December 2014 to February 2015. The secondary data were collected from secondary sources like Census of India- 2011, Environment Information Centre-Delhi, Forest department, District Panchayats etc.

Attributes	Sampling		
	Locations	Parameters	Frequency
A. Air Environment			I
Meteorological	Nr. Project Site	Temperature, Relative	Hourly data from
		Humidity, Precipitation	December 2014 to
		Wind direction, Wind	February 2015
		Speed	
Ambient Air	8 locations in the study	$PM_{2.5}$, PM_{10} , SO_2 , NO_x ,	24 hourly, twice a week
Quality	area of 10 km radius from	СО	during study period
	Project site.		
	[5 location with in 5 km]		
B. Noise	8 locations in the study	Noise Levels in dB(A)	Once in Study Period
	area within 10 km radius		
	from the project site		

Table No 9.2: Frequency of Environmental Monitoring

EXPANSION IN EXISTING CAPTIVE POWER PLANT

C. Water			
Ground Water	Grab samples of 5	Physical, Chemical,	Twice in a Month
	Locations within 10 km	Microbiological and	during Study Period
	radius of Study region	Heavy Metal	
Surface Water	Grab samples of 5	Physical, Chemical,	Once in a Month during
	Locations within 10 km	Microbiological and	Study Period
	radius Study region	Heavy Metal	
D. Soil Quality	7 locations in the study	Physical, Chemical	Once in a Month during
	area within 10 km radius	Characteristics, Soil	Study Period
	from the project site	Texture	
E. Land Use &	Within 10 km radius of	Existing Land use pattern	
Land Cover	Land Cover study area		
F. Ecological	Within 10 km radius of	Existing Flora & Fauna	Once in Study Period
Data	study area		
G. Socioeconomic	Within 10 km radius of	Socio-economic	Once in Study Period
Data	study area	characteristics of the	
		affected area	

Table No 9.3: Method of Environmental Sampling & Analysis

Attributes	Methods	
	Sampling/Preservation	Analysis
A. Air Environment	As per IS: 5182 & AWMA As per IS:5182 & AWMA	
Ambient air quality	Instrument operated as per it's	
B. Noise Instrument : Noise level meter		Survey carried out as per EPA
C. Water		
Ground Water Standard Methods for Examina		IS 3025 & Standard Methods for
Surface Water	of Water and Wastewater, 21st	Examination of Water and
	edition, APHA 2005	Wastewater, 21st edition, APHA
		2005

EXPANSION IN EXISTING CAPTIVE POWER PLANT

sus of
2
it and various
sed on
5

Table 9.4: Baseline Status of the study area

Physiography	• The project site falls in Valsad district of Gujarat which is surrounded	
	by Vapi in the south, Valsad in the north, Dharampur in the east and	
	Atar village in the west.	
	• The project location is well connected with road, rail and air route for	
	transportation activities.	
	• The nearest city/ town to the project site is Valsad.	
	• River Par is passing through the vicinity of the project site at a	
	distance of about 0.7 kms from the site and drains into Arabian sea.	
Meteorology	• Temperature: Mean daily max. = 41 °C, Mean daily min. =13.4 °C.	
	• Humidity was observed between 08 to 93 %.	
	• Rainfall: No rainfall recorded during the study period.	
	• Wind pattern: Pre-dominant Direction: NW, Wind Speed was in the	
	range of 0 to 12.0 km/hr	
Ambient air	• During the study $PM_{2.5}$ was observed between 44.2 – 58.2 $\mu g/m^3$.	
quality	Maximum concentration of PM _{2.5} was found at Magod village. Results	
quanty	of $PM_{2.5}$ for all locations are well within the CPCB norms.	
	• PM_{10} was observed in the range of $86.2 - 97.5 \ \mu g/m^3$. Results found	
	during the study period for PM_{10} were well within the limit given by	
	Ministry of Environment & Forests.	
	• SO ₂ concentration was observed in the range of 26.3 to 34.7 μ g/m ³ ,	
	which is well within the standard limit.	
	• NOx concentration in Ambient Air quality was between 33.5-47.5	
	μ g/m ³ , which is well within the standard limit.	
	• Monitoring and analysis was also carried out for CO. Maximum	

	Concentration of CO was found to be 1075 μ g/m ³ near project site.
	• On the basis of test results found during the survey it can be conclude
	that the ambient air quality of the study region is quite good as all th
	results are well within the limit.
Noise level	• Day time: Noise range – 51 to 68 dB(A)
	• Night time: Noise range – 42 to 59 dB(A)
Watan nagaunaag	GROUND WATER SOURCE
Water resources	• pH range was observed between 5.9 – 7.38.
& quality	• Total dissolved solids were recorded in the range of 325 - 1515 mg/I
	Total Dissolved solids concentration was found acceptable. Th
	concentration was high in the samples of Tithal.
	• Total hardness was in the range of 220 - 910 mg/L with minimum a
	Balda & maximum at Tithal. Hardness results were found within th
	permissible limit except for the samples of Tithal.
	• Results of Alkalinity, Calcium, Magnesium were also found within the
	permissible limit except for the samples of Tithal village.
	 All the heavy metals were found well within the range of prescribe
	standards. Any of toxic metals were not found in any village durin
	analysis. Fluoride was also within the range of prescribed limit in a
	the samples.
	 As microbiological parameters MPN analysis was also carried out an
	it was found NIL.
	• On the basis of test results it is summarized that water quality for
	studied locations is as per IS $10500 - 2012$. Water can be used for
	drinking purpose after primary treatment and can also be used for
	domestic purposes. Water of Tithal village should not be used for
	drinking purpose without proper treatment.
	SURFACE WATER SOURCE
	• During the analysis pH of the samples was found ranging from 6.80
	to 7.71.
	• TDS analysis was also carried out for surface water sample of the
	various locations. Minimum TDS was found 74 mg/L in the sample
	of Balda & maximum TDS was found 324 mg/L for the sample of
	Par river.

	• Turbidity was found between 2.2 to 6.8 NTU.	
	• DO measured during analysis was ranging between 5.1 to 6.6 mg/L.	
	Almost all the samples of surface water are having similar	
	concentration of DO. DO levels was found more than 4.0 mg/L for all	
	the samples, it means condition of the water resources are favourable	
	to aquatic life.	
	• It was found that Total Hardness in the sample of Chichwada was	
	minimum i.e. 25 mg/L & maximum was 215 mg/L in the sample of	
	Par River.	
	• Test results comparison study with Inland Surface Water	
	Classification (CPCB Standards) reveals that water can not be used	
	directly for drinking purpose as MPN test is positive for almost all	
	the locations. Surface water for these locations can be used for	
	various domestic purposes but it cannot be used for drinking purpose.	
	Before taking it for drinking purpose it should be passed through	
	various stages of conventional treatment.	
Soil quality	• Results of pH were varying in narrow range for one location to other	
	location from 6.94 to 8.05 during the study period .Overall the pH of	
all the soil samples were found almost neutral.		
	• Loss on ignition test was also carried out to know the probability of	
	Organic matter in the soil samples. Concentration of organic matter	
	was found in the range of 0.3 to 0.6 %. Minimum Value was	
	observed in the soil samples of Balda and Udvada.	
	• During analysis total Nitrogen was found in the range of 2.23-9.83	
	mg/100 gm. Minimum value was observed in the soil sample of	
	Chanvai.	
	• Total Phosphorous content was found in the range of 3.87 to 9.71	
	mg/100 gm.	
	• Calcium content ranged from 28.3 to 37.1 meq/100 gm and	
	magnesium content ranged from 25.7 to 30.8 meq/100 gm.	
	 As a micronutrient analysis of Iron, Chromium, copper & Boron was 	
	The a meronation analysis of non, emonitum, copper & boton was	

	also carried out for all the soil samples & its presence was found	
	lower than the desired value. Soil texture was found to be silt cla	
	and silt clay loam in most of the villages of study region.	
Landuse/	• There are few ponds/lakes present within 10 km radius of the industry.	
Landcover	The nearest is at eastern and south-eastern side of the industry close to	
railway track and road.	railway track and road.	
pattern	• Industrial area/study area also has club, helipad area, colony along	
	with other amenities.	
	• The cultivable land at present is 36.2 % in the study area while the	
	uncultivated land is around 22.78 % both together covering more than	
	59 % of the total area under study.	
Ecological Layout	• The flora which occurs in the zone includes about approx. 96 species.	
Leonogrean Eugout	• The fauna which occurs in the zone includes about approx. 72 species.	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.7 IMPACTING ACTIVITIES

Various activities involved in the proposed project are:

- A. Construction phase activities
- **B.** Operation phase activities

The activities identified for the proposed project under each phase are:

Construction phase

- Construction works for proposed CPP
- Erection and Installation of the proposed equipments/machineries
- Site development for additional Greenbelt & Landscaping

Operation phase

- Operation of Machineries & Equipment
- Handling & transportation of materials
- Combustion of fuel & Emission from Boilers
- Allied Operations (maintenance of machineries, equipments, etc.)
- Water Consumption & Wastewater Generation & Management
- Solid/Hazardous Waste Generation & Management
- Administrative, Domestic & Other Activities

9.8 IMPACT PREDICTION

Table 9.5 Major Activities & Associated Potential Impacts

No.	Activity of the Project	Potential Impacts without Mitigation
A.		Construction Phase
1.	Construction of necessary buildings, structures & shed	 Transportation of construction materials, equipment and machineries. Local temporary impacts because of air contamination due to dusting & emissions during loading/unloading of construction materials. Noise generation due to construction activities. Stress on water resource due to consumption of water in construction activity. Construction waste generation & land contamination. Occupational health hazards associated with construction works. Employment of local workers during construction phase.
2	Installation & commissioning of Machineries & Equipments for CPP	 Local temporary impacts caused by noise generation & air contamination due to welding, cutting, etc. works. Occupational health hazards due to mechanical, electrical and allied works.
3	Site development for Greenbelt & Landscaping	• Major impacts are beneficial but will lead to negligible (almost Nil) adverse impacts during site preparation activity.
В.	Operation Phase	
1	Operation of Machineries/ Equipment	 Impacts on ambient noise due to Noise & vibrations Occupation Health issues associated with operational hazards (mainly thermal/heat, mechanical, fire & electrical, noise, vibration)

No.	Activity of the Project	Potential Impacts without Mitigation
2	Handling & transportation of materials	 Impacts on air due to airborne dust & fuel Noise generation due to transportation vehicles Fugitive emission due to coal, lignite and fly ash handling Occupational health issues associated with operational hazards Risk associated with Fire & Explosion Hazards due to coal storage.
3	Combustion of fuel & emissions from boilers	 Impacts on air due to stationary & secondary (fugitive) emission mainly from boilers. Generation of ash, flue gases due to operation of the boiler. Stress on ecological structure due to change in Ground Level Concentration (GLC) of various pollutants in emissions
4	Allied operations (maintenance & services of machineries & equipments etc.)	 Temporary local impacts on Air Environment due to fugitive emissions. Temporary local impacts on Noise Environment due to noise generation. Contamination of water due to wash down of contaminant from work site in storm water drainage. Occupational health issues associated with operational hazards (mechanical, electrical, heat, fire, noise, vibration, etc.)
5	Water consumption & wastewater generation & management	 Stresses on water resources due to water consumption. Generation of industrial & domestic wastewater. Potential for contamination of water or land caused by disposal of untreated /poorly treated effluent.
6	Solid/hazardous waste generation & management	 Impacts on soil on contamination due to the solid/hazardous waste handling/storage/ leakage /dumping on land. Impacts due to air borne materials from the solid/hazardous waste storage area.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

No.	Activity of the Project	Potential Impacts without Mitigation						
8	Administrative, domestic & other	• Impacts on land environment due to sewage						
	activities	generation & disposal.						

9.9 ENVIRONMENTAL MANAGEMENT PLAN

Environmental Issue	Mitigation measure			
Construction Phase				
Load on resources by consumption of water	 Already obtained Permission for water withdrawal from Par river water supply system. Optimization of water consumption by reducing unusual runoff from construction activity area. Proper arrangement & maintenance and regular inspection of water supply line to prevent leak from pipes & taps/ valves. No use of groundwater. Further the proponent shall ensure to implement good operation practices to minimize the use of water, so as to reduce the depletion of water resource to maximum possible extent. Due care shall be taken to avoid formation of stagnant pools, which may cause damage to the aesthetic condition as well as other environmental & socioeconomic factors. 			
Wastewater discharge	 Proper sanitation facilities of Existing Plant is made available for construction workers. Proper drinking water supply facility for construction workers is available at the Existing Plant. 			

EMP for Water Management

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Operation Phase		
Load on resources b consumption of water	ру	 Already obtained Permission for water withdrawal from Parriver water supply system. In-house fresh water storage facility is already present in the existing premises. Regular recording of water consumption using flow meter. Regular inspection, control & necessary maintenance for reduction of evaporation losses and blow down from cooling system
Wastewater Treatment discharge/reuse/ recycle		 Effluent generated from the proposed CPP will be utility waster only with very low amount of TDS, which will not require any treatment. Utility water will be collected in collection sump and reuse for ash quenching, dust suppression and fire hydrant make up. Storm water drainage lines are also provided for discharge of/runoff of rainwater from the plant. Rain water harvesting is already carried out in existing unit and collected water is used in process plant. Efficient arrangement & designing of recycling system for use of collected wastewater. Hence, proposed CPP will achieve zero discharge.

EMP for Air Management

Environmental Issue		Mitigation measures		
Construction Phase	I			
Temporary increased	•	Adequately designed enclosed area/provision of barricading		
Emissions from construction		sheets for reduction of dusting during construction activity		
& commissioning operations		and materials storage & handling.		
		Provision of water sprinkling system in construction area for		
		suppression of dust.		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

	• Water Sprinkling shall be done on earthen roads, stockpiles of				
	excavated earthen materials and soil to prevent dusting.				
	• All vehicles engaged in construction work shall be				
	compulsorily PUC certified.				
	• All construction equipments, machineries & utilities shall be				
	maintained on regular basis to reduce emission.				
	• Engines of idle machineries, equipments and vehicles to be				
	turned off when not in use.				
	• Provision of necessary PPEs for employees engaged i				
	activities of storage, transportation & handling of materials as				
	well as construction & commissioning operations.				
Operation Phase					
Stationary emissions	• Stacks of adequate height & internal diameter are provided for				
	efficient dispersion of emission from existing & proposed				
	installations.				
	• Sampling port & monitoring point are/will be provided at all				
	the stacks.				
	• Provision of preventive maintenance facilities for Stacks,				
	Utilities, Storage area, pipelines etc.				
	• Safety arrangements, facilities & equipments to prevent				
	accidental emissions.				
	• Adequate greenbelt coverage around the plant and additional				
	greenbelt will be developed near CPP area.				
	• Proper implementation of safety procedures and efficient use				
	of safety arrangements, facilities & equipments to prevent				
	accidental emissions.				
	• Provision for necessary PPEs for employee engaged with				
	hazard prone area.				
Fugitive Emissions	Coal and lignite shall be stored in closed storage area.				
	• Regular water sprinkling shall be done during loading,				
	unloading and storage of coal and lignite.				

EXPANSION IN EXISTING CAPTIVE POWER PLANT

• During the transportation, fuel shall be handled in closed
trucks only.
• Additional water sprinkling system with pipeline network
shall be provided to handle additional fuel due to proposed
expansion.
• Coal and lignite shall be transferred through closed conveyer
belt to reduce the fugitive emission.
• Dust extraction system shall be provided with proposed CPP
during the charging of fuel.
• High efficient ESP shall be provided with proposed Boilers.
• Silos for storage of fly ash shall be provided.
• The ash shall be transferred directly from the boiler to storage
silos through a closed 'dense phase pneumatic conveying
system'.
• SOPs for start-up, shut down, operation & maintenance
procedures shall be established & maintained in all relevant
area of works.
• Work place monitoring for AAQM shall be done as per 'Post
project monitoring plan' as well as regulatory requirement as
per factory act.

EMP for Waste Management

Environmental Issue		Mitigation measure		
Construction Phase				
Construction	waste	• Proper handling & transportation system for construction		
management.		wastes & stock piles of earthen materials		
		• Proper storage of construction & other waste and excavated		
		earthen material/soil in their designated storage area.		
		• Reuse of construction waste for PCC works, development of		
		roads and misc. filling for construction works.		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

	• Use of excavated soil for landscaping & gardening/greenbelt				
	development.				
Operation Phase					
Hazardous/Non-Hazardous	• A separate designated storage area is already provided with				
Waste management	sign boards/labels for each category of hazardous & solid				
	wastes.				
	Handling & Transportation system/facilities for				
	hazardous/solid wastes.				
	• Proper storage of hazardous waste in their designated				
	storage area viz.				
	- Used oil in well labelled drums in/near CPP area,				
	- Discarded containers in designated waste storage area				
	for sell to authorized scrap vendors or for return to				
	supplier				
	- Fly ash will be disposed off by consumption in own				
	brick manufacturing unit of the proponent or/and				
	Ambuja cement's unit for co processing.				
	• Proper handling, loading & unloading of waste shall be				
	monitored during waste handling, storage & transportation				
	to avoid spillage/leak causing contamination of soil/				
	environment.				
	• 100% utilization of ash: through Bricks/Cement				
	manufacturing industry for bricks or cement manufacturing				
	unit.				

EXPANSION IN EXISTING CAPTIVE POWER PLANT

EMP for Noise Control

Environmental Issue	Mitigation measure
Construction Phase	
Noise	 Noise generating & vibrating equipments like motors, pumps etc. shall be mounted on study concrete foundations with rubber padding to reduce vibrations. Adequate greenbelt shall be developed to help in attenuation of noise. Regular lubrication & preventive maintenance shall be done to reduce noise generation. Ear plugs/muff shall be provided to all construction workers/employees at place of high noise levels. All vehicles shall maintain speed limit inside the premises & loud horns & unusual acceleration of engine shall be prohibited.
Operation Phase	
Noise	 Noise generating equipments like pump, motors, compressors, Forklifts, Trailers etc. and power generator sets/ engines etc. shall be mounted on sturdy concrete foundations where ever possible & suitable rubber padding to reduce vibrations & thereby noise generation. Adequate greenbelt shall be developed and maintained around high noise generating area as well as plant premises to help in attenuation of noise. Regular lubrication & preventive maintenance shall be done to reduce vibration & noise generation. Use of PPE like ear plugs and ear muffs shall be made compulsory near the high noise generating machines. Periodic monitoring of noise levels as per post-project monitoring plan shall be done on regular basis.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.10 ADDITIONAL STUDIES

9.10.1 Risk Assessment

A detailed Risk Assessment (RA) study was carried out for the proposed expansion. The following processes/units have been covered for the RA study of the proposed expansion project:

- Boiler
- DG Sets
- Material handling/transportation/storage
- Personnel safety measures
- Fly ash handling system
- Noise environment
- Coal handling system

9.10.2 Disaster Management System

Atul has well developed an emergency management system to tackle the emergency situation. The roles of the following personnel are described to tackle any such emergency situations;

- Site Main Controllers
- Safety Officer
- Shift Engineer
- Fire & Security Personnel
- Workers

The elements of Disaster Management Plan are:

- Onsite Emergency Plan
- Offsite Emergency Plan

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.11 OCCUPATIONAL HEALTH, SAFETY & HOUSEKEEPING

The company is very much concerned in terms of health, safety and environment protection. Atul's commitment towards safety can be reflected from its 'Health, Safety & Environment Policy' prepared for the existing project.

Atul also has a Department of Health (DoH) for regular checking health of the employee regular checking health of the employees and medical aid. Annual health check for employees is carried out and record is maintained. Regular training to plant personnel in safety firefighting and first aid is also provided.

9.12 GREENBELT DEVELOPMENT PLAN

The plan for attenuation of the noise and air pollutant level includes design for greenbelt/plantation around plant boundary, roadside, office buildings and stretches of open land. The vegetation for the attenuation of air pollution shall be most needed in the areas where ground level concentrations of the pollutant are likely to be high. The main objective of green belt development is to provide a barrier between the source of pollution and the surrounding area. The greenbelt helps to capture the fugitive emission and to attenuate the noise generated apart from improving the aesthetics. Development of green belt shall also prevent soil erosion and washing away of the topsoil besides helping in stabilizing the functional ecosystem, make the climate more conducive and restore water balance.

Area covers for green belt development:

Sr. No.	Total Area m ²
Existing Greenbelt for CPP area	16,500
Additional Greenbelt near proposed CPP	1420
Total	17,920

In addition to this, the proponent has carried out plantation of 3,48,300 trees within last five years. Summary of the same is as below:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Summary of Plantation		
Year	No. of	
i cai	Plantation	
2010-11	59200	
2011-12	68700	
2012-13	63300	
2013-14	75600	
2014-15	81500	
Grand Total	348300	

The proponent carries out regular plantation in and around the industrial premises and in the proposed expansion also the proponent has planned to carry out Greenbelt Development & Management.

9.13 RAIN WATER HARVESTING PLAN

Atul already carries out rain water harvesting in the existing premises. 128236 m³/year of rain water was collected in Rain water harvesting tank during this year 2013-14 monsoon season. The collected water was transferred to collection tank and reuse in process, which has resulted in decrease in fresh water intake.

The First rainwater is not allowed to be collected and is discharged as storm water. The second rainwater and subsequent rainwater is conveyed to the Rainwater Collection System. Rainwater falling on all the main shop roofs is transferred to an intermediate collection tank through closed pipes. The rain water is collected in the collection tank and collected water is reused in process. Same practice shall be continued after the proposed expansion.

9.14 ENVIRONMENTAL MANAGEMENT CELL

Atul has already formulated the Environmental Management Division for its existing unit which involves personnel of Plant Level as well as Corporate Level for interaction with technical & statutory bodies to deal with environmental requirements/issues at all level. The same cell shall be responsible for proposed expansion also. Executive Director/Engineer will head the Environmental Management Cell with subordinates involving Environmental Manager, Environmental Engineer, Chemist, Operators, etc. The EMC will be provided with well-equipped laboratory for carrying out analysis of the samples of the

EXPANSION IN EXISTING CAPTIVE POWER PLANT

water, air etc. The EMC will carry out/oversee the monitoring of the stack emission, noise level, analysis of the water etc. and keep the regional/local statutory body informed about the status of pollution control. Proponent will arrange professional training for personnel of EMC at plant level which shall be provided in area of monitoring and continuous analysis of the pollutants, legal requirement and environmental management system. The EMC will also act to ensure efficient & proper implementation of EMP & mitigation measures suggested for control/prevention of pollution, recycling/reuse of waste & wastewater, conservation of environmental quality, greenbelt and occupational health & safety etc. Conceptually, the Environmental Management Cell has the following organizational structure:

EHS /SH&E Organization Chart

9.15 SOCIAL WELFARE AND UPLIFTMENT PLAN

Atul has engaged its efforts in social welfare activities & programs form the very beginning. It directly organizes various programs for social welfare & upliftment or indirectly contributes in such activities conducted by other organizations by providing financial & other aid. Atul is committed to contribute in social welfare & upliftment activities on regular basis. Atul will continue such activities to fulfill the requirements of its social responsibility under CSR Programs.

For the past year 2014-2015, the proponent had allocated a budget of Rs. 3.94 crores for CSR activities and spent the same for activities identified under the following areas:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Education
- Empowerment
- Health
- Relief
- Conservation
- Infrastructure

BUDGETARY PROVISIONS FOR CSR:

As a part of the CSR policy, Atul has allocated a budget of Rs. 6.35 Crores towards the Social welfare program based on locals' need, which shall lead to improved social infrastructure.

The future CSR Plan prepared by the company is as follows:

Program	Projects/Activities	Budget* (`cr)	Implementing Agency	Timeline
Education	Institutionalizing best in class education practices in <i>Kalyani Shala</i>	1.00	AKM**	Dec 15
Empowerment	Bringing disadvantaged communities into mainstream by skill development through Atul Institute of Vocational Excellence	1.00	ARDF***	Dec 15
Health	Constructing amenity blocks	0.90	ARDF	Sep 15
	Providing quality health care through Atul Medical Diagnostic Centre	2.00	ARDF	Feb 16
Infrastructure	Rural development	0.75	ARDF	Feb 16
Others	Projects specified by Govt I PPP I seed money for incubating innovative ideas I upgradation of skills	0.50		
Others	Overheads	0.20		
Total	·	6.35		

* subject to revision

** Atul Kelavani Mandal

*** Atul Rural Development Fund

EXPANSION IN EXISTING CAPTIVE POWER PLANT

9.16 PUBLIC HEARING

The public hearing for proposed expansion project was conducted on 09/10/2015 at 11 am at Gram Panchayat Hall, Atul. Advertisment/Information for the same has been given in three local news paper i.e Times of India, Gujarat Samachar and Sandesh on dted: 9/9/15 and 8/09/2015 respectiviely. During the public hearing, most of the local villages were in favor of the proposed project and also welcomed the project, as the proposed project will generate the employment for the local people. They expressed that due to the proposed project the economical growth of the surrounding area will increase. Moreover Sarpanch of village Hariya has also the welcome of the proposed expansion project. The copy of the same is enclosed along with Public Hearing MoM as Annexure-16. There was coverage in the news by the media supporting the said fact and in totality the project has been positively welcomed by one and all barring a set of negative people.

9.17 CONCLUSION

The proposed project of Atul Ltd. is an expansion project which intends to set up a 22 MW CPP, worth of Rs. 96.82 crores in the existing premises of Atul Ltd. in Valsad district.

The EIA study has been carried out with respect to the TORs awarded by SEAC, Gandhinagar. All the impacts likely to have an effect on the environment have been identified and efficient/adequate mitigation measures have been proposed for the same.

Considering the probability of likely impacts, the proponent has planned adequate mitigation measures and EMP. Further, the proponent also undertakes CSR activities which shall have beneficial impacts on the socio-economic environment. Measures like rainwater harvesting, energy conservation and greenbelt development are also noteworthy. Looking to the overall project scenario, employment potential and allied development plans; it has been noticed that the proposed project would significantly help in the improvement of the society and nation at large.


All the relevant safety norms with latest technology have been incorporated in the proposed expansion project. Hazards and associated risks, safety and security provision associated with the project activities appear to be acceptable. Hence the project in totality may be considered environmentally safe.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Chapter – 10 Disclosure of Consultant Engaged

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

OVERVIEW

In 1986, ECO CHEM SALES & SERVICES (ECSS) started with a set of limited services and unlimited dreams backed with a vision to develop into a full service **environmental** and **engineering group**. Focused efforts with transparent policies towards pursuit of excellence formed the way of life. Very shortly we were recognized as **Environmental Specialists**.

In 2000, ECOSYSTEM RESOURCE MANAGEMENT PRIVATE LIMITED (ERM) started with several verticals catering services to private and public industrial and municipal sectors. Our field of expertise forms a wide array of channels within engineering and regulatory environmental compliance. This includes water, wastewater, solid waste, air, natural resources and noise pollution.

Today, the small group has evolved into a sizeable organization of **ECO Group of Companies**, which comprises of two main arms viz. ECOSYSTEM RESOURCE MANAGEMENT PRIVATE LIMITED and ECO CHEM SALES & SERVICES with several sub divisions and staff of more than 400 employees.

or, Ashoka Pavillon A, Opp. Kapadia Hoalth Club, New Civil Road, Surat-395 001 21-0261-2231630-2236 223-2230075 4546050 2@ecositripad.com Websile: www.acosystamindla.com

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

INTRODUCTION

ECOSYSTEM RESOURCE MANAGEMENT PRIVATE LIMITED (ERM) is one of the leading Companies in the field of Environment Service Provider's in India. It is an organization with 27 years of rich experience dedicated to promotion of advanced environmental technologies and indigenous development with Research & Development for industries & community at large. We are working in the field of **Consultancy** and provide **Turnkey Environmental and Engineering solutions** since 1986. We are equipped with well-developed **NABL Accredited** laboratory to measure all **pollution parameters** in air, water, noise, solid waste etc. We are also registered as **Environmental Auditor** with Gujarat Pollution Control Board & carry out environmental audits as per the directives of honorable high court.

ECO CHEM SALES & SERVICES (ECSS), an extended arm of Ecosystem Resource Management Pvt. Ltd is a group of Scientists, Engineers, and Professional Pollution Consultants. We are a NABET Accredited company having accreditation in 14 industrial sectors of the schedule of industries. We take up **consultancy projects** including conducting of Environment Impact Assessment Studies, Risk Assessment Studies, life cycle assessment, preparing EIA / EMP Reports, Risk Assessment and Disaster Management Reports, Preparation of DPR, undertaking Third Party Inspection and Project Management Consultancy, in accordance with various statutory clearances like Environment Clearance, CRZ Clearance, Forest Clearance, CTE, CCA etc., from Ministry of Environment and Forest & State Pollution Control Boards.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

GROUP COMPANIES & THEIR ACTIVITIES

SHRIPAD CONCHEM PRIVATE LIMITED

The flagship Company of SHRIPAD Group, having ISO 9001:2008 Certification is an Authorized Stockist, Supplier and leading Applicator of world famous and specialty construction chemicals. Making of Cement Concrete Roads/Floor by using Tremix Vacuum Dewatering system, Epoxy Flooring, various kinds of Protective Coatings, Joint Sealing & Water Proofing, Maintenance and Rehabilitation of Structures, Repairing & Strengthening of Bridges, RCC Chimney, Jetty and other structures are the main services the company offers.

SHRIPAD CONSTRUCTION

SHRIPAD CONSTRUCTION purely focuses on civil construction services. The Company has served number of clients both in Private & Public Sectors. The construction activities include Infrastructural Projects like Development of small villages; Institutional Projects like Colleges, Schools, Hospitals, Court buildings; Residential Private Apartments, Staff quarters & Bungalows; Industrial Projects like construction of textile processing units, foundation units, DM plants, STP and ETP of various industries.

SHRIPAD BUILDING PRODUCTS

The firm stands for utilization of new techniques and technologies in the field of Building Construction by the way of manufacturing Fly Ash Bricks. Over & above manufacturing of Fly Ash Bricks by automatic Hydraulic Brick Plant, the company has been appointed as a franchise manufacturer & distributor of Shell Bitumen for the product Shelmac PR. Shelmac PR is an instant All-weather Pothole Repair Solution on both Bituminous and concrete roads.

SHRIPAD CONCRETE PRIVATE LIMITED

SHRIPAD Group ventures into Ready Mix Concrete manufacturing and supplying of the same in various grades. It's manufacturing unit and computerized batching plant is highly equipped with modern machineries with the technologies of Schwing Stetter of Germany with a production Capacity of 30 cubic meter of concrete per hour. The company also has 12 Transit Mixers that run round the clock to ensure speedy and timely delivery of concrete.

SHAYNE CONSULTANTS

Shayne Consultants is a full-fledged Project Management Consultancy Firm which undertakes the PMC for several heavy construction projects such as road networks, bridges, flyovers, institutional construction, etc.

PYXIS NAUTICA ENGINEERING, LLC (USA)

Pyxis Nautica Engineering, LLC (PNE) is a registered American based firm housed at Laplace, Louisiana. PNE undertakes international assignments including civil engineering design and consultancy and environmental design, modeling, and regulatory compliance projects.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

OUR VISION

To be a leading global environment consultant and engineering service provider of high repute with a steady and sustainable growth and development.

MISSION

It is our mission to:

- Adopt our Client's Environmental challenges as our own.
- Promote recycling and reuse of waste, conserve resources, encourage efficient use of energy and improve the quality of environment as a whole.
- Continue to refine the quality of our services, expand and enhance our capabilities, increase our efficiency, and heighten the standards of excellence.
- Elevate the customer service and customer satisfaction to the highest level by providing techno-feasible and economically viable solutions to their environmental problems.
- Provide an equal opportunity for all our employees to succeed and to be rewarded for performance and commitment.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

KEY PERSONNEL

Mrs. Rekha S. Shah, (M.E. (Environment)), is the CEO of the company, with 30 years of experience, giving core values to Integrity, Excellence, Generosity, Responsibility & Respect. She is a visionary and the driving force behind all the activities of the company. Her high business acumen as a sound technocrat and efficient administrator has resulted in taking the company to the highest level of repute as one of the leading Environmental Consultants in India. Under her esteemed guidance & leadership, the company is cherishing its services by a high caliber and talented team of Environment Engineers, Chemical Engineers & Scientists. It is the business entrepreneurship of Mrs. Shah that has enabled the Company to serve more than 400 reputed clients within a short span of time. Her inspiration to treat every new challenge as the next step to progress is leading the company towards tremendous growth not only in size but also in quality and service.

Mr. Shirish P. Shah, (B.E. (Civil), is one of the Board of Directors' of the company, with 36 years of experience. He is a technical expert in the field of Civil Engineering and construction, and has a caliber to complete turnkey projects of high repute in scheduled time frame giving excellent results. His technical knowhow and financial control has proved to be the key behind sustainable growth with profitability of the Company. He has excellent HR Management skills which has helped the organization to reach the height of excellence. His sincere efforts & management has led to development of high faith level in our clientage.

Mr. P.S. Patel, (B.E. (Chemical)), is an expert in Chemical Engineering and responsible for undertaking Turnkey Environmental Projects from concept to commissioning. He has a good command over manpower management and co-ordination with various agencies associated with the project to complete the projects in schedule time frame with desired quality and satisfactory performance.

Mr. Dhaval S. Shah - (MS - (Environment Eng.) & MBA, USA), is an expert in Civil & Environment Engineering and is responsible for all projects being carried out in terms of execution and management. His expertise involves having good knowledge of innovative technologies in the field of design of Effluent Treatment Plants, Solid Waste Management Techniques, Statistical Data Analysis, and Wetland Wastewater Treatment Systems. He also has extensive experience in landfill designs, slope stability analysis, soil consolidation analysis, design of Strom water / sewer drainage network, effluent pipelines, air emission modeling, lighting surveys and traffic noise modeling. He has an experience in designing the coastal shoreline protection structures like cofferdams. He also has the experience in preparing several engineering design reports as well as permit

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

application documents related to air, solid waste, wastewater and coastal engineering media.

Mrs. Ruchika D. Shah - (BS (Electrical Eng.), & MBA (Fin & Int. Audit), USA), has a diverse experience in project management, co-ordination, operations management, marketing and financial analysis. Her involvement in quality assurance and monitoring activities ensures a sustainable deliverable product for the clients and customer satisfaction.

Chub, New Civil Road, Surat-395 001

ATUL LIMITED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

THE ECO GROUP OF COMPANIES ECOSYSTEM RESOURCE MANAGEMENT PVT. LTD. ECO CHEM SALES & SERVICES

KEY TECHNICAL SERVICES

- Environmental Services
 - Environmental Consultancy
 - Environmental Impact Assessment
 - Environmental Audits
 - Environmental Monitoring & Laboratory Services
 - Clearance & Permits like NOC/CCA/EC/CRZ
- Turnkey Projects / Wastewater Solutions
 - EPC Contracts ETP/CETP/WTP/STP
- Engineering & Design Services
- > Operation & Maintenance
- > Air Pollution Control Services
- Solid Waste Management Services
- > Supply of ETP Chemical & Cultures
- > Supply of Water/Air Pollution and Control Equipment
- > Supply of RO, softening, DM plants, etc.

ECO CHEM SALES & SERVICES

PAGE 344

Page

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Certificate of Registration

This cartificate has been avoided to

Ecosystem Resource Management Pvt. Ltd.

Office Floor, Ashoka Pavilion A, Opp. Kapadia Heath Club, New Civil Road, Solid), October 255001 midar

in recognition of the organization's Quality Management System which complex will?

ISO 9001:2008

The scope of activities covered by this centrate is defined below

Providing Environmental Services Like, Treatability and Fessibility Studies. Statutory Clearances from SPCB and MoEF, Environmental Monitoring and Laboratory Tosting, Environmental Audit, Turnkay Project Execution, Operation and Maintenance of ETP/STPM/TP

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Certificate of Registration

This contribute has been rearded to.

Ecosystem Resource Management Pvt. Ltd.

Office Floor, Ashoka Pavelon-A, Opp. Kapada Health Club, New Civil Road, Sural, Gujaral, 395001, Initia

in marginitian of the organization's Environmental Miningement Byellem which complies with

ISO 14001:2004

The scope of activities covered by this outificate is defined being

Providing Environmental Services Like, Treatability and Fassibility Studies, Statutory Clearances from SPCB and MoEF, Environmental Monitoring and Laboratory Testing, Environmental Audit, Turnkey Project Execution, Operation and Maintenance of ETPISTP/WTP

ECO CHEM SALES & SERVICES

Laboratory:Ecception Resource N	dimage	ment Pvt. I	d. Su	tenti d	Taile	T	-			
Quality Managerthir Sunit Komer Part			an tan	-	_	-				
the second se	ny Noningeristic Sund Kumer Pandey Denetiy of Vincent*A no of Visit: Automated / I* Succellance / Re-Arcssment / Supplementary Funt Veryfication					official Trail				
Field LTenting/Colibration		pliaria):Chen			the second second				_	_
Facility (1): Permanent Site Mobile	Wet Store	beretialev-use	arm (v	vajer (201	, Aura	s trainc	9		
Land Assessor:Dr.Lanni Rawat	1 Anne	sar LiDe.R.K	0.1.1		_	1		-		_
Assessor 2:	-	sar 4:	Assessor 2: Assessor 5:							
Dinis of sorfice visit: 11"& 39" May 2613	-	one 4: Conformilies d		L NOV						-
Responsibilities of Quality & Technical with trainings except for Stack monito conducted on 25.07-15, soverer scene of 17025-2005 and improvement is require Minute of APAMan do	f the age	ndo itema wa men ant Peri	ung a sauju vicina	requip omide of AIR	red. L real la	and the second	aceigen	rapties	them the the	edou — a ISUP (E)
chemise & last internal aufit was updu- and Management cloudes. One NC was optimized are available with the labor pluipment are available with the labor pluipment in Alz. Review of test metho- approximent. Sofery and Flactment of e- or all the parameters dowered under soo eviewed, Required CRM's and Primary apired for 2 CRM's and traceability in realiable with the laboratory. Laborator aboratory has yet to participate in ava-	responsible acted by a mixed du mixery w cellintern d for 15 symmetry appeared to symmetry symmetry symmetry appeared by symmetry	an enternal and tring the internal ich due callbo- multime checklus apecifications to need improve bound anishing to are available able for two a micipating in T programm.	get data dilor on ull audi ution a ng is b and me unent, b coryente with to nd NC 1	ci. byte i fait of the second i and test ording a sthead second second when any for manual be take	emal 3-15 (hun b scrab) fone valids renser renser renser renser renser renser renser renser	Audit is per rest ci- lity is for eq tion (tion of for A scopt hed for	in cont the sch meet by meet f uipmen or soil (Unverta- ic parat for a fy or this, 1 "2"area	hieted c solute for the full for Special for Special for Special for the former four yet four yet	ence a ye or all the constory, circophoto 6 for som arsars th is been c which no 1 where v ar ILC/P	ar as pe technica Requires moter 2 w of the n area of alculated ad to be alidity is T plan is
chemist 6 last internal andit was updated Microsoft internal andit was updated Microsoft internal andit was updated Microsoft in Alexandria and Microsoft in Alexandria and Microsoft in Alexandria and Flactment of each all the parameters dovered under sognitized for 2 CRM's and traceability in prailable with the laboratory. Eshorator alternative for section of the parameters in participate in available with the laboratory. Eshorator and predefined acceptance option	responsible acted by a mixed du mixery w cellintern d for 15 symmetry appeared to symmetry symmetry symmetry appeared by symmetry	an enternal and tring the internal ich due callbo- multime checklus apecifications to need improve bound anishing to are available able for two a micipating in T programm.	get data Silor on all audi- silon a sig is b and me writh is not with is not with is not with is abornion	th. bys 1 19-0; 1 and and tes thod to thod to tho tho tho tho tho tho tho t	emal 3-15 (hun b scrab) fone valids renser renser renser renser renser renser renser renser	Audit is per rest ci- lity is for eq tion (tion of for A scopt hed for	in cont the sch meet by meet f uipmen or soil (Unverta- ic parat for a fy or this, 1 "2"area	hiered c edule fr the tab far Spen f exception farument inty hur neters, w CRM Four ye revestion	ance a year all the mattery, throphoto 6 for som larsare th is been c which no (where v ar ILCP rund sati g of the	ar as pe technica Requires moter 2 w of the n area of alculated ad to be alidity is T plan is
Minutes of MEMare documented with escherhole & last internal audit was useduated Management clouses. One NC was a coupresent are available with the labor Gherware, for which MC has been rais equipment in Air. Review of test methors inprovement. Sofery and Flactment of e. for all the parameters dovered under soo eviseed. Required CoNP's and Primary replicits for 2 CRM's and transability in prainable with the laboratory. Laboratory has yet to participate in available und predefined acceptance enternative replication raised for the discusses?	responsible acted by a mixed du mixery w cellintern d for 15 symmetry appeared to symmetry symmetry symmetry appeared by symmetry	an enternal and tring the internal ich due callbo- multime checklus apecifications to need improve bound anishing to are available able for two a micipating in T programm.	get data dilor on ull audi ution a ng is b and me unent, b coryente with to nd NC 1	th. bys 1 19-0; 1 and and tes thod to thod to tho tho tho tho tho tho tho t	emal 3-15 (hun b scrab) fone valids renser renser renser renser renser renser renser renser	Audit is per rest ci- lity is for eq tion (tion of for A scopt hed for	in cont the sch meet by meet f uipmen or soil (Unverta- ic parat for a fy or this, 1 "2"area	hiered c relate for the data for Specific and a Specific and the specific and the specific and four years for revestion for years for revestion	ance a year all the contrastry, chrophoto 6 for a con- larsare th- is bean c which as 1 where v ar ILC/P rund sail 3 of the POR	ar as pe technica Requires moter 2 w of the n area of alculated ad to be alidity is T plan is
chechale & last internal andit was upside and Management clauses. One NC was of equipment are available with the labor observane, for which NC has been rais equipment in Air. Review of test metho- inprovement. Sofery and Flactment of e- for all the garameters dovered under so- reviewed. Required CRM's and Primary replayed for 2 CRM's and traceability in r- mailable with the laboratory. Laborator aboratory has yet to participate in avo- angles and preferited acceptance option (we Conformation rated fairing has assessed to Conformation rated fairing has assessed to Conformation rated fairing has assessed.	initial by a mised du entitied du entities du entities and the standard met avail any la pe misable P misable P misable P MIRMET Ap 4 1	in external and tar ing the inter- ing the tater ing the callo multime check specifications i need improve bund aminfact able for two a articipating in T programs.L aed.	per date ditor on tal audi stion a and me unent, b oryeace with te act NC 1 iborneou etal e	rt. bro rt. bro r 19-0; it and miller setting a setting a s	enal 3-15 (hue b sceab) done walids remore walids remore walids remore walids	Audit to per sex cli lity a for eq bien (tits of for A scorpt ined for and cting	in correction actions the actions to prove the second second second second second second for a figure of the second for a figure of the second	histed c relate for the fab for Specific and for except for except four ye four ye of the fit of the	ance a year all the mattery, chrophoto a far aon arsars the which no i where v ar ILC/P rund sati g of the PMOR NO RIL pettri	ar as pe techaioa Requires motor 8 w of the n area of alcuned of a be alidity is T plan is startory retained
chemiste & last internal andit was confu- and Montagement clauses. One NC was of equipment are available with the labor Sherware, for which NC has been rais represented in Air. Review of test metho- mprovement. Safety and Flactment of e- for all the parameters dovered under sop releved. Required CRAP's and Primary apired for 2 CRAP's and tracability or available with the laboratory. Eshorato- aboratory has yet to participate in ava- amples and predefined acceptance enter the Conformation raised family for assessed CECONIMENDATIONS OF ASSESS/ a Conformation raised family for assessed CECONIMENDATIONS OF ASSESS/ a Conformation raised family for assessed and the conformation of white a solution accepted discipling for Water and ASL assessing raised and participation for a setup. Tay full (fact fact and participation for a setup. Tay full (fact fact and participate) for a setup. Tay full (fact fact fact fact fact fact accepted accepted and fact fact fact fact fact accepted accepted and fact fact fact fact fact accepted accepted and fact fact fact fact fact accepted accepted accep	inised da inised	in external and tar ing the inter- ing the tater ing the callo multime check specifications i need improve bund aminfact able for two a articipating in T programs.L aed.	set data Sitor on tall audi stion a sig is is and me ment, 3 servence with te st NC 1 fLC p shores at NC 1 fLC p shores at no (es with te st no (es with te (es with (es withe	rt. bro rt. bro r 19-0; it and miller setting a setting a s	enal 3-15 (hue b sceab) done walids remore walids remore walids remore walids	Audit s per per cl lity e for ag tion of for A for	in correction actions the actions to prove the second second second second second second for a figure of the second for a figure of the second	Averand c eships for the lab for Specific to the larument inty hair inty hair inty hair inty hair w CRAM Four ye is for recention are and and are are are are are are are are are are	ance a year all the mattery, chrophoto e for ann harsen the for ann harsen the which ne (where v ar ILC/P rund sati g of the 2008 NI RL petter 7028: 21 Disertion	ar as pe technica Requires meter 2 e of the e area of alculined rod to be alidity is T plan is sfarrory retained thatton the and that and that and that and that and that and that and
chemist 6 last internal andit was usedu and Montgement cloudes. One NC was of equipment are available with the labor illumware, for which NC has been rais quipment in Air. Review of test metho- mprovement. Safety and Flactment of e- or all the parameters dovered under soo releved. Required CRAT's and Primary apired for 2 CRAT's and tracability in r wallable with the laboratory. Eshorator aboratory has yet to participate in avo- amples and predefined acceptance enter the Conformation raised having the assessment. Conformation raised having the assessment the Conformation raised having the assessment and the tracability of the second second area and predefined acceptance enter the Conformation raised having the assessment and the state of the second second second area and the second second second second second area and the second second second second second area and the second second second second second second second area and the second secon	MERCHART solution solution solution solution solution solution standard not availi- solution sol	In internal au ring the latter ifs due callby moliate check apecifications i aced improve bund anistic s are available able for two a micipating in T programs.L sed. ISAND The in hoisa as pay sty plotters al between the 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	et date Silor on all aufi stion & sg is b and me iment, 3 oryence with is nearly the ment of the most all an (the ment of the ment all an (the ment of the ment all all all all all aufi stion & stion & all aufi internation & all all all all all all all all all all	rs, Day 1 (3-4), is and and test ethod + ethod + Messau tas be program progr	email 3-15 / here b scrabb dome walidby remose remose infine em ra- mility e em ra- mility e e em ra- mility e e e e e e e e e e e e e e e e e e e	Audit spin print of lity or for any for a for for a for and and and and and and and and	in correction achieved by more the achieved by more the upment of upment of a soil () incerts o	Averand c exhile for the lab for Specific technology for exception inty hair meters, w CRAM Four ye recention four ye recention article article recention article article recention	rece s ye r all the mattery, throphoto to far son arsars th is bean a which no (where v ar L.C.P. rund sati g of the PMOR NI Diserble (density (de	ar as pe technica Requires meter 2 e of the e area of alculined rod to be alidity is T plan is sfarrory retained thatton the and that on the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the area of the the area of the area
chemise & last internal andit was usedual and Management clauses. One NC was of equipment are available with the labor illustware, for which NC has been rais quipment in Air. Review of test metho- mprovement. Sofery and Flactment of e- or all the parameters dowered under soo eviewed. Required CROI's and Primary apired for 2 CROI's and tracability in p realistic with the laboratory. Eshorator aboratory has yet to participate in avo- amples and predefined acceptance criteri to Conforming raised buring to an essential ABL appendia called buring to an essential the test of the tracability of the conformation raised buring to an essential aboratory of the set of participates of the amples and predefined acceptance criteri to Conforming raised buring to an essential the test of the test of the set of the ABL appendial called the test of the test of the and the test of the test of the test of the aboratory of the set of the set of the set of the aboratory of the set of the set of the set of the aboratory of the set of the set of the set of the aboratory of the set of the set of the set of the set of the aboratory of the set of the set of the set of the aboratory of the set of the set of the set of the aboratory of the set of the set of the set of the set of the aboratory of the set of the set of the set of the set of the aboratory of the set of the set of the set of the set of the aboratory of the set of the set of the set of the set of the abo	All pointing inter du anised du inter y anised du inter y and is standard not availl sty in po- aliable P? in is defin MIENT T Arr & I interations to be disc in explain interations to be disc	In internal and the an internal and ring the latter ifs due callbo multime check specifications i need improve bund aminfacts and improve aminfacts and improve aminfacts	eri date Sitor on sitor and sitor a sig is b and me ment, 3 oryeace with te nd NC 1 ILC 1 sitor no NASC 41 ILC 1 1 ILC 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rs. Days 1 (19-67) ist and indianal text ethod 4 indianal text ethod 4 indianal text text text text ist ist ist ist ist ist ist is	email and a sensible demonstration of the base sensite demonstration of the base sensi	Audit spen for applied the for a for a f	in correction actions the actions recent by incert of unpertent for a fig- r chis. 1 "2"acce 5% of "2"acce 5% of "2"acce 5% of "2"acce 5% of "2"acce 5% of "2"acce 5% of	Initial control of the lab for the lab for Specific terms in except for except four years for the former w CRAN Four years for the former wears for the former former terms for the former former terms for the former former terms for the former terms for the former terms for the former terms for the former terms for the former terms for the former terms for the former terms for the fore	ence a year all the contrology, chrophoto e for aon larsare the which no i where v ar ILC/P sund anti g of the phone Market Mark	ar as pe technica Requires mover 2 te of the n area of dictine to alidiny is alidiny is a factory retained to any com- distant factory retained

EXPANSION IN EXISTING CAPTIVE POWER PLANT

K NAI National Accreditation Board for **Testing and Calibration Laboratories** Department of Science & Technology, India CERTIFICATE OF ACCREDITATION ECO SYSTEM RESOURCE MANAGEMENT PVT. LTD. has been assessed and accredited in accordance with the standard ISO/IEC 17025:2005 "General Requirements for the Competence of Testing & Calibration Laboratories" for its facilities at Office Floor, Ashoka Pavillion-A, Opp. Kapadia Health Club, New Civil Road, Surat in the discipline of CHEMICAL TESTING (To see the scope of accreditation of this Inbanalory, you may also visit NABL weballs www.nabl-india.arg) T-2013 Certificate Number Valid Until 23/07/2015 Issue Date 24/07/2013 This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the additional requirements of NABL. Signed for and on behalf of NABL Dr T. Ramasami Alok Jain Anil Rolia Chairman Convenor Director

PAGE 348

EXPANSION IN EXISTING CAPTIVE POWER PLANT

NAMET/EA/WAD37/100 The Chief Executive Officer Eco Chem Sales & Services Office Rooc, Ashoka Pavillion-2 Opp. Kapailia Health Chili, New Chill Road, Surat = 395001 (Kind Attention: Mrs. Rekha Shah) National Accreditation Brand for Education and Training

May 11, 2015

Dear Madam.

Suo: He-Accreditation

This has reference to your application to GO-NAUET for re-accreditation IRA) as EM Consultant Organization and the assessment carried for same in your organization from Mar. 13 12-13-14, 2014.

The Accreditation Committee itas approved renewal of accreditation given to your organization for a period of three years from Mar. 14, 2014 to Mar. 15, 2017 subject to coverage of balance Functional areas and specific response to NCs/Obs/Alexts issued, (I applicable (Nefer American III) with the Inflorence details

- 1. Annexure |
- Scope of accreditation
- 2. Annuxure II Non-Conformances/ Observations/ Alerts (NCs/ Obs./ Alerts)
- Annovane III Terms and consistents of accreditation
- Andware IV Result of assessment
- 5. Antexare V Ciuldelines for addressing Major Non Conformances/ Observations/ Alerts
- 6 Addressure VI Format to be followed for mentioning the names of the experts involved in EA reports prepared by Eco Chem Sales & Services.

Result of RA including Non-Conformances/ Observations/ Alerts (WS/ Obs./ Alerts) applicable in your organization as per RA are posted on QCI website vide minotes of the Accredition Committee meetings dated Apr. 11, Nov. 19 and Nov. 26, 2014.

Point met requested for minimul crosson action for the NCs/ Glos, as per guidednes by June 11, 2015. Continuation of this accreditation of your organization is subject to the clearance of all dries by your organization, satisfactory contributed to New-Conformances/ Observations/ Alerts (NCs/ Obs./ Alerts).

With best regards,

FOURS SINCEREY,

[Abbay Sharum]

(Abbry Sharium) Assistant Director

Institution of Engineers Building, 2nd Floor, Bahadur Shah Zafar Mary, New Dehr - 110 802, India Tel: 101-11-2337 9321, 2337 8057. Fax: +91-11-2337 8878 e-meil : nabetgodin.org. Website : www.qoin.org.

Schemet for Accessitioning of UA Compilated Organizations

Scope of Accreditation.

Annexure I

	Sector number	11						
SL No.	As per As p MoEE NABET Notification Scheme		Name of Sector					
1.	1(4)(4)	工同位	1610	1610	1610	·	Mining of inmetals including Open cast/ underground mining	- ù-
2.	4 (4)	a	Thermal Power Plants.	. A.				
3	3 (a)	a	Metalliargical industries (ferrical & new /remail) - Earth gamery and secondary	à				
4.	3361	9	Cement Plants	U.				
- 5	5.100	3.6	Chemical Fertilizers	8				
б,	\$404	37	Pesticides industry and posticide operitic intermediates (excluding luminiations)	۸.				
7,	10	29	Toutile - Lettern and maximized Alberts					
8.	E3I)	21	Swithetic organic chemicals industry towns & dyo interviewinter: bulk drugs and intermediates outsailing drug formulations; synthetic rubbers; basic organic chemicals, other synthetic property chemicals and chemical intermetioners).					
9.	9. Sil) 24		Pulp & paper industry excluding manufacturing of paper from anatopaper and masufacture of paper from residy pulp without breaching					
10.	Ģ (a)	27	CB 8 gas transportation pipoline (cruck and rollemy)/ petrochemical products), passing through national satis/ territories/ const confu/ etologically sensitive Areas incoding UKS terminal	-à-				
3,1	7 (n)	19.	Parts, hashours, juties, mains terminals, break waters and through g	β-				
12	710	эĄ	Highways, Railways, transport serminals, mass rapid transport apitems					
13.	814)	-10	Building and large communities perjects including shopping mails, multiplenes, commencial complexes, binning etiales, hexpitals, institution;					
			Total = 11 Sectors					

(Abriay Sharma) Assistant Director

Piege 2

ECO CHEM SALES & SERVICES

PAGE 350

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GPCB

GUJARAT POLLUTION CONTROL BOARD

1 7 JAN 2015

PARYAVARAN BHAVAN Sector 10-A, Gandhinagar 382 010 Phone (079) 23226295 Fax (079) 23232156 Website : www.gpcb.gov.m R.P.A.D

No. GPCB/EA-57(2)/ 30/372

To,

M/s. Eco System Resource Management Pvt. Ltd., Office Floor, Ashoka Pavillion-A, Opp. Kapadia Health Club, New Clvil Road, Surat-395 001.

Sub: Recognition as Schedule-II Environmental Auditor. Str.

This refers to your application for the recognition as Environmental Auditor, subsequent interview and visit of your Laboratory by the Environment Audit Committee members. It is recommended by the Environment Audit Committee members, to recognize your firm as Schedule-II Environmental Auditor for carrying out the Environmental Audit under Environment Audit Scheme with following conditions.

- 1) Recognition is valid up to 31/12/2016.
- 2) You shall have maximum three team for the Environment Audit.
- 3) Team members shall be as under:

Team-1		
Sr. No.	Name	Designation
1	Mrs. Rekha S. Shah	Environment Engineer
2	Mr. Praful S. Patel	Chemical Engineer
3	Mr. Rajesh M. Parekh	Chemist
4	Ms. Priti Raval	Microbiologist
Team-2		
1	Mrs. Hemlatta Patel	Environment Engineer
2	Mr. Kirtan Patel	Chemical Engineer
3	Mr. Harish S. Patel	Chemist
4	Ms. Disha Desai	Microbiologist
Team-3		
1	Ms. Forum Desai	Environment Engineer
2	Mr. Dipak Maru	Chemical Engineer
3	Mr. Bharat Patel	Chemist
4	Mrs. Dipti H. Patel	Microbiologist

4) You shall prepare and submit the Environmental Audit Report and comply the conditions for Environment Auditors as per the Hon'ble High Court order dated 20/12/1996, 13/03/1997, 16/09/1999, and also the Guidelines prepared by Gujarat Pollution Control Board in this regard, for the Environment Audit Scheme along with the Adequacy and Efficacy certificates as per prescribed format.

(P.T.O.)

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

ECO CHEM SALES & SERVICES

PAGE 351

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- 5) Environment Audit Report shall be submitted in prescribed format.
- 6) You shall apply for renewal of Environment Auditor 3 months before expiry of the recognition with the scrutiny fees to this Board.
- This recognition is subject to periodic evaluation of your facility and subject to change based on performance.
- 8) In case of change in men power, team member or any other suggestion, recommendation or any issue, you shall appear before the Environment Audit Committee.

This letter is issued with the permission of competent authority.

For and on behalf of GPCB ada SI.

(Sushii Vegda) Senior Environmental Engineer Environment Audit Cell

H)

INWARD NO. 2065 DATE 21-01-15 TO

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure- 1 EC Copy

F. No. J-11011/85/2009- IA II (I) Government of India Ministry of Environment and Forests (I.A. Division)

Paryavaran Bhawan CGO Complex, Lodhi Road New Delhi – 110 003 E-mail : <u>plahujarai@vahoo.com</u> Telefax: 011 – 2436 3973 Dated: 13th May, 2009

To,

The General Manager-SHE Dept. M/s Atul Limited AT& Post. Atul -396020 Dist. Vaisad, Gujarat

E-mail : sushil kharkwal@atul.co.in

Subject: Expansion of pesticide and Synthetic Organic Chemicals manufacturing unit at Post: Atul Dist. Valsad, Gujarat by M/s Atul Limited- environmental clearance regd.

Sir.

This has reference to your letter no. nil dated 9.2.2009 along with form 1 and prefeasibility report on the above mentioned subject seeking environmental clearance under the Environment impact Assessment Notification, 2006.

2.0 The Ministry of Environment and Forests has examined your proposal. It is noted M/s Atul Limited have proposed for expansion of pesticide and Synthetic Organic Chemicals manufacturing unit in Dist. Valsad in Gujarat. Details of the products to be manufactured along with their capacity are annexed. Environmental clearance for the existing capacity was accorded on 20th February 2004. No eco-sensitive areas are located within 10 km radius of the plant. River Par flows at a distance of 1km from the unit. The proposed expansion will be carried within the existing unit having land area of 10.87,340 m2, of which green belt will be developed in 1,42,981 m2 of the land area. Total cost of the project will be Rs. 777.8 Crores. An amount of Rs. 10.03 crores (Incl. existing cost of 8.33 crores) will be utilized for environmental protection measures.

3.0 The total water requirement after the proposed expansion will be 20,532 m3/d, which will be sourced from river Par. Industrial waste water generation will be 17,216 m3/d, out of which 23 m3/d high COD effluent will be incinerated in company's own incinerator, 97 m3/d high TDS effluent will be evaporated in proposed Multiple Effect Evaporation system & remaining 15,383 m3/d of normal effluent stream after mixing with other effluent like condensate (67 m3/day) from MEE, 1833 m3/day from boller, cooling tower and others etc and thus total effluent quantity of 17283 m3/day will be treated in company's own effluent treatment plant and treated effluent will be discharged into pipeline of 4 km length which has been constructed by M/s Atul Ltd, and finally discharged into estuary zone of river Par Ammonia bearing effluent shall be subjected to ammonia recovery before mixing with the normal effluent stream. Phenol containing effluent will be isolated and phenol will be recovered for the reuse in the next batch. Power requirement will be met through company's own captive power plant of 34 MW capacity. No additional DG set is required apart from the existing DG set of 3100 KVA. Fuel requirement for DG set will be HSD (12 lt/hr.).

EXPANSION IN EXISTING CAPTIVE POWER PLANT

-2-

4.0 Process emissions in the form of SO2, NH3, Cl2 and HCI will be controlled by scrubbers. Acetone, Methanol, IPA, Toluene, n-Hexane, Benzene & Dioxane are being used as solvents. Solvents will be recovered & reused. Separate go-downs for the storage of finish goods, raw materials & separate tank farm for solvents & other chemicals storage as per MSIHC Rules 1989 shall be provided.

5.0 After proposed expansion, additional 19:208 MT/month of activated carbon, 19:2 MT/month of spent carbon, 118.87 MT/month of filter cake with resin contamination, 2.1 MT/month of pyridine based insecticides & herbicides (Darco / Filter aid Sludge), 13:22 MT/month of Sulfonyl Urea (Residue) will be incinerated in company's own incinerator having sufficient capacity and designed as per CPCB guidelines. 1 MT/month of sludge from waste water treatment plant, 0.01 MT/month of sludge from wet scrubber, 0.12 MT/month of incinerated ash will be disposed off at company's own TSDF site. 1000 nos./month of liners/bags, 50 nos./month of drums/HDPE carboys will be reused or sold to authorized recycler after decontamination. Each category of waste will be stored in segregated area in covered storage shed with chemical proof flooring and R.C.C. wall to prevent a leaching due to rain during monsoon. Leachate collection system will be provided which be connected to ETP inlet.

6.0 All the Pesticides & Pesticide Intermediates and organic manufacturing units are listed at serial no. 5(b) and 5 (f) respectively of schedule of EIA Notification, 2006. The pesticide manufacturing units are category 'A' Projects. The Organic chemical manufacture units are categorized 'A' or 'B' depending upon their location outside or inside the notified industrial area. The proposed unit is located outside the industrial area. Hence the project has been appraised at the centre. The proposal was considered by the Expert Appraisal Committee (Industry) in the 92nd meeting held on 18-20th March, 2009. The Committee recommended the project for grant of environmental clearance as per para 7(ii) of EIA Notification, 2006 exempting the project from preparation of EIA and public hearing.

7.0 Based on the information submitted by the project authorities, the Ministry of Environment and Forests hereby accords environmental clearance to above project under the provisions of EIA Notification, dated 14th September 2006 subject to the compliance of the following Specific and General Conditions:

A. SPECIFIC CONDITIONS:

Industrial waste water generation shall not exceed 17.216 m3/d, out of which 23 m3/d high COD effluent shall be incinerated in company's own incinerator, 97 m3/d high TDS effluent shall be evaporated in proposed Multiple Effect Evaporation system & remaining 15,383 m3/d of normal effluent stream after mixing with other effluent like condensate (67 m3/day) from MEE, 1833 m3/day from boiler, cooling tower and others etc. and thus total effluent quantity of 17283 m3/day shall be treated in company's own effluent treatment plant and treated effluent shall be discharged into pipeline of 4 km length which has been constructed by M/s Atul Ltd and finally discharged into estuary zone of river Par. Ammonia bearing effluent shall be subjected to ammonia recovery before mixing with the normal effluent stream. Phenol containing effluent will be isolated and phenol will be recovered for the reuse in the next batch. The treated effluent shall conform to the prescribed standards. The domestic effluent shall be disposed off through septic tank /soak pit.

-3-

- I. Process emissions in the form of SO2, NH3, Cl2 and HCI shall be scrubbed with scrubbers. The emissions shall be dispersed through stack of adequate height as per CPCB standards. The gaseous emissions from the DG sets shall be dispersed through stack of adequate height as per CPCB standards. Acoustic enclosures shall be provided to the DG set to control the noise pollution.
- iii. The company shall upload the status of compliance of the stipulated environmental clearance conditions, including results of monitored data on its website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MOEF, the respective Zonal office of CPCB and the State Pollution Control Board. The criteria pollutant levels namely, SPM, RSPM, SO2, Nox (ambient levels as well as stack emissions) or critical sectoral parameters like VOC, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- The company shall adopt cleaner production technology to minimize the quantity of fresh water requirement and process effluent generation.
- v. The Company shall obtain Authorization for collection, storage and disposal of hazardous waste under the Hazardous Waste (Management, Handling and Trans boundary movement) Rules, 2008 for management of hazardous wastes and prior permission from GPCB shall be obtained for disposal of solid / hazardous waste in the TSDF. The concerned company shall undertake measures for fire fighting facilities in case of emergency.
- vi. The project authorities shall strictly comply with the rules and guidelines under Manufacture. Storage and Import of Hazardous Chemicals Rules, 1989 as amended in October, 1994 and January, 2000. All Transportation of Hazardous Chemicals shall be as per the MVA, 1989.
- vii. The company shall undertake following Waste Minimization measures -
- Metering and control of quantities of active ingredients to minimize waste.
- Reuse of by-products from the process as raw materials or as raw material substitutes in other processes.
- Use of automated filling to minimize spillage.
- Use of "Close Feed" system into batch reactors
- Venting equipment through vapour recovery system.
- Use of high pressure hoses for equipment clearing to reduce wastewater generation.
- viii. Fugitive emissions in the work zone environment, product, raw material storage area shall be regularly monitored. The emissions shall conform to the limits imposed by I.
- ix. The project authorities shall provide the chilled brine solution in secondary condenser for condensation of the VOCs. The project authority shall ensure that the solvent recovery shall not be less than 95%. The VOC monitoring shall be carried in the solvent storage area and data submitted to the Ministry.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

x. Solvent management shall be as follows :

-4-

- A. Reactor shall be connected to chilled brine condenser system
- B. Reactor and solvent handling pump shall have mechanical seals to prevent leakages.
- C. The condensers shall be provided with sufficient HTA and residence time so as to achieve more than 95% recovery
- D. Solvents shall be stored in a separate space specified with all safety measures.
- E Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done.
 - F. Entire plant shall be flame proof. The solvent storage tanks shall be provided with breather valve to prevent losses.
- xi. Hazardous chemicals shall be stored in tanks in tank farms, drums, carboys etc. An area of 33% shall be developed as green belt. Selection of plants species shall be as per the Guidelines of CPCB.
- xii. The Company shall harvest surface as well as rainwater from the rooftops of the buildings and storm water drains to recharge the ground water and use the same water for the various activities of the project to conserve fresh water.
 - xiii. Occupational health surveillance of the workers shall be carried out on a regular basis and records shall be maintained as per the Factories Act.

3. GENERAL CONDITIONS:

- The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board.
- No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.
- iii. At no time, the emissions shall exceed the prescribed limits. In the event of failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.
- iv. The gaseous emissions (NO_x, HCI, SO2 and SPM) and Particulate matter along with RSPM levels from various process units shall conform to the standards prescribed by the concerned authorities from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the unit, the respective unit shall not be restarted until the control measures are rectified to achieve the desired efficiency. Stack monitoring for SO2, Nox and SPM shall be carried.

-5-

- v. The locations of ambient air quality monitoring stations shall be decided in consultation with the State Pollution Control Board (I) and it shall be ensured that at least one stations is installed in the up wind and downwind direction as well as where maximum ground level concentrations are anticipated.
- vi. Dedicated scrubbers and stacks of appropriate height as per the Central Pollution Control Board guidelines shall be provided to control the emissions from various vents. The scrubbed water shall be sent to ETP for further treatment or sell to actual end users
- vii. The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time).
- viii. Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and routine periodical medical examinations for all employees shall be undertaken on regular basis.
- ix. Usage of PPEs by all employees/ workers shall be ensured.
- x. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in the project report submitted to the Ministry All the recommendations made in respect of environmental management and risk mitigation measures relating to the project shall be implemented.
- xi. The company will undertake all relevant measures for improving the Socioeconomic conditions of the surrounding area. CSR activities will be undertaken by involving local villages and administration
- xii. The company shall undertake eco-developmental measures including community welfare measures in the project area for the overall improvement of the environment.
- xiii. A separate Environmental Management Cell equipped with full fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.
- xiv. The project authorities shall earmark adequate funds to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.
- xv. A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad/Municipal Corporation, Urban local Body and the local NGO, if any, from who suggestions/ representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

-6-

- xvi. The implementation of the project vis-à-vis environmental action plans will be monitored by Ministry's Regional Office at Bhopal /State Pollution Control Board/Central Pollution Control Board.
- xvii. The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the I/Committee and may also be seen at Website of the Ministry at <u>http://envfor.nic.in</u>. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.
- xviii. The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.

 The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.

9. The Ministry reserves the right to stipulate additional conditions, if found necessary. The company in a time bound manner will implement these conditions.

 Any appeal against this environmental clearance shall lie with the National Appellate Authority, if preferred, within a period of 30 days as prescribed under section 11 of the National Environment Appellate Authority Act, 1997.

11. The above conditions will be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, Air (Prevention & Control of Water Pollution) Act, 1981, the Environment (Protection) Act, 1986 Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

P Alugacier

Dr.P.L. Ahujarai) Director

Copy to:

- The Secretary, Forests & Environment Department, Government of Gujarat. Sachivalaya, 8th Floor, Gandhi Nagar-382 010, Gujarat.
- The Chief Conservator of Forests (Western Zone), Ministry of Environment & Forests, Regional Office, E-5, Arara Colony, Link Road -3, Bhopal -462 016, M.P.
- The Chairman, Central Pollution Control Board Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi – 110 032.
- The Chairman, Gujarat State Pollution Control Board, Paryavaran Bhawan, Sector 10 A, Gandhi Nagar-382 043, Gujarat.
- Monitoring Cell, Ministry of Environment and Forests, Paryavaran Bhavan, CGO Complex, New Delhi.
- 6. Guard File/Monitoring File/Record File.

(Dr.P.L. Ahujarai) Director

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure to file no. F. No. J-11011/85/2009- IA II (I)

List of Details of products and their production capacities are given below:

Sr.		capacity, MT/month				
No	Product name	existin g	propose d	Total after expansion		
	DYES	1.1.1	0.0			
1	Azo dyes	550.0	0.0	550.0		
2	Sulfur Black	250.0	0.0	250.0		
3	Sulfur Dyes range	25.0	0.0	25.0		
4	Naphthol Range	75.0	0.0	75.0		
5	Fast Color Bases	40.0	0.0	40.0		
6	Disperse Dyes (Atul – East) + Disperse Dyes (Atul – West)	118.5	0.0	118.5		
7	Optical Brighteners	10.0	0.0	10.0		
8	Reactive Dyes	127.3	0.0	127.3		
9	Vat Dyes	105.0	0.0	105.0		
	Total Production Capacity of Dyes	1300.8	0.0	1300.8		
-	Chlor – Alkali Industry					
10	Caustic Soda / Potash & Sodium Sulfide	1800.0	0.0	1800.0		
11	Liquid Chlorine / HCI	1600.0	0.0	1600.0		
	Total Production Capacity of Chlor – Alkali Industry	3400.0	0.0	3400.0		
-	Pesticides Tech.			1.1.1.1.1		
12	Carbamate group of Agrochemicals	33.3	0.0	33.3		
13	Diuron	20.0	0.0	20.0		
14	Isoproturon	8.3	0.0	8.3		
15	Metoxuron	8.3	0.0	8.3		
16	Trichlo Carbon	8.3	0.0	8.3		
17	Cartap.HCI	50.0	0.0	50.0		
18	Carbendazim	20.9	0.0	20.9		
19	Herbicides (2.4 - D & related products)	1030.0	640.0	1670.0		
20	Pyridine based insecticides & Herbicides chemical Imidacloprid	1.67	23.33	25.0		
21	Triazole based Fungiside	1.67	0.0	1.6		
22	Pyrethroides	6.0	4.0	10.0		
23	Sulphonyl Urea	1.67	23.33	25.		
24	MCPA	0.0	500.0	500.		
25	Glyphosate	0.0	50.0	50.0		
26	Isoprothiolane	0.0	8.3	8,3		
27	Fipronil	0.0	5.0	5.		
28	Formulations	0.0	200.0	200.0		
	Total Production Capacity of Pesticides	1190.1	1453.96	2644.0		

-		1		
1				
	Bulk Drugs & Pharmaceuticals			
29	Mabendazole	2.0	0.0	2.
30	Tolbutamide	2.5	0.0	2
31		15.0	0.0	15.
32		9.6	0.0	9.
33	Contraction of the second of t	2.5	0.0	2
34	Atenolol	1.7	0.0	1.
35	Fresamide	1.3	0.0	1.
36	Trimethoprim	0.9	0.0	0.
37	Para Hydroxy acetophenone	1.7	0.0	1.
38	Para Hydroxy phenyl acetamide	3.0	0.0	3.0
39	Acyclovir	5.2	0.0	5.1
40	Bathenechol	5.2	0.0	5.4
41	Pharma Intermediates & Chemicals	145.0	155.0	300.0
	Total production capacity of Bulk Drugs &	110.0	100.0	500.0
-	Pharmaceuticals	195.6	155.0	350.6
	Manufacture of resins	-		
42	Epoxy Resin	450.0	2050.0	2500.0
43	Vinyl Ester Resins	37.5	0.0	37.5
44	Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins	20.8	0.0	20.8
45	UF / MF / PF / Di Cyanadiamide Resins	270.9	0.0	270.9
46	Polyamide Resins	161.7	0.0	161.7
	Total production of this group	940.9	2050	
	Other chemicals	540.5	2050	2990.9
47	Anthraquinone, Naphthalene, Benzene Intermediates. (Including Beta – Naphthol & BON Acid	740.0	0.0	740.0
48	M Hydroxy phenol	460.0	0.0	740.0
49	Carbamite	30.0	0.0	460.0
50	Chlorzoxazone & other related products	5.0	0.0	
51	Agro, pharma intermediates, Isocyanats & Carbonate esters etc.	100.0	0.0	5.0
52	4 Ethyl 2.3 - Diocopiperazino carbonyl chloride	3.3	0.0	100.0
53	Imino Dibenzyl 5 Carbonyl Chloride	0.8	0.0	3.3
54	Other Chemicals (DCP, MCA, MEA, DEA, PCI3, PAA, MAP etc.)	425.0	0.0	0.8
55	Formaldehyde and base products	3200.0		425.0
6	Sulfuric Acid / Oleum / Chlorosulphonic Acid & salts	11550.	0.0	3200.0
7	Sulpha Drug Intermediates	102.9	0.0	11550.0
8	Acetyl Sulphanilyl Chloride & its derivatives	193.8	0.0	193.8
9	Acetanilide	1500.0	0.0	1500.0

EXPANSION IN EXISTING CAPTIVE POWER PLANT

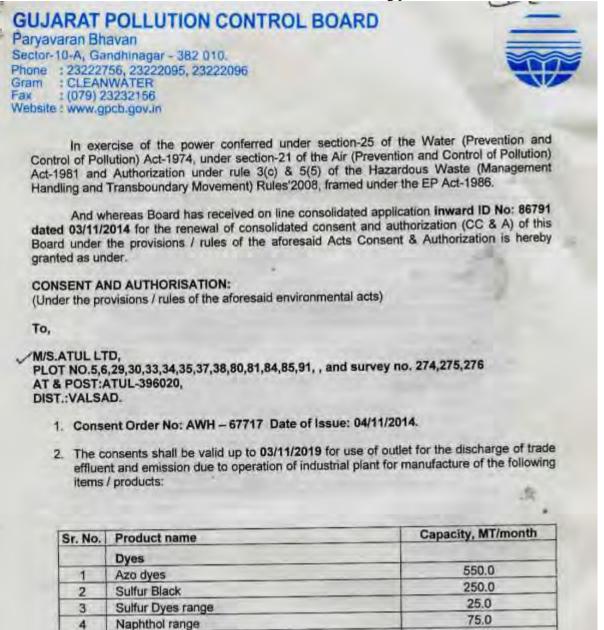
	Total production capacity	26481. 5	4756.46	31237.96
	Total production of this group	19454. 1	1097.5	20551.6
68	Bisphenol S & Intermediate Chemicals	16.6	0.0	16.6
67	Hardener & Intermediates	19.2	680.8	700.0
66	Hardener & Auxiliaries	83.3	416.7	500.0
65	Epoxy Intermediates	23.8	0.0	23.8
64	Hexamine	150.0	0.0	150.0
63	Bis Phenol A	416.7	0.0	416.7
62	Sulphanilic acid	25.0	0.0	25.0
61	Pyrazole Base	10.5	0.0	10.5
60	Sulpha Methyl Phenazole Sodium	1.1	0.0	1.1

LIST OF SURPLUS PRODUCT

Sr. No.	Product name	capacity, MT/month
1	DMA.HCI	90
2	25% NH3 soln.	144
3	30% HCI soln.	230

......

P. ALujoran .


ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-2 CC&A Copy

1

40.0

118.5

10.0

127.3

105.0

1300.8

1800.0

1600.0

3400.0

Fast Color Bases

Optical Brighteners

Total production capacity of Dyes

Caustic Soda / Potash & Sodium Sulfide

Total production capacity of Chlor- Alkali

Disperse Dyes

Reactive Dyes

Chlor- Alkali

Liquid Chlorine / HCI

Vat Dyes

5

6

7

8

9

10

EXPANSION IN EXISTING CAPTIVE POWER PLANT

	Pesticides Tech	
12	Carbamate group of Agrochemicals	33.3
13	Diuron	20.0
14	Isoproturon	8.3
15	Metoxuron	8,3
16	Trichlo Carbon	8.3
17	Cartap.HCI	50.0
18	Carbendazim	20.9
19	Herbicides (2,4 - D & related products)	1670.0
20	Pyridine based insecticides & Herbicides chemical Imidacloprid	25.0
21	Triazole based Fungicide	1.67
22	Pyrethroides	10.0
23	Sulphonyl Urea	25.0
24	MCPA	500.0
25	Glyphosate	50.0
26	Isoprothiolane	8.3
27	Fipronil	5.0
28	Formulations	200.0
	Total production capacity of Pesticides	2644.07
-		
	Bulk Drug and Pharmaceuticals	
29	Mabendazole	2.0
30	Toibutamide	2.5
31	Quiniodochlor	15.0
32	Bulk Drug & Intermediates	9.6
33	Diclofenac Sodium / Potassium	2.5
34	Atenolol	1.7
35	Fresamide	1.3
36	Trimethoprim	0.9
37	Para Hydroxy acetophenone	1.7
38	Para Hydroxy phenyl acetamide	3.0
39	Acyclovir	5.2
40	Bathenechol	5.2
41	Pharma Intermediates & Chemicals	300
	Total production capacity of Bulk Drug and Pharmaceuticals	350.6
	Resins	A CONTRACTOR OF THE OWNER
42	Epoxy Resin	2500.0
43	Vinyl Ester Resins	37.5

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD

Paryavaran Bhavan

Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

44	Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins	20.8		
45	UF / MF / PF / Di Cyanadiamide Resins	270.9		
46	Polyamide Resins	161.7		
	Total production capacity of Resins	2990.9		
	Other Chemicals			
47	Anthraquinone, Naphthalene, Benzene Intermediates. (including Beta - Naphthol & BON Acid	740.0		
48	M Hydroxy phenol	460.0		
49	Carbamite	30.0		
50	Chlorzoxazone & other related products	5.0		
51	Agro, pharma intermediates, Isocyanats & Carbonate esters etc.	100.0		
52	4 Ethyl 2,3 - Diocopiperazino carbonyl chloride	3.3		
53	Imino Dibenzyl 5 Carbonyl Chloride	0.8		
54	Other Chemicals (DCP, MCA, MEA, DEA, PCI ₃ , PAA, MAP etc.)	425.0		
55	Formaldehyde and base products	3200.0		
56	Sulfuric Acid / Oleum / Chlorosulphonic Acid & salts	11550.0		
57	Sulpha Drug Intermediates	193.8		
58	Acetyl Sulphanilyl Chloride & its derivatives	1500.0		
59	Acetanilide	500.0		
60	Sulpha Methyl Phenazole Sodium	1.1		
61	Pyrazole Base	10.5		
62	Sulphanilic acid	25.0		
63	Bis-Phenol A	416.7		
64	Hexamine	150.0		
65	Epoxy Intermediates	23.8		
66	Hardener & Auxiliaries	500.0		
67	Hardener & Intermediates	700.0		
68	Bisphenol S & Intermediate Chemicals	16,6		
69	Sodium Thio Sulphate	900 MT/M Dry basis or 1900 MT/M Wet basis		
	Total production capacity of this group	21451.6 when Sodium Thio Sulphate Dry basis 22451.6 when Sodium Thio Sulphate Wet basis		
	Grand Total production capacity	32137.96 when Sodium Thio Sulphate Dry basis 33137.96 when Sodium Thio Sulphate Wet basis		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

3.0 CONDITIONS UNDER THE WATER ACT:

- 3.1 The quantity of the industrial discharge shall not exceed 17,283 KLPD excluding Atul Bio Science Ltd (ABL).
- 3.2 High COD effluent 23 KLPD shall be incinerated in own incinerator within premises.
- High TDS effluent 97 KLPD shall be evaporated in multiple effect Evaporator system. 3.3 The quantity of the domestic waste water (sewage) shall not exceed 937 KLPD.
- 3.4 Trade effluent :

The applicant shall provide adequate effluent treatment in order to achieve the quality of the treated effluent as per GPCB norms mentioned in column No.2

PARAMETERS	PERMISSIBLE LIMITS
pH	5.5 to 9.0
Temperature	40° C
Colour (pt.co.scale) in units	
Suspended Solids	100 mg/l
Oil and Grease	10 mg/l
Phenolic Compounds	5 mg/l
Cyanides	0.2 mg/l
Fluorides	2 mg/l
Sulphides	2 mg/l
Ammonical Nitrogen	50 mg/l
Arsenic	0.2 mg/l
Total Chromium	2 mg/l
Hexavelent Chromium	1 mg/l
Copper	3 mg/l
Lead	2 mg/l
Mercury	0.01 mg/l
Nickel	5 mg/l
Zinc	15 mg/l
Cadmium	2 mg/l
Phosphates as P	- 5 mg/l
BOD (3 days at 27°C)	100 mg/l
COD	250 mg/l
Insecticides/Pesticides	Absent
Sodium absorption Ratio	26
Phosphate	5 mg/l
Manganese	2 mg/l
Tin	0.1 mg/l
Bio-assay test	90% Survival of fish after 96 hour in 100% effluent.

"All efforts shall be made to remove colour & unpleasant odour as far as practicable.

- 3.5 The final treated effluent from central ETP confirming to the above standards shall be collected in the guard pond and then discharged through closed pipeline to estuary zone of River Par via diffuser.
- 3.6 Sewage shall be disposed of through septic tank/soak pit system.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD Paryavaran Bhavan

Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

4.0 CONDITIONS UNDER THE AIR ACT:

4.1 (a) The following shall be used as fuel in D.G. Sets as following rates:

Sr. No.	Fuel	Quantity	
1	Coal/Lignite	30200MT/Month	
2	Diesel Oil	340KL/Month	
3	Fumace Oil	1100KL/Month	
4	Natural Gas	200000M3/Month	

4.1 (b)Following boilers shall be used for Captive power consumption :

Boiler	Registration No.	Located at	Steam generation capacity	MW	
FBC boiler E1	GT 2836	East Site	34 TPH	15+5+4+2.5	
FBC boiler E2	GT 2896	East Site	34 TPH		
FBC boiler E3	GT 4565	East Site	50 TPH		
FBC W1	GT 3266	West Site	45 TPH	5.6+2	
Coal fired boiler W1	GT 1789	West Site	18.18 TPH		
Coal fired boiler W2	GT 1801	West Site	18.18 TPH		
Coal fired boiler	GT 2454	North Site	7.3 TPH	and the second	

4.2 The applicant shall install & operate air pollution control system in order to achieve norms prescribed below in 4.3.

4.3 The flue gas emission through stack attached to boiler shall conform to the following standards:

Sr.	Stack	Capacity	Stack Ht.	Air Pollution	Perm	issible	imit
No.	attached to	Ton/hr			PM	SO2	NOX
			In meter	Control system	mg/m3	ppm	ppm
	East Site						
1	FBC boiler E1	34	56	Electrostatic precipitator	150	100	50
2	FBC boiler E2	34	56		150	100	50
3	FBC boiler E3	50	80,3		150	100	50
4	Hot oil Unit (Resorcinol Plant)	32.5	32.5		150	100	50

EXPANSION IN EXISTING CAPTIVE POWER PLANT

1.4	West Site						
5	FBC boiler W1	45	70	Electrostatic precipitator	150	100	50
6	Coal fired Boiler W1	18.18	35		150	100	50
7	Coal fired Boiler W2	18.18	35		150	100	50
8	Hot oil Plant Shed B	19	19*		150	100	50
9	Oil Burner Shed B (standby)	17	17		150	100	50
	North Site						-
10	Thermic Fluid heater of DCO/DAP Plant	12	12		150	100	50

4.4 The process emission through various stacks/ vent of reactors, process, vessel shall confirm to the following standards:

Sr. No.	Stack attached to	Stack Ht., m	Stack dia., mm	APCM	Scrubbing media	Parameter	Permissible limit
Pho	sgene plant						
1	Phosgene Plant	15	300	Alkali & water scrubber	Caustic + water	COCI2	0.1 ppm
Cau	stic Soda plant				all states		
2	Dechlorination	35	350	Hypo scrubber	Hypochlorite	Cl ₂	9 mg/ NM ³
	plant				solution	HCI	20 mg/ NM ³
3	Common	25	100	water scrubber	Water	Cl ₂	9 mg/ NM ³
~	stack of HCI Sigri Unit-1& 2		100		-	HCI	20 mg/ NM ³
FCE	3 plant						The second se
4	Foul gas	26,5	600	Caustic	Caustic	SO ₂	40 mg/ NM ³
	scrubber			scrubber	100	NOx	25 mg/ NM ³
Sul	furic acid plant						
5	Sulfuric acid plant	30	500	Water scrubber with DCDA	Water	SO2	2 kg/ton of conc. (100% Acid product)
		1		system		Acid mist	50 mg/ NM ²
6	Chlorosulfonic	11	150	water scrubber	Water	Cl ₂	9 mg/ NM ³
	Acid Plant Reactor				HCI	20 mg/ NM ³	

6

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD

Paryavaran Bhavan

Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

inci	nerator	-					
7	Incinerator	40	300	Alkali & water scrubber	Caustic + water	PM	150 mg/ NM
					+ water	SO2	40 mg/ NM ³
						NOx	25 mg/ NM ³
NI p	lant						
8	Foul gas	26.5	60	Caustic scrubber	Caustic	SO ₂ NOx	40 mg/NM ³ 25 mg/ NM ³
NIDE	scrubber		-	scrubber		NUA	20 mg/ mm
9	Spray Dryer	21	540	water	Water	PM	150 mg/NM ³
2.4	D plant				120-00		
10	Chlorinator;	26.5	150	Caustic	Caustic	Cl ₂	9 mg/ NM ^a
	2,4D plant		1000	scrubber		HCI	20 mg/ NM ³
11	Chlorinator;	26.5	150	Caustic	Caustic	Cl ₂	9 mg/ NM ³
	2,4D plant			scrubber		HCI	20 mg/ NM ³
12	Chlorinator;	26.5	150	Caustic	Caustic	Cl ₂	9 mg/ NM ³
	2,4D plant	1		scrubber	-	HCI	20 mg/ NM3
13	Chlorinator;	26.5	150	Caustic	Caustic	Cl ₂	9 mg/ NM ³
0	2,4D plant		1.	scrubber		HCI	20 mg/ NM3
14	Chlorinator;	26.5	150	Caustic	Caustic	Clz	9 mg/ NM ³
	2,4D plant	-	-	scrubber		HCI	20 mg/ NM ³
15	Common scrubber; 2,4D plant	5	20	Caustic scrubber	Caustic	Cl₂ HCI	9 mg/ NM ³ 20 mg/ NM ³
16	Dryer-1	26.5	350	bag filter, water scrubber	Water	PM with Pesticide Compound	20 mg/ NM ³
17	Dryer-2	26.5	500	Cyclone, bag filter, caustic scrubber	Caustic	PM with Pesticide Compound	20 mg/ NM ³
18	Dryer-3	26.5	550	Cyclone, bag filter, caustic scrubber	Caustic	PM with Pesticide Compound	20 mg/ NM ³
19	Dryer-4	26.5	750	Cyclone, bag filter, caustic scrubber	Caustic	PM with Pesticide Compound	20 mg/ NM ³
20	Common scrubber, 2,4 D plant	5	20	Caustic scrubber	Caustic	Phenol	-
CP	Plants						
21	MCPA	19	150	Alkali & water	Caustic +	Cl ₂	9 mg/ NM ²
			scrubber	water	HCI	20 mg/ NM ³	
-		12.7				SO ₂	40 mg/ NM ²
22	Fipronil	19	150	Alkali &	Caustic +	SO2	40 mg/ NM ³
				Water scrubber	water	HCI	20 mg/ NM3

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

23	Imidacloprid	20	80	water followed by acid scrubber	Water & acid	NH ₂	175mg/ NM ³
24	Pyrathroids	19	150	Alkali & water scrubber	Caustic + water	SO ₂	40 mg/ NM ³
						HCI	20 mg/ NM3
25	Stack at Amine plant	5	150	Caustic scrubber	Caustic	NH ₃	175 mg / NM ³
MPS	SL plant	-					
26	Phosgene Scrubber at MPSL	7	150	Caustic scrubber	Caustic	Phosge ne	0.1 ppm
27	Central Scrubber at MPSL	7	150	Caustic scrubber	Caustic	Phosgene	0 ₂ 1 ppm
NIC	O plant		-				
28	Central scrubber at Nico Plant	12	150	Water scrubber	Water	Acetony- tryle, IPA	-
Est	er Plant						
29	Scrubber at Ester plant for Glyphosate	12	150	Water scrubber	Water	Formaldeh yde	10 mg/ NM ³
30	Central scrubber of MCPA plant	19		Caustic scrubber	Caustic	HCI	20 mg/ NM ³
We	st Site	-					
31	Shed A	19	1	Caustic	Caustic	Br ₂	2 mg/ NM ³
	7/14/41Reaction pan/D tank			scrubber		NOx	25 mg/ NM ³
32	Shed-B	19	150	Caustic	Caustic	Cl ₂	9 mg/ NM ³
	2/12/24 Reaction vessel			scrubber	4100	HCI	20 mg/ NM ³
33	Shed-C	19	150	Alkali &	Caustic +	Cl ₂	9 mg/ NM ³
	C5/20/15 Chlorinator			water scrubber	water	HCI	20 mg/NM ^a
34	Shed- D NIRO Spray Dryer No. 45	19	360	water scrubber	Water	PM	150 mg/NM ³
35	Shed- D NIRO Spray Dryer No. 50	19	360	water scrubber	Water	PM	150 mg/NM ³
36	Shed-E 7/12/49 Spray Dryer	19		water scrubber	Water	РМ	150 mg/ NM

EXPANSION IN EXISTING CAPTIVE POWER PLANT

ctor one am	: CLEANWATE : (079) 2323218	222095 R 56	82 010. , 23222	096				
_	e : www.gpcb.gov	19	150	Alkali & water	Gaustic	+	Cla	9 mg/ NM ³
37	Shed-F F6/1/15 Reaction vessel	19	150	scrubber	water		HCI	20 mg/ NM ³
38	Shed-G G10/8/1	11	150	Alkali & water scrubber	Caustic water	+	Cl ₂ HCI	9 mg/ NM ³ 20 mg/ NM ³
39	(receiver) Shed-H 11/6/17	19	150	Alkali & water scrubber	Caustic	+	Cl ₂ HCI	9 mg/ NM ³ 20 mg/ NM ³
40	Chlorinator Shed K K- 13/3/4 Final of Sulfuric acid	50	500	Alkali & water scrubber	Caustic water	+	SO ₂	2 kg/ton of conc. (100% Acid product
	plant						Acid mist	50 mg/ NM ³
No	rth Site							
41	N-FDH Plant	31.5	150	Bag filter			PM	150 mg/ NM
	Catalytic Incinerator	1000					SO ₂	40 mg/ NM ³
							NOx	25 mg/ NM ²
			1	the second second			FDH	10 mg/ NM ²
42	PHIN Plant	15.5	350	Water scrubber followed by two stage caustic scrubber with Ammonia/steam injection at stack	Water	+	Phosgene	0.1 ppm
43	DCDPS Plant	30	650	Alkali & water scrubber	Caustic water	+	SO3	
44	DDS Plant	20	80	water followed by acid scrubber	water & acid		NH ₃	175 mg/NM
45	SPIC II Plant	30	650	Alkali & water scrubber	Caustic water	+	SO3	-
46	SPIC I Plant	30	50	water scrubber	Water		NH ₃	175 mg/NM

4.5 Ambient air quality within the premises of the industry shall conform to the following standards:-

PARAMETERS	PERMISSIBLE LIMIT			
	Annual	24 Hrs Average		
Particulate Matter-10 (PM 10)	60 Microgram/M ³	100 Microgram/M ³		
Particulate Matter- 2.5 (PM 25)	40 Microgram/M ³	60 Microgram/M ³		
SO ₂	50 Microgram/M ³	80 Microgram/M ³		
NO.	40 Microgram/M ³	80 Microgram/M ³		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Annual arithmetic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.
- 24 hourly or 08 hourly or 01 hourly monitored values, as applicable, shall be complied with 98% of the time in a year. 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.
- 4.6 The applicant shall operate industrial plant / air pollution control equipment very efficiently and continuously so that the gaseous emission always conforms to the standards specified in condition no.4.3 and 4.5 as above.
- 4.7 The consent to operate the industrial plant shall lapse if at any time the parameters of the gaseous emission are not within the tolerance limits specified in the condition no.4.3 and 4.5 as above.
- 4.8 The applicant shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents attached to various sources of emission shall be designed by numbers such as S-1, S-2, etc. and these shall be painted /displayed to facilitate identification.
- 4.9 The Industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75 dB(a) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6a.m. and10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.
- Authorization for the [Management, Handling & Transboundary Movement of Hazardous Waste Form-2 (See rule 5 (4) for grant of Authorization for occupier or Operator handling Hazardous Waste Rules – 2008.
- 5.1 (a) Number of Authorization AWH 67717 Date of Issue :04/11/2014
- 5.1 (b) M/s. ATUL LTD, is hereby granted an authorization to operate facility for following hazardous Waste on the premises situated at PLOT NO.5,6, 29,30,33,34,35,37,38,80,81,84,85,91, and survey no. 274,275,276 AT & POST: ATUL-396 020, DIST.: VALSAD :

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD

Paryavaran Bhavan

Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

Sr.	Description	Category	Quantity MT/Month	Method of storage	Method of disposal
1	Graphite granules from decomposer,	16,1	0.0417	collection, storage	Own TSDF
2	Sludge from recycle unit, ground floor & sack filter,	16.1	0.014	collection, storage	Own TSDF after mercury recovery
3	Sludge from De-mercurisation Plant	16.1	1.00	collection, storage	Recycle
4	Membranes	16.2	6.00	collection, storage	Own TSDF
5	Waste Resin	16.2	0.05	collection, storage	Incineration
6	Sulfurised Carbon	16.2	0.003	collection, storage	Incineration
7	Activated Carbon	16.2	0.0104	collection, storage	Own TSDF
8	Brine purification sludge	16.3	22.5		Own TSDF
9	Sulphur sludge	17.1	5.83	Stored for Melting and reuse,	Reuse
10	Hot Gas filter Ash,	17.1	0.0208	collection, storage	Own TSDF
11	Bottom Sludge after recovery of Sulphur Sludge	17.1	0.50		Own TSDF
12	Waste Catalyst	17.2	0.083	collection, storage	Own TSDF
13	Spent Solvents, kl/month	20.2	5.00	Recovery	Recovery
14	OCBC / OCT distillation residue,	20.3	0.042	collection, storage	Incineration
15	Waste residue Bulk Intermediate (meta hydroxy phenol) (Tar),	20.3	15.00	Sell	Sell to reuser having GPCB permission
16	Waste residue From (Resorcinol Plant)	20.3	15.00	collection, storage	Sell to reuser having GPCB permission
17	Urea Formaldehyde Polymer Product	23.1	0.25		Incineration
18	Sludge containing higher amino compound	23.1	0.417		Incineration
19	Filter cake of Epoxy resins with resin contamination	23.1	0.833	1	Incineration
20	Epoxy Resin (Filter Cake with resin contamination)	23.1	130.29	collection, storage	Incineration

EXPANSION IN EXISTING CAPTIVE POWER PLANT

21	Aluminium Hydroxide	26.1	15.417		OWN TSDF
22	Iron sludge	26.1	80.00		OWN TSDF
23	Brass residue	26.1	0.667		OWN TSDF
24	Still / Other residue	26.1	8.67		Incineration
25	Darco / filter aid sludge	26.1	2.083		Incineration
26	Dust (Agro Plant)	26.1	3.0	collection, storage	Own TSDF
27	Iron Residue	26.1	62.5	collection, storage	Own TSDF
28	PER crystal residue	26.1	0.4	collection, storage	Incineration
29	Hyflo sludge	26.1	0.5	collection, storage	Incineration
30	Filter aid sludge for Hg recovery	26.1	1.0	Recovery of mercury	Recovery of mercury
31	Sludge from waste water treatment	26.2	5.0		Own TSDF
32	Dust from Air Filtration System	26.3	0.001	Reprocess ed	Reprocessed, Reused within industry
33	Spent carbon,	28.2	40.0	Incineration	Captive Incineration / Coll ctions, storage, Disposal by sellin to authorize cement industries for co- processing
34	Date expired discarded and off- specification product,	28.4	0.008	Incineration	Incineration
35	Spent Mother liquor, kl/month	28.5	19.75	1	To ETP after recovery
36	Spent solvent, kl/month	28.6	19.75		Solvent Recovery
37	Still / Other bottom residue,	29.1	10	Incineration	Incineration
38	Pyridine based insecticides & herbicides (Darco / Filter aid Sludge)	29.1	3.62	Incineration	Incineration
39	Sulfonyl Urea (Residue),	29.1	14.27	Incineration	Incineration
40	Triazole based Fungicides (Residue)	29.1	1.28	Incineration	Incineration
41	Pyrethroides	29.1	0.6		Incineration
42	Hyflo	29,1	15.75	collection, storage	OWN TSDF
43	Dust from Air Filtration System,	29.3	0.008	collection, storage	Incineration
44	Chemical containing residue from decontamination and disposal	33.1	0.0008	collection, storage	Incineration

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD

Paryavaran Bhavan Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

45	Liners /Bags, No./month	33.3	9500	Collection,	After
46	Drums /HDPE Carboys, No./month	33.3	250	storage, Decontami nated detoxification	Decontamination reuse / Sell to authorized party
47	Flue gas cleaning residue,	34.1	0.0008		Own TSDF
48	Toxic metal containing residue from used- ion exchange material; in water purification,	34.2	0.001	Collection, storage	Own TSDF
49	Sludge from ETP	34.3	41.667		Own TSDF
50	Gypsum from ETP	34.3	2	1	Own TSDF
51	MEA distillation residue	35.1	1.667	1	Incineration
52	Spent Catalyst	35.2	0.002		Own TSDF
53	Sludge from wet scrubber	36.1	0.02		Own TSDF
54	Incineration ash	36.2	4.62		OWN TSDF
55	Sludge & filters contaminated with oil.	3.3	0.005		Incineration
56	Used oil, kl/month	5.1	2.00	1	sell to registered refiners
57	Wastes / residues containing oil,	5.2	0.001	1	Incineration
58	Aluminum Ash	B30	2.6		Own TSDF
59	Gypsum (From meta Hydroxy Phenol Plant)	D1	840		Reuse & sell to GPCB
60	Sodium Sulphite,	D1	550		Authorized actual reusres only
61	Salt from MEE,		825		Own TSDF / Sell to actual user
62	Spent Acid	D2	400		Collection, storage, disposal by sale to the units having permission from CPCB, New Delhi under rule 11 of Hazardous Waste Rule'08.
63	Chemical Gypsum	34.3	4930 (Dry basis)		Own TSDF/ Collections, storage, Disposal by selling to authorized Cemen Industries
64	Copper Hydroxide wet cake	83	40		Collections, storage, Disposal ale to the units having

9

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

				permission from CPCB, New Delhi under rule 11 of Hazardous Waste Rule'08.Vapi.
65	Spent Organic Solvent	28.5	24.75	 Collections, storage, Disposal by sale to the units having permission from CPCB, New Delhi under rule 11 of Hazardous Waste Rule'08,
66	2,6 Dichloro Phenol	_	94.355	sell to actual users
67	2,4,6 Tri-Chlorophenol		45.925	sell to actual users
68	p-CBSA\Na-Salt		127	sell to actual users

- 5.2 The authorization is granted to operate a facility for collection, storage, within the factory premises and treatment, transportation and ultimate disposal of Hazardous wastes as mentioned in the above table as per Hazardous Waste [Management, Handling & Transboundary Movement] Rules-2008.
- 5.3 The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.
- 5.4 The authorization shall be in force for a period of five years (i.e. up to 03/11/2019).
- 5.5 TERMS AND CONDITIONS OF AUTHORISATION:
- 5.5.1 The applicant shall comply with the provisions of the Environment (Protection) Act 1986 and the rules made there under.
- 5.5.2 The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- 5.5.3 Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

GUJARAT POLLUTION CONTROL BOARD

Paryavaran Bhavan Sector-10-A, Gandhinagar - 382 010. Phone : 23222756, 23222095, 23222096 Gram : CLEANWATER Fax : (079) 23232156 Website : www.gpcb.gov.in

- 5.5.4 An application for the renewal of an authorization shall be made as laid down in rule 5 (7) (ii).
- 5.5.5 Industry shall submit annual report within 15 days and sub squinty by 31st January every year.

6. GENERAL CONDITIONS:

6.1 Any change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.

For and on behalf of GUJARAT POLLUTION CONTROL BOARD

nenor

-5

(Smt. D.P.Shah) ENVIRONMENTAL ENGINEER

Date: 10/3/2015

ISSUED TO:

M/S.ATUL LTD, PLOT NO.5,6,29,30,33,34,35,37,38,80,81,84,85,91, , and survey no. 274,275,276 AT & POST:ATUL-396020, DIST.:VALSAD.

COPY TO:

1. The Regional Officer, G.P.C. Board, Vapi

No: GPCB/CCA-VSD-313/ID: 23158/ 306616

 With a request to visit this unit & submit VR/AR along with compliance report of conditions periodically.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure - 3 Water Withdrawal Permission

25 STATE BANK OF INDIA. 41682 21177 गुजापाल VALSAD 396001. 101128 JAN 28 2012 GUUSOSIAUTHI AVI 193 000 224 and and the two int 11:05 R.0000250-P85908 INDIA STANP DUTY GUJARAT 16 Limited Atul Limited hole Time Di Mohanan Atul Whole 7 ŝ z AGREEMENT Agreement for supply of 4 MGD (18184 Cubic metre per day) i.e metre per vear water to Atul Limited, Atul - 396020, Dist. Valaad, for drawal of For Atul Limited 6637160 Cubic water from river par for industrial use. Januar 2012 This Agreement made on this day of ohanan between the Whote THEBirector through its authorized representative (hereinafter in this agreement called the "Licencee" which expression shall, unless context otherwise requires and admits, be deemed to include its administrators, executors, successors and assigns) having its registered office at Ashoka chambers, Rasala Marg, Ahmedabad of the one part and the Governor of the State of Gujarat through Executive Engineer, Ambica Division, Navsari in office (herein after called as " the Government" which For Atul Limited B N Mohanan Whole Time Director Ambloa Division, NAVSARI

EXPANSION IN EXISTING CAPTIVE POWER PLANT

expression shall unless context otherwise requires and admits, be deemed to include his successors in office and assigns) of the other part.

WHERE AS the Licencee has applied to the government for permission to draw water from River Par for the purpose of industrial use for its existing plant at Atul, Tal. Valsad, Dist. Valsad.

AND WHEREAS the Government has, under its sanction letter / Narmada, Water Resources, Water Supply & Kalpsar Department Resolution No. WTR/ 1092 / 22319/ 14/ Part-3/P dated 25.1.2006, agreed to grant such permission on the terms and conditions herein after appearing and as mentioned in the Government of Gujarat, Narmada, Water Resources, Water Supply & Kalpsar Department Resolution No. WTR/2005/41/P dated 3.2.2007.

NOW THIS INDENTURE WITNES and the parties here to hereby agree as follows:

- 1) The Government hereby grants the permission to the Licencee to draw water from River Par on the terms and conditions hereafter appearing. The licencee shall construct and maintain the head works for drawing water from River Par and other required atructures at suitable places as approved by the Government or its authorized officer at their risk & cost and ahall provide all ancillary arrangements that may be required in connection with the drawing and conveying the water required for the use of Licencee near Village Haria in Atul, Taluka Valsad of Valsad District. The intake structures shall be open to inspection by the Government and the Government shall exercise necessary control.
- (2) The licence shall install and maintain at is own cost, the pipeline and other requirements required for conveying water from the source of supply to the place of actual use. The expenditure towards the drawal of water

For Atul Limited **B** N Mohanan Whole Time Director

Executiva Engineer Amblea Division, NAVSARI

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

i.e. installation of pumps, pipelines, meters and all other requirements in connection with the drawal of water, shall be borne by the Licencee.

- (3) The licencee shall draw water directly from River Par to the extent of 18184 Cubic metres per day throughout the year for the optimum plant capacity under operation from time to time. It would be permissible for the Licencee to increase the intake up to 36368 Cubic metres per day for a period not exceeding one month with the approval of the Narmada, Water Resources, Water Supply & Kalpsar Department, to facilitate the filling of the Licencee reservoir before closure of the canal.
- 4) The licencee agrees to bear the cost herein below detailed that may be apportioned between the beneficiaries on pro-rate basis of their demands, on account of remodeling that may take place to meet the total requirements of the beneficiaries in case.

Supply of water to him is from River Par.

- (5) The licencee shall pay a licence fee at the rate of Rs.501/- per year or at such rates as may be fixed by the Government from time to time in that behalf during the subsistence as the agreement.
- (5) The licencee shall pay for the quantity of water drawn, as measured in the manner provided under clause - 7 below, at the rates and terms given below.
 - (i) The Licencee shall pay the water charges for the quantity of water actually drawn as per the rates mentioned in the Government of Gujarat, Narmada, Water Resources, Water supply & Kalpsar Department Resolution No. WTR/ 2005/ 41/P dated 3.2.2007, effective from 1.1.2007 subject to fulfillment of conditions laid

For Atul Limited -3 B N Mohanan Whole Time Director

Executiv a Engineer Ambica Division, NAVSARI

EXPANSION IN EXISTING CAPTIVE POWER PLANT

down in above mentioned resolution as well as conditions mentioned in sanction letter.

- (ii) The interest rates, penalty and all other charges / conditions mentioned in above mentioned Government of Gujarat, Narmada, Water Resources, Water Supply & Kalpsar Department, resolution No. WTR/ 2005/41/P dated 3.2.2007 shall be applicable and the licencee shall have to fulfill it.
- (iii) The above rates so fixed shall be subject to upward revision that may be made by the Government in Narmada, Water Resources, Water Supply & Kalpsar Department from time to time in connection with water reserved and used for irrigation & nonirrigation purposes. The rates fixed by the Government shall be exclusive of cost of pumping, conveying etc. of water from the source.
- (iv) The charges as mentioned in sub clause (i), above, shall be paid in advance by the Licencee before 10th day of each month following the month to which water charges pertains calculated as per the estimated requirement of water for the month. The bills as per actual payment of charges shall be prepared every month and served on the Licencee for payment thereof.
- (v) If the arrears of water charges referred to above accumulate for more than six months, the Government shall be at liberty to ask the licencee to stop drawl of water from the source and it shall be incumbent on the licensee to do so and in case of default, Government may take action to stop entry into the intake without any notice at the risk and cost of the licencee.

For Atul Limited

B N Mohanan Whole Time Director

Ambica Division.

(vi) If the measuring devices referred to in Clause - 7 below, ceases to function or goes out of order in any month, the charges leviable in respect of that month shall be calculated on the basis of the average quantity of water drawn in the preceding three months of the quantity of water drawn in the same month of preceding year whichever is higher, provided that there has been no increase in the capacity of the plant / plants and the corresponding water requirements thereof during such year. If the capacity of the Plant / Plants has increased during such year, the water drawn shall be correspondingly estimated on the prorate basis. For the purpose of such estimate, the licensee shall furnish necessary data to the Executive Engineer concerned whose decision in the matter shall be final and binding to the Licencee.

(7) A suitable scientific measuring device shall be installed by the Licencee at suitable place in consultation with and with the approval of the Executive Engineer, Ambica Division, Navsari or his successor in office for measuring the quantity of water drawn by the Licencee.

The cost of the measuring device, its installation and maintenance shall be borne by the Licencee. The measurement of the quantity of water drawn shall be taken jointly by the representative of the Government and of the Licencee. The measuring device shall be open for inspection by the concerned authorities.

If the measuring device referred in the clause -7, ceases to function or goes out of order, the Licencee shall, as and when such occasion arises, get necessary repairs thereto carried out and restore the same to its original position or replace the same if so found necessary and as required by the Executive Engineer concerned within one month of its going out of order.

For Atul Limited **BN** Mohanan Whole Time Director

Executi Ambica Division. NA. 12

Atul Limited

For

ATUL LIMITED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

(9) The water drawn by the Licencee from the River Par shall be used only for the purpose for which permission to use the same is granted to him and as such the use shall be confined to the legitimate requirements of the Licencee.

The Licencee shall not draw water from the above mentioned sources for sale or supply to arty person, firm or Company or other body by whatever name called.

(10)(1) The grant of the permission to draw water under this agreement shall not mean any assurance to the Licencee regarding availability of the quality of water as per the requirements of the Licencee and regarding the quality of water. The Licencee shall not be entitled to any compensation for non availability of quantity of water on account of reasons beyond the control of the Government/ department. It shall be incumbent on the Licencee to make its own arrangement to meet its requirement of water during the periods the canal is closed on account of repairs or accidental breach.

(10)(2) If the special measures for conserving the water and reducing the losses of evaporation and seepage are found necessary in scarcity years, the expenses on this account shall be borne by the Licencee.

(11) The permission granted in this agreement shall not in any manner prejudicially affect the existing water rights vested in the riparian owners nor shall it any way prejudice the rights of Government to launch or implement any new scheme or schemes in public interest in future in connection with the water of River Par from which Licencee is permitted to draw water.

6

Executive Engineer

For Atul Limited B N Mohanan

Whole Time Director

ECO C

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- (12) The drawal of water under this agreement by the licencee shall be subject to the provisions of the Bombay Irrigation Act, 1879 and rules made there under as amended from time to time and orders that may be passed or issued in that behalf by the Government/ Department from time to time.
- (13) The Licencee shall at all reasonable times allow the officers of the Government to inspect the work sites and records regarding quantity of water drawn, utilized and supplied to other parties, if any, and to take copy of the records.
- (14) An amount equivalent to three months prevailing water charges shall be initially deposited by the Licencee with the Executive Engineer, Ambica Division, Navsari or his successors in the office as security deposit for the due performance of the terms of this agreement. The deposit shall be in the form of fixed deposit in any scheduled bank and shall be pledged by the Licencee in favour of the Executive Engineer, Ambica Division, Navsari or his successor in office. The enhancement in amount of security deposit due to yearly increase in the rate of water charges shall also be deposited by the Licencee.
- (15) The Executive Engineer, Ambica Division, Navsari, shall dispose of all matters pertaining to this agreement subject and falling within his purview subject to decision that may be taken in appeal before the Superintending Engineer, Surat Irrigation Circle, Surat in the matter and the decision of the Superintending Engineer in the matter shall be final.
 - The Licencee shall make its own arrangements for storing its water requirement of about 15 days.

For Atul Limited B N Mohanan Whole Time Director

Executive Engineer Ambica Division, NAVSARI

ECO CHEM SALES & SERVICES

(16)

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- 17) The Licencee shall arrange at its own cost the discharge of the trade waste and effluents after due treatment as may be permitted from time to time by the State Water Pollution Control Board safely in the place earmarked for the purpose in the vicinity in-consultation and with the approval of Public Health Authority. In case where the Collector, Valsad District finds that the arrangement of discharge is not suitable, it shall be the duty of Licencee to make other suitable arrangement as may be directed by him. If the discharge of trade waste and effluent proves to be a source of nuisance to the field and or the population in the neighborhoods, the Licencee shall treat the same further in such manner as may be directed by the Government.
- (18) This agreement shall remain in force for a period of 5 (five) years from the date 27.1.2011 thereof unless terminated earlier, by the Licencee by giving six calendar month's notice in writing to the Government for the purpose. The Licencee shall not be eligible for any compensation on account of such premature termination.
- (19) The Government may allow the drawal of water according to the terms stated in this agreement after the expiry of the agreement on receipt of a request to that effect from the Licencee at least six month before the expiry of the period of this agreement.
- (20) The Licencee shall bear all the legal charges, stamp duty, registration fees and translation charges and all other charges and expenses incurred in connection with this presents.

- - - R

For Atul Limited B N Mohanan Whole Time Director

Executive Engineer Ambica Division, NAVSAR1

- H3-

ECO CHEM SALES & SERVICES

10.4

(2)1

(23)

ATUL LIMITED

The Government shall be entitled to terminate this agreement upon serving the Licencee with a notice of six months for breach of any of the terms and conditions of this agreement or in the event the Licencee fails to pay any sum due to the Government under this agreement. The Licencee shall not be eligible to claim any compensation from the Government on account of withdrawing the facility of drawal of water as a result of premature termination of the agreement or even otherwise. Without prejudice to any right of the Government to proceed in accordance with the relevant rules No. 6(v) to recover such sums due from the Licencee, the security deposits shall be forfeited. Any drawl of water from the River Par after the expiry of the period of the notice shall be treated as an unauthorized act and shall be subject to such penal charges as may be determined by the Government.

- (22) Except as otherwise herein provided, all notices to be given and other actions to be taken on behalf of the Licencee shall be given or taken by the Director, Atul Limited, Atul or any other official authorized by the Licencee.
 - All sums and amount due and payable under this agreement shall be recoverable as arrears of the land revenue under the Bombay Land Revenue Code, 1879 without prejudice to any other rights or remedies available to the Government under any other case.

For Atul Limited

B N Mohanan Whole Time Director Executive Engineer Amblea Division. NAVSARI

EXPANSION IN EXISTING CAPTIVE POWER PLANT

ngineer Ambica Division, NAVSARI

pr Atul Limited* B N Mohanan Whole Time Director

IN WITNESS WHERE OF Shri B N Mohanan, Whole time Director, duly authosed by the Board of Directors of the Licencee for and on behalf of the Licencee and Shri Mahesh 4 Dhangar, Executive Engineer, Ambica Division, Navsari for and on behalf of the Governor of Gujarat have signed there presents and herein set their respective seals on the date and year first above writteh.

Signed, Sealed and delivered by For Atul Limited Signed, Sealed and delivered by Executive Engineer mited Ambica Division, Shri Mahesh GDhangar **B** N Mohanan Shri B N Mohanan Whole Time Directo Whole time Director Mohanan Executive engineer, EAtul Limited, Atul Ambica Division, Navsari ole For and on behalf of the For and on behalf of the Z E Licencee in Governor of Gujarat in àà Presence of presence of Witness (I) Witness (1) Witness (II) Witness (II) TNDES 10.00 ABER secretoria or Atal Limited 60 Executi BE Ambica Division, gineer B N Mohanan NAVSARI Whole Time Director 10

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure - 4 Coal Linkage

				- m			Inching little_
			Telephone: +91 2632 E-mail: atu	ATUL LTI Atul 396 020, Gujarat, Ind 230000, 233261 Telefax Linfra@atul.co.in Web site	in +91 2632 233027, 23361	s Cord	##Le ~
	OF/MC	DI/2015/2/			2	1 st February, 2015	
	Ministr Govern	cretary, y of Coal, iment of Indi Bhavan, elhi	a,				
	Dear 5	r,					
	Govern	ment's enco	you that in view ouragement towar	ERM COAL LINKAGE – C v of Expansion of our ds setting up own Cap omprising the following o	Plants/New various tive Power Plant; w		
					2 Nos.		
		Contraction of the second	le drum water tube densing cum doub	le extraction Turbines.	1 No.		
		ed to be con		est us about Rs.100 Cro cember, 2015 and there			
				ents, we submit herewit grant of long term linka		vith photo copies	
0	2. 3. 4.	OFFICER, M Corporate I Nature of P Nature of P Details of p	INISTRY OF COAL, nformation Name roducts manufactu roducts manufactu resent coal linkage	ed 20.2.2015 for Rs.46,0 payable at NEW DELHI. and address of Directors irred/proposed. irred for last three year w for CAPTIVE POWER PL company of M/s. Coal In	& Managing Directo with power consump ANT with M/s. West	ors. tion. ern Coalfields	
		b,	74100 MT/Annun 54528 MT/Annun 38004 MT/Annun				
	6.			ions of the Turbine Gene ints Pvt. Ltd., Tiruchirap		(wh, issued by ARK	
					((Contd. Page 2)	
				5			
				LALBHAI GROUP			

HEIRIN MAHARASHTRA

0 2014 0

MA 951281

-409

In Hunt I is in the

Addendum to Coal Supply agreement dated 22.84.2008 between Western Coulfields Ltd., and M/s (And Limited (PP Site)

Whereas Coal Supply Agreement was executed on 22.04.2008 read with amendment dt 30.04.2015, dt.23.08.2013, dt. 20.09.2013, dt. 28.10.2013, dt. 28.11.2013, dt. 22.04.2014 and dt 13.05.2015 between Western Coalfields Limited (Seller) and M/s Atul Limited (Parchaser) having its registered office at Ashoka Chambers, Rasala Marg, Alunedahad – 380.007(Oujarat) for supply of 12.087 tunnes per annum GCV G6/G7/G8/G9 coal for M/s Atul Limited(PP Site) plant located at Atul – 396.020 (Gujarat).

Whereas, the said agreement is valid upto 31.07 2015

M/s Atul Limited and M/s Western Coalifields Limited have mutually agreed to extend the validity of the FSA for a further period upto 31.03.2016.

ECO CHEM SALES & SERVICES

. . .

:2

All other terms & conditions of Coal Supply Agreement dated 22.04.2008 neal with mendenent dt 30.04.2013, dt. 23.08.2013, dt. 20.09.2013, dt. 29.10.2013, dt. 28.11.2013, dt. 22.04 2014 and dt 13.05 2015 will remove unchang Date : 11-08-2014 TUL LIMITED 8 Onsal Wiger - Materials IR D GENERAL MANAGER(MATERIAL) GENERAL MANAGER (S&M) Infinationcore Linit, West Anal Limited Weggen für alfichtet (BAM) Costelling Etelligiste Lind. Nagfen and Station Lines. Tel. 102632 233032 Telephone 0717-2511061 Fax : 02632 239027, 253614 Fax: 0732-2512977 E mail : Viknen detaij@mill cit.in E meil . gmenm wolf@soplindia in) WITNESS L WITNESS al Signillier b) Name Alaca + Practi a) Signature (block letters) are sky the upideb) Name (block letters) c) Address & Occupation of the c) Address & Occupation 2. WITNESS 2. WITNESS HIMIR KANARAR a) Signature a) Signature b) Name b) Nems 201, 1107 A (block letters) (block letters) c) Add es a Douphion u) Address & Occupation

ECO CHEM SALES & SERVICES

PAGE 389

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Addendum to Coal Supply agreement dated 22.84.2805 between Western Costhuids Ltd., and MA Atal Limited (15 MW CPP Process Plant).

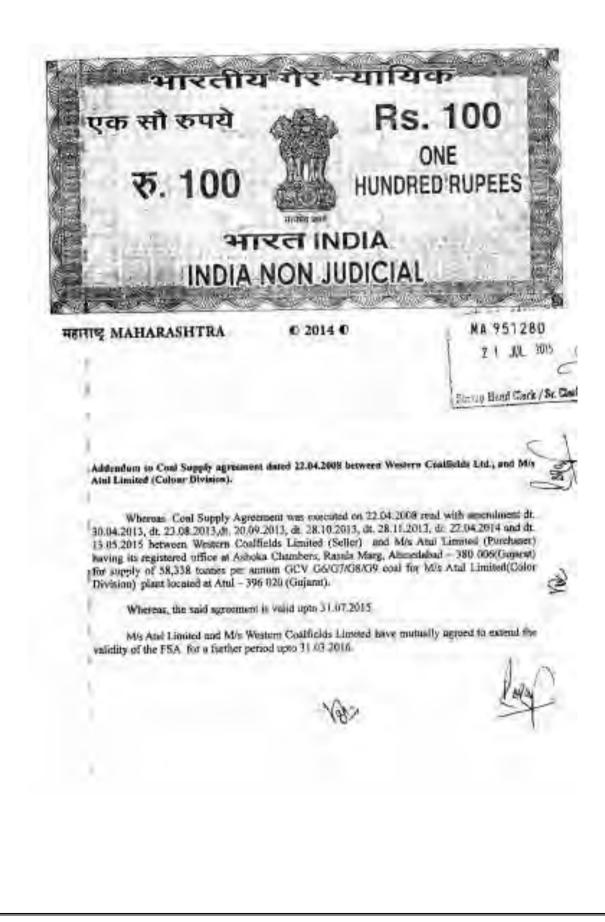
Whereas Coal Supply Agreement was executed on 22.04.2008 read with aroundment dt. 30.04.2013, dt. 23.08.2013, dt. 20.09.2013, dt. 28.10.2013, dt. 28.11.2013, dt. 22.04.2014 and dt. 13.05.2015 between Western Coal5ields Limited (Seller) and M/e Atal Limited (Parchaser) having its registered office at Ashoka Chambers, Russis Marg, Atmedabad – 380.007(Gujarat) for supply of 24,600 tornes per annum GCV G/9 coal for 1.5 MW CPP Process plant located at Atal. – 396.020(Gujarat).

Whereas, the said agreement is valid upto \$1.07 2015

M's Atal Limited and M's Western Coulfields Limited have mutually agreed to extend the validity of the ESA for a further period ages 31.03.2016.

Down Read Clork / Sr. Clark

dia. All other terms & couditions of Coal Supply Agreement dated 22.04.2008 reas with amendment dt.30.04.2013. dt.23.08.2013, dt. 20.09.2013. dt.28.30.2013. dt. 28.11.2013. dt. 22.04.2014 and dt. 13.05.2015 will remain onchanged. DALE HINE LOIS ATUL LIMITED ń obr - Ma GENERAL MANAGER(MATERIAL) GEN EB-66.0MI Infrastructure Unit, M/s Atal Limited **1**00 Cod 440,001 Nagpur Tel: 02632233092 Telephone 0712-25(106) Fax : 0712 2512977 Fex 02632 233027, 233619 E mail wikerum desai @atal com E mail : ground, web@coalindia.an 1. WITNESS 1. WITNESS a) Signature a) Signamore h) Name of these Hare Hare b) Name (block letters) (block letters) 206, Sky hat Ly 17- (in 75) Address & Occupition Manhael B v) Address & Occupation c) Address & Occupation 2 WITNESS Z. WEINESS a) Signature 96 a) Signature MIMIR KAMAKIA b) Name b) Name (block letters) 16, M.A. Road, Shruaji (block Intims) a) Address & Congentine AV 10K2 FOL - 10 c) Address & Decupation


ECO CHEM SALES & SERVICES

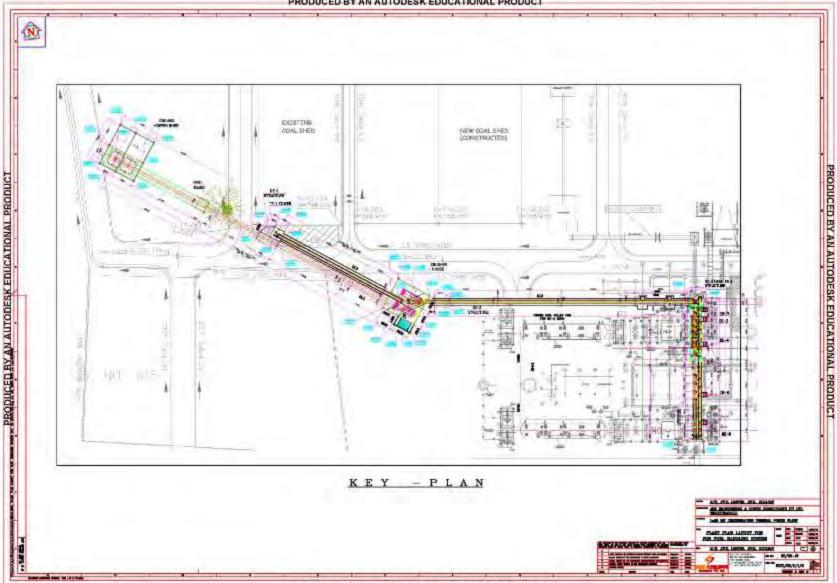
PAGE 391

EXPANSION IN EXISTING CAPTIVE POWER PLANT

EXPANSION IN EXISTING CAPTIVE POWER PLANT

-15203-

All other terms & coadmines of Cost Supply Agreement dated 22.04.2003 read with 2013, dL28.10.2013,dL 28.11.2013, dt. amendment dt 30,04,2012, dt. 23,08,2013 22.04.2014 and dr. 13.05.2015 will remain Date: 1) 08 2016 OF ATUL UNITED RE NACER MATERIAL) GENERAL STNEP ALS £M) Wesselder Control Control of Control C Infrastrumare Unit, M/s Atul Limited Tel. 02632 233032 Telephone: 0712-2511061 Pex. 02612 233027, 233619 Fax: 0712 2512977 E mail , viliana desai@anul.co.in E mail : unseren.eycloncealendta.in 1. WITNESS (3 1 WITNESS a) Signature A Forold a) Signature T S. BENEAN b) Name (Work lettern) Shaples age from b) Name SR. MAL (TIN) (block letters) holkeyor, turbar Bl c) Address & Occupation n) Addresis & Occupation 2 WITNESS 2. WITNESS MIHIR KALIAKA a) Signature a) Signature 20) Nipot Areado, 16 b) Name bi Name a) Address & Decomption A - Road, Stratel (block leners) c) Addmis & Docupation MAAFUR - 10



EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-5 Coal Handling System

ECO CHEM SALES & SERVICES

PAGE 394

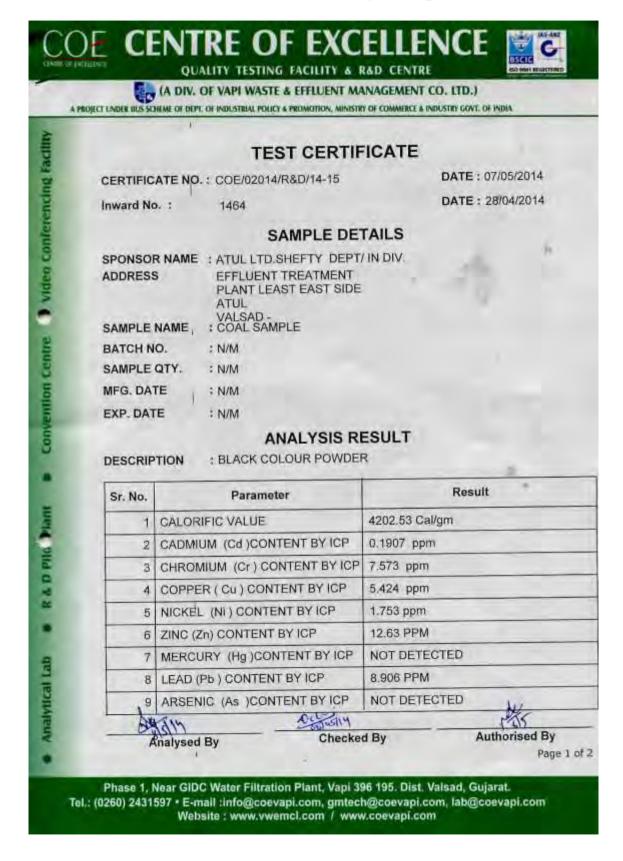
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

FRODOLED BT AN AUTODESK EUUCK HOWAL PRODUCT

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-6 Elevation Layout for coal handling

ECO CHEM SALES & SERVICES


PAGE 395

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-7 Coal Analysis report

The second second

Video Conferencing Facility

ention Centre

Convi

& D PIIO.

Inalivitical Lab

ATUL LIMITED

EXPANSION IN EXISTING CAPTIVE POWER PLANT

A PROJECT LINDER ILUS SCHEME OF DEPT. OF INDUSTRIAL POLICY & PROMOTION, MINISTRY OF COMMERCE & INDUSTRY GOVT. OF INDIA

TEST CERTIFICATE

CERTIFICATE NO. : COE/02014/R&D/14-15

DATE : 07/05/2014 DATE : 28/04/2014

Inward No. : 1464

Sr. No.	Parameter	Result			
10	pH ANALYSIS	6.81			
11	LOSS ON IGNITION	60.36 %			
12	% ASH	39.63 */*			
13	MOISTURE CONTENT (BY KF TITRATOR)	10.32 %			
14		3744 PPM			

The above test certificate is issued by the C.O.E. on basis of the sample qty received in lab for analysis. The Test Report shall not be reproduced except in without the approval of laboratory.

uthorised By **Checked By** Analysed By Page 2 of

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-8 Flow Diagram of Ash handling system

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-9 Health Record

A ste 5 re of kolice 2	teame & surail auritor of the proson writed in the explain adult i child register 2	ESC insurance namber	l Date	Re I Time	1	of accidents, ma dasgenes occurreto Case of scodent/mac accient/	e Natum si	s and dangerous occurren	.es	- ==	-	-019 1
re di kilos 2	number of the person involved in the register of adult / child	Insurance		1 Tirre		Cause of acoders/mac-	Naturn 2	-	-	- 22		
re di kilos 2	number of the person involved in the register of adult / child	Insurance		Tirre		Cause of acoders/mac-	Naturn 2					
2	3					dingetes cocutante	ic: :/ dargerous occurrence	nav sungat i benshar Datime	ind coursaison of	platanezi im almi tolianoli, alte	ided posson wear die en littom the work schig holiotays and iss	quilas and aparton of the losses also also The gates
1				à	7.	à	9	11 0	12	13	cili sing: 14	wit data
RI II	, shiyikilar 1. onudiy	N78	Stelly	\$30 Am	Sterry (B	sheet herein	Bluat F injwoj H	He was actioned get to attend the to repulse realing works In value pers coal couston aver	ov, dera porflag	Pater	24 (9)1/2015	
-		-			- 1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-
1	- 1			-	1							
_		-	-	-	4							-
-			-	-	-		-					-
1	-											T
-				_								-
		-	-	-	*1		1	1	-			-
												T
				-				,				-
								[-	-		1-
-				-				1				1
÷										1		
-		-	-	-	-					-		-
		-	-				n		-			-
							Elect Mary duk ip charge gentug . Char blum t repars on pt (Ag	Glacity Contractions of the second se	elect hereit "T" Hig to republic dul 10 changel, leaking isocretis. Lin general continue and on et lag.	Check Legen	Extension of the termination of termination o	Letter hered det is changed And is changed

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-10 MOU with Ambuja cement

Ambuja Cement

MGW/RMT/002/2014

Atul Ltd. Fly Ash Division, Atul, Valsad - 396020.

Dear Sir

Sub: - Supply of Fly ash to our Magdalla plant

We are pleased to award you the contract for supply of Dry Fly Ash to our factory at Magdails on the following terms and conditions.

Scope of Work

Supply of Dry Fly ash as per IS: 3812 PART-1 2003 from Atal Ltd., Atal, Valsad.

2 Quantity

You shall supply Fly ash approx 4500 MT per month as per schedule informed to you from time to time

3. Rate:

a) You will be paid Cost of material per MT of Fly Ash Supplied as under.

Sr.No.	Name of Supplier	Location	Total PMT (RS.)
1	Atul Ltd.	Atul, Vaisad	135/- + (Taxes Extra)

b) The necessary TDS or any other statutory levies as applicable from time to time on the above contraol shall be borne by you.

4. Delivery:

You shall ensure delivery of material as per our schedule.

5. Quality :

You will ensure that no contamination with water, foreign material, etc. in supplied material. It shall be your responsibility that Fly ash should be of such quality as suitable for manufacturing Coment. LOI should be less than 5% as per IS 3812.

6. Payment :

a) Each Truck must be weighed at loading site. In case there is no weighbridge at loading site or is not operational the weighment shall be carried out at a weighbridge near. The weighment slip of this weighbridge must be submitted to us for our records. Weighmein shall be carried at our plant site at our plant, the lower of two shall be considered for payment.

b) You shall submit your bill to our Accounts department; payment will be released within seven days after receipt of bill.

AMBUJA CEMENTS LIMITED (Unit-Magdalla) Survey No. 39/40,Near ABG Ship Yard, Magdalla Port Road, Village Gavier, Tal Choryasi, SURAT. 395 007 Tel.: 0261-2720780/2720530/2720631/2720532.Fax:0261-2720529 (Regd. Office:P.O.Ambujanager, Taluka: kodianar, Dist. Junagudh, Gajarat)

Date: 01.01.2014

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Ambuja Cement 7. Termination of Contract: Ambuja Cements Ltd. reserves its right to terminate this contract by giving notice of 24 hours at its sole discretion without assigning any reason and in such eventuality; company shall not be liable to pay any compensation to you. This has been clearly understood by you. 8. Force Maicure Clause : Ambuja Cements Ltd. (ACL) shall be free from all responsibilities under the contract, for delay or non execution of the contract in part or whole, to the extent caused by occurrences beyond ACL's control or restraints of Government or any local authority, strike or other labour disturbances including lockout, go slow, war sabotage, refusal on part or government or other competent authority to grant necessary permit, license, sanction or consent, or any other cause or causes or dissimilar to those already specified which cannot be controlled by ACL. Notwithstanding anything herein contained it is understood that the ACL shall have the final say in all 9 matters relating to this contract and its decision is final and binding any will prevail in all cases of disputes. 10. In the event of any dispute arising of this contract or any breach of the terms and conditions contained herein, the decision of ACL shall be final and binding upon you. 11. This contract is subject to Magdalla Jurisdiction. 12. This contract will be valid from 01.01.2014 to 31.12.2014. 13. General Terms and Conditions. Genera Terms and Conditions shall be as per attached Annexure - A. Please acknowledge and return the duplicate copy duly signed by you as a token of your acceptance of the contract. Thanking you, For Ambuja Cements Limited For Atul Ltd. (Unit: -Magdalla)

Sunil Prakash.

(Authorized Signature)

AMBUJA CEMENTS LIMITED (Unit-Magdalla) Survey No. 39/40, Near ABG Ship Yard, Magdalla Port Read, Village Gavier, Tal Choryasi, SURAT -395 007 Tel.: 0261-2720780/2720530/2720531/2720532.Fax:0261-2720529 (Regd. Office:P.O.Ambujanagar, Taluka: kodianar, Dist: Junagadh, Gujarat)

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure -11 Undertaking

		a TR -ZITP	- - 100	
р 19 13 13 14	T	VALUE AND	DNE ED'RUPE	ES
યુજરાત ગુ ક્ર ક્ર ક	जरात GUJARAT 	2- 2014 2001. 32, 132, 133,		295083
U R	લઇ જનારની સહી -ટ્રીજાાપ્ઝ	સ્ટાંપ વેન્ડર લા. નં. ૧૪/૮૨ ખંડુજી ટેકરા,વલસાડ.		

I, Dr. Sharad Potghan, Corporate General Manager – EHS of Atul Limited, have planned an expansion in existing Opptive Power Plant at & Post: Atul, Dist: Valsad, Gujarat, do hereby solemnly affirm, declare and undertake as under:

- That we will work out the complete treated wastewater reuse plan within the Atul Complex instead of discharging waste water into the existing ETP.
- 2. That we will store ash in closed silos only and not construct ash pond for storage of ash.

This unde taking is given without any prejudice on requirement of SEAC, Gujarat.

DATE:	NAME: Dr. Sharad Potghan
PLACE:	DESIGNATION: Corporate General Manager - EHS
B	
10	
H	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure 12 CC&A Compliance report

No.	Condition	Compliance		
1	Validity up to 03/11/19	CC &A renewal application due in October 19		
2	Production capacities of different products	Complied (Production is within th consented Qty.)		
3	Condition under Water Act:			
3.1	Quantity of Industrial effluent = 17283 KLPD excluding ABL	D Complied (Well below the consented qty.)		
3.2	High COD – 23 KLPD - Incineration	Complied		
	High TDS – 97 KLPD - MEE	Complied		
3.3	Quantity of domestic waste water – 937 KLPD	Complied		
3.4	Trade Effluent			
	Treated effluent quality shall achieve prescribed norms.	Complied		
3.5	Final treated effluent shall be collected in guard pond and discharged through closed pipeline to estuary zone of river Par via diffuser system.	Complied		
3.6	Sewage shall be disposed off through septic tank / soak pit system.	Complied		
4	Condition under Air Act:			
4.1 a	Fuel consumption figures for boilers / Heaters /DG set	Complied		

EXPANSION IN EXISTING CAPTIVE POWER PLANT

4.1 b	Details of the Boilers	-
4.2, 4.3, 4.4	Installation & operation of APCM in order to achieve Flue gas / Process emission prescribed norms	Complied
4.5	Ambient Air quality norms	Complied
4.6	Continuous and efficient Operation of Air pollution Control System to meet prescribed norms	Complied
4.7	The consent shall lapse, if any time the parameters of the gaseous emission are not within the tolerance limits specified in the condition no.4.3 and 4.5 as above.	Noted.
4.8	Provide necessary monitoring facility and identification on chimneys	Complied
4.9	Take measures to control noise level	Complied
5	Authorization	
5.1 a	Authorization No. AWH 67717	
5.1 b	Haz. Waste disposal as stipulated.	Complied
5.2	The authorization is granted to operate facility for collection, storage, within the factory premises and treatment, transportation and ultimate disposal of Hazardous wastes as mentioned in the given table as per Haz. Waste [Management, Handling & Transboundry Movement] Rules- 2008	Complied

EXPANSION IN EXISTING CAPTIVE POWER PLANT

5.3	The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.	Noted.
5.4	The authorization shall be in force for a period of five years (i.e. up to $03/11/2019$).	Noted.
5.5	Terms and conditions for Authorization	
5.5.1	The applicant shall comply with the provisions of the Environment (Protection) Act - 1986 and the rules made there under.	Complied
5.5.2	The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.	Noted.
5.5.3	Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization	Noted.
5.5.4	An application for the renewal of an authorization shall be made as laid down in rule 5 (7) (ii).	CC &A renewal application due in October 19
5.5.5	Industry shall submit annual report within 15 days and sub squinty by 31st January every year.	Complied. Annual report in form of Env. Audit Report is submitted every year.
6	GENERAL CONDITIONS	
6.1	Any change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to	Noted.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure 13 CREP Compliance report

Activity code No.	Action point (Brief)	Compliance Status as on today	Remarks
1	Implementation of Environmental Standards	Complied	APCM are already in place and maintained.
2	Particulate matter emission reduction	Complied	APCM are already in place and maintained.
3	New / expansion power projects to be accorded Environment Clearance	Complied	Already applied to SEAC for expansion of power plant & TOR granted.
4	Development of SO2 & NOx	NA	Action by CPCB
	Development of guide lines / standards for mercury & other	NA	Action by CPCB
	Review of stack height requirement	NA	Action by CPCB
5	Install / activate meters / continuous monitoring systems with calibration system.	Complied	All the stacks are equipped with online opacity meter for continuous monitoring and also kept in CC TV camera surveillance.
	Use of beneficiated coal	As soon as it is viable option with respect to its limited availability and proximity of source, will be used.	We are in the process of exploring this option.
6	Use of abandoned coal mines for	NA	Not Applicable
	Provide dry ash to the users	Complied. Ongoing process	Being given to local brick manufacturers and Cement industries.
	Provide dry ash free of cost	Complied	-

EXPANSION IN EXISTING CAPTIVE POWER PLANT

	Adhere to schedule by State Dept.	NA	Action by State Dept.
	Environment Clearance Existing plants shall adopt any of systems mentioned in 13(1)	Complied	-
	Fly ash Mission shall prepare guideline	NA	Action by GOI
	New plants shall promote adoption of clean coal & clean power	NA	-
7	CC&A status	Complied	Valid consent no. AWH – 67717 valid up to
8	Compliance with respect to norms prescribed in CC&A for last one year	Complied	Being checked & verified by Regional Office of GPCB time to time.
9	Overall compliance with respect to charter (Yes/No)	Fully complied with all the	-

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure 14 EC Compliance report

Infrastructure TD Atul 396 020, Gujarat, India Telephone: +91 2632 230000, 233261 Telefax: +91 2632 233027, 233619 E-mail: atul_infra@atul.co.in Web site: www.atul.co.in Date: 23/04/2015 To, Regional Head, Regional office, MoEF, Bhopal, Bhopal. Subject: 6- Monthly Compliance on EC Condition. R/Sir, Please find the six monthly reports for EC compliances of M/s Atul Ltd. Valsad, Gujarat. For your review please, Regards, Dr. Sharad S. Potghan Factory Manager and Corp. General Manager-EHS, Atul, Valsad, 09825328313

EXPANSION IN EXISTING CAPTIVE POWER PLANT

December, 2014

COMPLIANCE REPORT

Report No. : - ATUL-02

MONITORING PERIOD: July 2014 TO December 2014

M/s. Atul Ltd.

Atul, Valsad

Dist. - Valsad - 396020 Gujarat.

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Project:

Atul Ltd is endeavoring to transform itself at the workplace and in the marketplace so as to become truly world-class in its chosen businesses and promoting Values which underline truthfulness, respect, collaboration, passion and accountability. Life with the Company therefore satisfies an individual personally and professionally

The 1,350 (2012-13) products and formulations sold by Atul Ltd are used by around 4,000 (2012-13) customers belonging to diverse industries particularly Adhesives, Agriculture, Animal Feed, Automobile, Chemical, Composites, Construction, Cosmetic, Defense, Dyestuff, Electrical and Electronics, Flavor and Fragrance, Food, Glass, Home Care, Horticulture, Hospitality, Paint and Coatings, Paper, Personal Care, Pharmaceutical, Plastic, Polymer, Rubber, Soap and Detergent, Textile and Tyre.

In order to enhance focus and better serve customers, Atul has divided its portfolio of products into 41 product groups. The product groups are managed by 7 Businesses, namely Aromatics, Bulk Chemicals, Colors, Crop Protection, Floras, Pharmaceuticals, and Polymers, generally depending upon the industries served by them. Furthermore, each product has been made a part of either the Life Science Chemicals Segment or Performance and Other Chemicals Segment, so as to enhance understanding amongst investors.

Quintessentially, Atul consumes basic chemicals (such as Benzene, Phenol, Toluene) and natural resources (such as Coal, Salt, and Sulphur) and manufactures values added downstream chemicals. In addition to bulk sales, the Company has since 2004 commenced building and growing sales in small packs (brands), particularly in its Crop Protection and Polymers Businesses.

COMPLIANCE TO SPECIFIC CONDITIONS: As per CCA: AWH-67717 Dated 04/11/2014

• Industrial Waste water generation shall not exceed 17,216 m3/d

	Jul-14	Aug-14	Sep-14	Oct-14	Nov-14	Dec-14	Total
Month	344888	252086	292230	291615	284646	323624	1789089
avg. Per Day	11496	8403	9741	9720.5	9488	10787	59636

Month wise data for waste water generation.

Waste water generation per day is not exceeding the permitted quantity and complied.

• 23 m3/d High COD effluent shall be incinerator:

Month wise data for incineration

Jul-14	Aug-14	Sept-14	Oct-14	Nov-14	Dec-14	Total
-	-	-	-	-	-	

EXPANSION IN EXISTING CAPTIVE POWER PLANT

No High COD Waste water generation and hence no incineration was done during this period. : complied.

• 97 m3/d High TDS effluent shall be evaporated through MEE:

Month wise data for MME

Jul-14	Aug-14	Sept-14	Oct-14	Nov-14	Dec-14	Total
890.50	874.48	936.48	964.55	993.44	959.14	5618.59

- Final Discharge of Treated effluent is being discharge into river par through 4 km line constructed by M/s Atul
- The process emissions (SO₂, NH₃, Cl₂, and HCl, shall be scrubbed with Scrubbers. The emission shall be dispersed through stack of adequate height as per CPCB standard. The gaseous emission from the DG sets shall be dispersed through stack of adequate height as per CPCB standards. Acoustic enclosures shall be provided to the DC set to control the noise pollution. : Complied.

Gaseous emissions from process units are monitored regularly every month and same are attached as annexure - I

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table: 2 FUGITIVE EMISSION MONITORING:

Plant	Area	Parameter	Prescribed Limit	Re	sults of	VOCs ir	n Microg	ram per l	NM3
			1	Jul-14	Aug-14	Sep-14	Oct-14	Nov-14	Dec-14
	Reactor	Phenol	19	0.06	0.048	0.063	0.048	0.032	0.016
2,4 D	Buffer tank	Chlorine	0,1	0.052	0.060	0.054	0.074	0.058	0.074
Resorcin ol	tank area	Benzene	10	1.62	2.04	1.94	2.04	1.62	2.58
01	Near Extraction /sru unit	Butyl acetate	-	ND	ND	ND	ND	ND	0.141
	At second floor work area	Ammonia	0.8	0.53	0.61	0.58	0.62	0.59	0.63
Pharma	Ammonia recovery area	Ammonia	0.8	0.62	0.55	0.47	0.59	0.62	0.68
Epoxy - I	At vacuum pump 2nd floor	ECH	10	6.58	6.95	5.33	7.86	6.55	7.41
	At vessel	ЕСН	10	6.44	7.32	8.22	6.99	7.24	6.82
Shed H		Nitrobenze ne	5	0.96	1.54	0,48	2.04	1.08	2.06
Shed J	-	Chlorine	3	0.04	0.07	0.07	0.08	0.05	0.05

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

• The company shall adopt cleaner production technology to minimize the quantity of fresh water requirement and process effluent generation. Complied.

We have already switched over to Zero discharge concept in Sulphur black. We have installed world class technology for captive power plant in place of FBC. Chimney height is provided as per requirement. We have already installed high performance 3 stages ESP and bag filter on boiler flue gas out-let under cleaned production.

 The company shall obtain Authorization for Collection; Storage and Disposal of Hazardous waste under the hazardous waste management (Handling and trans boundary movement rule-2008) for management of hazardous waste and prior permission from GPCB shall be obtained for disposal of solid waste in the TSDF. The concerned company shall undertake measures for the fire fighting facility in case of emergency. Complied.

We have authorization for our own TSDF through GPCB notification no. GPCB/HAZ/GEN-55/9647 dated 13th March 2000 and NOC no. CTE-65621 dated 19/11/2014:

Month wise Solid waste disposal data for TSDF site (In Kgs.),

CCA Granted Quantity 6017411 kg/month

Jul-14	Aug-14	Sept-14	Oct-14	Nov-14	Dec-14	Total
66673	89845	622760	657770	758260	908662	3103970

- The project authorities shall strictly comply with the rules and guidelines under manufacturing, storage and import of hazardous chemicals rule 1989 as amended in October, 1994 and January, 2000 .All Transportation of Hazardous chemicals shall be as per the MVA,1989. Complied.
- The company shall undertake waste minimization measures : Complied
- Company shall take Solvent management measures : Complied
- We already have well equipped solvent distillation facilities.
- All the vessels are provided vent condenser as well as product cooler wherever it's required.
- All the tanks are provided cold insulation and vent condenser where it's needed.
- Company shall be stored in tanks farms, drum. Carboy etc. an area of 33% green belt and selection of plant species shall be as per the guideline of CPCB: Complied

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Chemicals and solvents are handled in close handling system. Heat resistant insulation provided to all solvent storage tanks. Breathers have been provided to all solvent storage tanks.

Company is having green belt development plan and plantation of about 50000 plants per year.

Total Area under Green belt in and around Atul Complex is: 300 acres

- The company shall harvest surface as well as rain water from the roof tops of the building and storm water drain to recharge the ground water and use the same water for the various activities of the project to conserve fresh water : Complied
- For Rain Water Harvesting Following provisions are made in operation:
 - ✓ Water pond to collect rain water : 2 Nos
 - ✓ Roof water collection and storage in pond
 - ✓ Small Pits on hillock to collect the water
- AMBIENT AIR QUALITIES MONITORING AROUND PLANT

PREMISES: Complied and copies attached. Anex-1

- > Control of quantities through Good manufacturing Practices to minimize waste.
- All raw materials are measured in calibrated measuring tanks and then charged to reactors
- Reuse of by-products from the process as raw materials or as raw material substitutes in other processes.
- Use of automated filling to minimize spillage.
- Ammonia Nitrogen recovery system
- Venting equipment through vapor recovery system
- > All reactor vents are connected through vapor recovery system consisting condensers
- > Use of high pressure hoses for equipment clearing to reduce wastewater generation.
- > All equipment are cleaned by high pressure hose.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

DETAILS OF WATER CONSUMPTION:

Month	Raw Water Consumed In Ltrs				
	Month	Day			
July-2014	435464000	14047225.80			
August-2014	329266000	10621483.87			
September-2014	324700000	10823333.33			
October-2014	335190000	10812580.64			
November-2014	316273000	10542433.33			
December-2014	380734000	12281741.93			

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table:-4: QUALITY OF TREATED EFFLUENT

Sr.	Sections.			Effluent San	npling Date			GPCB
No.	Parameter	Jul-14	Aug-14	Sept-14	Oct-14	Nov-14	Dec-14	Limits
1	pH	7.1	7.4	7.2	7.7	7.2	7.5	6.5-8.5
2	Colour (Pt. Co. Scale)	115	205	177	192	202	212	100
3	Temperature (°C)	27	28	28	30	26	24	40
4	Suspended Solids	40	58	87	22	68	54	100
5	Phenolic Compounds	0.2	0.8	0.3	0.3	0.5	0.2	1.0
6	Cyanide	ND	ND	ND	ND	ND	ND	0.2
7	Sulphide	ND	ND	ND	ND	ND	ND	2,0
8	Total Dissolved Solids	•	•				-	NA
9	Ammonical Nitrogen	30	42	32	40	35	27	50
10	BOD	38	40	30	52	45	39	100
11	COD	204	225	198	240	236	230	250
12	Hexa. CromiumCr ⁺⁶	ND	ND	ND	ND	ND	ND	0.1
13	Total Chromium Cr ⁺²	0,05	0.02	0.01	0.04	0.01	ND	0.1
14	Fluorides	0.5	0.1	0,4	ND	ND	ND	1.5
15	absorbed Sodium		-	1	4	•	-	26

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Table: 5 Solid Waste Generations:

Sr.	Type of waste	Catagora		Qiy. per 1	nonth in Kgs. (J	aly-2014 to I	December- 2014	4)	Disposal
No.	Type of waste	Category	July	August	September	October	November	December	Disbosu
	Waste Data for TSDF								
1	Al Hydroxide	26,1	ġ.	0	0	900	0	0	TSDF
2	Iron Sludge	26.1	16500	14600	9000	0	0	3500	TSDF
3	Iron Residue	26.1	0	11900	2510	23120	29950	\$1840	TSDF
4	Brine Sludge	16,3	Ø.	0	0	0	Ū.	80400	TSDF
5	ETP/Gypsum Sludge	34.3	41657	41500	605000	632850	706850	747260	TSDF
6	Inci. Ash	36.2	1516	1745	1550	900	1260	1162	TSDF
1	Salt from MEE	•	0	0	0	0	-0	0	TSDF
8	Hyflow	29.1	7000	20100	4700	0	20200	24500	TSDF
	Waste Data for Incinerator								
9	Higher Amino	23,1	210	370	300	830	270	0	Incinerator
10	Filter cake of Epoxy Resins	23,1	0	1820	0	0	0	0	Incinerator

11	Epoxy Resm	23.1	29910	32339	31400	8740	28230	32620	Incinerator
12	Still & Other residue (CP)	29.1	320	1200	630	0	0	1640	Incinerator
13	Still & Other residue (CO)	26.1	0	0	0	0	Q	0	Incinerator
14	Spent Carbon	28.2	39890	45140	39800	32080	29960	19670	Incinerator
15	Darco	.26.1	0	0	0	0	0	0.	Incinerator

EXPANSION IN EXISTING CAPTIVE POWER PLANT

- Detail of water quantity to be harvested. : No Rain Fall record
- Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.: Complied.

Occupational health surveillance of the workers is being done on regular basis and record maintained as per the factory act which is shown in Table: 6.

Sr.	Month	Company	Contract	Total
No.		Employees	Employees	
1.	July 2014	265	84	349
2.	August 2014	148	81	229
3.	September 2014	185	174	359
4.	October 2014	287	178	465
5.	November 2014	081	72	153
6.	December 2014	258	99	357
GRAN	ND TOTAL	1224	688	1912

Table: 6 SUMMARY OF OCCUPATIONAL HEALTH SURVEILLANCE

EXPANSION IN EXISTING CAPTIVE POWER PLANT

COMPLIANCE TO GENERAL CONDITIONS

1. The project authorities shall strictly adhere to the stipulations made by the GPCB.

The company will follow all stipulated norms under various acts.

2. No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.

This will be complied in case of further expansion or modification at present. We are complying all the conditions, stipulated in our E.C. dated 13th May 2009.

3. At no time, the emissions shall exceed the prescribed limits. In the event of failure of any pollution control system adopted by the units, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.

Will be ensured and complied.

4. The Gaseous emission (NOx, HCl, SO2 and SPM) and Particulate matter along with RSPM levels from various process units shall conform to the standards prescribed by the concerned authorities from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control system(s) adopted by the unit, the respective unit shall not be restricted until the control measures are rectified to achieve the desired efficiency. Stack monitoring for SO2, Nox and SPM shall be carried.

Accepted

5. The Location of ambient air quality monitoring stations shall be decided in consultation with sated pollution control Board and it shall be ensured that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. Complied.

Company has fixed monitoring stations as per EC guideline and regular monitoring is being done.

6. Dedicated Scrubbers and stacks of appropriate height as per the central pollution control board guideline shall be provided to control the emission

EXPANSION IN EXISTING CAPTIVE POWER PLANT

from various vents. The scrubber water shall be sent to ETP for further treatment or sell to actual end users :

Complied.

7. The overall noise level in and around the plant area shall be kept well with in the standard by providing noise control measures including acoustic hoods silencers, enclosures etc. on all source of noise generation. The ambient noise level shall confirm to the standards prescribed under Environment(Protection) Act-1986 Rules, 1989 viz 75 dBA (day time) and 70 dBA (night time)

Noise level is regularly monitored around the source. Table: 7 below shows the noise level monitored within the plant boundaries and near source.

Sr. No.	Location	Date	Noise Level, dBA	Permissible Limits, dBA
1	Near Main guest house	22-07-14	59	75
	At Wyeth Colony		58	75
2	Gram Panchayat Hall	25-08-14	60	75
	Near Main Office North site		63	75
3	Near 66KVA substation	20-09-14	65	75
	Water tank Haria road		58	75
4	Opposite shed D	24-10-14	66	75
	ETP North site		63	75
5	Near TSDF	25-11-14	62	75
	ETP west site		67	75
6	Near Main guest house	22-12-14	60	75
	At Wyeth Colony		59	75

Table: 7 NOISE LEVEL WITHIN COMPANY PREMISES:

EXPANSION IN EXISTING CAPTIVE POWER PLANT

8. Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre-employment and routine periodical medical examination for all employees shall be undertaken on regular basis:

Complied

Company is doing all the new employment with pre medical checkup and routine medical checkup for on roll employee has been done on regular frequency.

9. Usage of PPE's by employee/ workers shall be ensured: Complied

Company have PPE policy in place and strictly follow for all level of employee.

10. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry. All the recommendation made in respect of environmental management and risk mitigation measures relating to the project shall be implemented. : Complied

Company has made all attempts to comply with all the environmental protection measures and safeguards recommended.

11. The company will undertake all relevant measures for improving the socio economic condition for the surrounding area, CSR activities will be undertaken by involving local villages and administration : Complied

List of CSR activities carried out nearby villages and schools are attached for reference.

12. The company shall undertake eco developmental measures including community welfare measures in the project area for the overall improvement of the environment.

Complied

13. A Separate environmental management cell equipped with full flagged laboratory facility shall be set up to carry out the environmental management and monitoring function. : Complied

Company has already set up a separate Environmental Management Cell equipped with full-fledged laboratory facilities to carry out the environment management and monitoring functions.

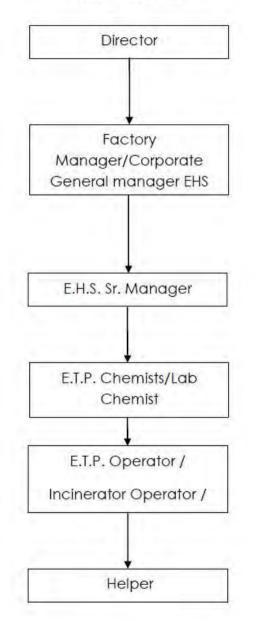


Figure 1

Organogram of Environment Health & Safety

Management Cell

ECO CHEM SALES & SERVICES

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Also company has developed a separate laboratory equipped with equipment such as pH meter, TDS meter, COD meter, Glass ware, gas chromatography system, Oven, Muffle furnace, Inhofe Cone etc. to carry out testing of routine parameters. However sampling and testing is carried out by GPCB approved and company appointed consultant, once in every month.

Currently the parameters measured in-house are pH, COD, TDS, MLVSS, and MLSS.

14. The project authorities shall provide adequate funds both recurring and non-recurring to implement the conditions stipulated by the Ministry of Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purposes.

A budget is prepared for every coming six months and separate allocation is made for the funds towards environmental management. Total budget for July -2014 to December -2014 is Rs 54593291.00

Budget for months	Particular	Expenses Rs.
July-2014 to December-2014	Fuel	500000
Including, recurring	Chemicals	17733489
maintenance, modifications and monitoring.	Electricity	20143490
	Waste disposal	6500000
Rs	Salary	7916312
	Maintenance & modifications [New MEE (Cap. 900 Lit/hr) System installation work is going on]	800000
	Monitoring	1000000
	Total	54593291

15. The implementation of the project vis-à-vis environmental action plan shall

be monitored by Ministry's Regional office at Bhopal / SPCB / CPCB. A six monthly compliance status report shall be submitted to the monitoring agencies.

Complied.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

16. The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at website of the Ministry of Environment and Forest at http://www.envfor.ni.in. This shall be advertised within seven days from the date of issue of the clearance letter at least in two local newspaper that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Ministry's Regional office at Bhopal.

Complied.

17. The project authorities shall inform the Regional Office as well as the Ministry, the date of financial closures and final approval of the project by the concerned authorities and the date of start of the project.

This is the existing project in production as oldest chemical unit and financial institutions have already approved our appraisal and we have obtained NOC and consolidated consent and authorization from GPCB.

EXPANSION IN EXISTING CAPTIVE POWER PLANT

Annexure-15 Environment Policy

	ATUL LIMITED ENVIRONMENT MANUAL	
Revision No.; 01 Rev Date: 01/12/05	ENVIRONMENT POLICY	Doc. No.: EM/4,2 ISO Clause Ref.: 4,2 Page No.: 1 of 1

PURPOSE

 To define and document Atul's Environmental Policy in compliance with the requirements of ISO 14001: 2004.

To define the system for reviewing continuing suitability of the policy as well as ensuring implementation of the policy through EMS.

SYSTEM GUIDELINES

The Environmental Policy is defined by the Managing Director & CEO of the organization based on the different environmental aspects and impacts associated with the site's activities, products and services, its business requirements and also fulfilling all the requirements of ISO 14001:2004. Environmental Policy is implemented by deployment of it to various functions of the site.

The Environmental Policy is a public document and has been displayed at prominent locations of the site as authorized by the MR. MR communicates the Environmental Policy and Objectives to the DSC. The DSC is responsible to cascade down the Environment Policy & Objectives and Targets to the employees down the line. The Policy is also communicated by MR to the vendors, customers, contractors, regulatory bodies and public through pamphlets/reports.

The Environment Policy implementation is ensured through implementation of documented systems, which is verified through internal EMS audits. The Environmental Policy is reviewed in the Management Review meeting for its continuing suitability and revised, if necessary.

CROSS REFERENCE

Environmental Policy Procedure for Communication (EP/GN/05)

Prepared by: Dr. A. V. Singh	Approved by: J. L. Shah	Copy Status:
ming	m	

ANNEXURE-D

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector 10-A. Gandhinagar 382 010 Phone :(079) 23226295 Fax : (079) 23232156 Website : www.apcb.gov.in

BY.RPAD

"Consent to Establish" (NOC) CTE-77793

NO: GPCB/CCA-VSD-313(11)/ID:23158/

TO. M/s. Atul Limited, Plot No.5,6,29,30,33,34,35,37,38,60,81,84,85,91 and survey no: 274,275 & 276 At & P.O-Atul, Pin-396020 Dist: Valsad.

Sub: Consent to Establish (amendment) under Section 25 of Water Act 1974 and Section 21 of Air Act 1981.

Ref: Your application inward no: 103426 dated: 08/02/2016 and subsequently correspondences.

Sir.

t

Without prejudice to the powers of this Board under the Water (Prevention and Control of Pollution) Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board grants Consent to Establish (amendment) for expansion of existing CPP capacity 34 MW to 56 MW (I.e additional 22MW) of an industrial plant/activities located at Plot No.5,6,29,30,33,34,35,37,38,60,81,84,85,91 and survey no: 274,275 & 276 At & P.O-Atul, Pin-396020 Dist; Valsad

Sr.	Product	C Existing	Proposed	Total
No.		Quantity	Quantity	Capacity
1	Captive Power Plant (CPP)	34MW	22MW	56MW

The Validity period of the order will be Five years from date of issue, i.e. up to 30/03/2021

SUBJECT TO THE FOLLOWING CONDITIONS:-

- The unit shall install online monitoring system along with CCTV camera on boiler stack
- The emission norms of PM is 50 mg/nm³
- Chviroment The unit shall comply all conditions given in cleusanse. CONDITIONS UNDER WATER ACT 1974:
- 1. The waste water generated from the proposed expansion will be 565 KLPD. Effluent generation will be mainly from utilities i.e. Pretreatment plant for water blow down from boilers cooling tower & condensate from turbine. The condensate will be recycled and reused Effluent will be collected in a collection sump of 1500 KL capacity and will be used for ash dust suppression gardening. Hence there will be no additional load of effluent on the existing 20 KLD ETP.

NP Plach

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

CONDITIONS UNDER AIR ACT 1981:

2. The following shall be used as fuel in the new Boiler, D.G.Set 1500 KVA respectively.

Sr. No.	Fuel	Óption No.	Fuel Consumption (TPH)	Fuel Consumption (TPH)
1.	100% Imported coal		14 12	10,166
2.	100% Indian coal	15	23.23	16,725
3.	50% Indian coal +50% Imported coal	in -	18 95	13,644
4.	100% Lignite (By adding Limestone)	ĪV	20	14,400
5.	70% Indian Coal+30% Lignite (By adding Limestone)	V	22.15	15,948
6.	Diesel	-	300 lit/hr	-

- 3. The applicant shall install & operate air pollution control system in order to achieve norms prescribed below.
- 4. The flue gas emission through stack shall conform to the following standards:

Stack No.	Stack atlached to	Stack height in Meter	Air Pollution Control System	Parameter	Permissible Limit	Applicable Permissible Limit after 2 year of the notification 3.0 3305(E) dated:07/12/2015 i.e. from 06/12/2017
1.	Boiler (50 TPH 2 Nos)	108	ESP With 4 tiekl	PM SO ₂ NO _x Mercury (Hg)	150 mg/NM ³ 100 ppm 50 ppm	50 mg/NM ³ 600 ppm 300 ppm 0.03 mg/NM ³
2.	D.G.Set 1500 KVA (Sland By)	11	-	PM SO ₂ NO ₃	150 mg/NM ³ 100 ppm 50 ppm	

Stack monitoring facilities like port hole, platform/ladder etc., shall be provided with 5. stacks/vents chimney in order to facilitate sampling of gases being emitted into the atmosphere.

5.

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156

Website : www.gpcb.gov.in

The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack *i* vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Welghted Average	Concentration in Ambient air in ug/M ³
1.	Sulphur Dioxide (SO ₂)	Annual	50
		24 Hours	80
2.	Nitrogen Dioxide (NO ₂)	_ Annual	40
		24 Hours	80
3.	Particulate Matter	Annual	60
	(Size less then 10 mg) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 mg) OR PM _{2.5}	24 Hours	60

 All measures for the control of environmental pollution shall be provided before commencing production.

CONDITIONS UNDER HAZ, WASTE:

- 8. Applicant shall have to comply with provisions of H.W. (M.H. & T.M) rules 2008.
 - a. Industry shall provide adequate collection, storage, treatment & transportation system in accordance with the nature, quantity & compatibility of hazardous waste and shall offer their hazardous waste only to authorized operator of the ultimate disposal facility.
 - b. Applicant shall comply all the directives issued by Honorable Courts, notifications issued by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
 - c. Applicant shall comply all the guidelines published by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other completent authorities time to time.
 - d industry shall also comply following directives issued by the Supreme Court of India dated.14 10.2003.
 - Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 dated 14th October 2003.

Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises.

GENERAL CONDITION:

Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of **05 meters** width is developed.

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

3

- The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.
- In case of change of ownership/management the name and address of the new owners/partners/directors/proprietor should immediately be intimated to the Board.
- 12. The applicant shall however, not without the prior consent of the Board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to this Board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment (Protection) Act-1988.
- The applicant also comply with the General conditions as per Annexure I attached herewith (No.1 to 38) (whichever applicable)
- The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following: levels: Between 6 A.M. and 10 P.M.: 75 dB (A) Between 10 P.M. and 6 A.M.: 70 dB (A)
- Applicant is required to comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 16 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as determined by the competent authority

For and on behalf of Gujarat Pollution Control Board

DPhase

(SmLD.P.Shah) Environmental Engineer

outward No. 356262 11105/2016

i

ÿΞ

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector 10-A, Gandhinagar 382 010 Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in

By R.P.A.D

NO: GPCB/CCA-VSD-313(12) /ID: 23158/

To,

MS. ATUL LIMITED, PLOT NO. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, & S.NO. 274, 275, 276, AT & P. O. ATUL, PIN- 396020, DIST: VALSAD.

SUB: CCA Amendment (No: AWH-82241) to Consolidated Consent & Authorization (CC & A) under various Environmental Acts/ Rules.

REF: 1) Your Application inward No.111917 dated: 20/09/2016 2) CTE issued vide this office letter dated: 17/05/2016

Sír,

This has reference to the CCA order No.AWH-67717 dated: 04/11/2014 issued vide letter No. GPCB/CCA-V9D-313(2)ID:23158/306616 dated:10/03/2015 having validity up to 03/11/2019 under the provisions of the various Environmental Act/ Rules, which stands amended for expansion of existing_ captive power plant capacity 34 MW to 56 MW by installation of captive power plant CPP 22 MW at an industrial plant at location PLOT NO. 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, & S.NO. 274, 275, 276, AT & P. O. ATUL, PIN-398020, DIST: VALSAD.

S	Product	Existing Quantity	Proposed Quantity	Total Capacity
1	Captive Power Plant (CPP)	34MW	22MW	56MW

The Validity period of the CCA amendment order as per existing CC& A i.e. up to 03/11/2019

SUBJECT TO THE FOLLOWING CONDITIONS:-

SPECIFIC CONDITION:

- The unit shall install and operate online monitoring system with CCTV camera on boiler stack.
- The unit shall comply all the condition given in to Environmental clearance.
- The unit shall comply provisions of Fly Ash Notification 1999 and its subsequent amendment.

CONDITIONS UNDER WATER ACT 1974:

 The waste water generated from the proposed expension will be 565 KLPD. Effluent generation will be mainly from utilities i.e. Pretreatment plant for water blow down from boilers cooling tower & condensate from turbine. The condensate will be recycled and reused Effluent will be collected in a collection sump of 1500 KL capecity and will be used for ash dust suppression gardening. Hence there will be no additional load of effluent on the existing 20 KLD ETP.

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

-121.14 All Alarsh 1 A A

CONDITIONS UNDER AIR ACT 1981:

OUTENOS

2. The following shall be used as fuel in the new Boiler, D.G.Set 1500 KVA respectively.

Sf. No.	Fuel	Option No.	Fuel Consumption (TPH)	Fuel Consumption (TPH)
1.	100% Imported coal	1	14.12	10,166
2.	100% Indian coal		23.23	16,725
3.	50% Indian coal +50% Imported coal	¹ M	18.95	13,644
4.	100% Lignite (By adding Limestone)	ĪV	20	14,400
5.	70% Indian Coal+30% Lignite (By adding Limestone)	v	22.15	15,948
6.	Diesel	-	300 lit/hr	-

- The applicant shall install & operate air pollution control system in order to achieve norms prescribed below in condition number 4
- 4. The flue gas emission through stack shell conform to the following standards:

Şta ck No,	Stack attached to	Stack height in Meter	Alr Pollutio n Control System	Parameter	Permissibi e Limit	Applicable PermIssible Limit after 2 year of the notification S.O 3305(E) dated:07/12/2015 i.e. from 06/12/2017
1.	Boiler (50 TPH 2 Nos)	108	ESP With 4 field	PM SO ₂ NO _x Mercury(Hg)	50 mg/NM ³ 100 ppm 50 ppm	50 mg/NM ³ 600 ppm 300 ppm 0.03 mg/NM ³
2.	D.G.Set 1500 KVA (Stand By)	2 ³ M		PM SO ₂ NO _x	150 mg/ NM³ 100 ppm 50 ppm	

 Stack monitoring facilities like port hole, platform/ladder etc., shall be provided with stacks/vents chimney in order to facilitate sampling of gases being emitted into the atmosphere.

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector 10-A, Gandhinagar 382 010

Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in 8. The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in ug/M ³
1.	Sulphur Dioxide (SO ₂)	Annual	50
		24 Hours	80
2.	Nitrogen Dioxide (NO ₂)	Annual	40
		24 Hours	80
3.	Particulate Matter	Annual	60
	(Size less than 10 µm) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 µm) OR PM _{2.5}	24 Hours	60
5.	Carbon Monoxide (CO) mg/m3	8 Hours	02
		1 Hour	04

All other conditions of CCA order No.AWH- 67717 dated: 04/11/2014 issued vide letter No. GPCB/CCA-VSD-313(2)/ID:23158/306616 dated:10/03/2015 shall remain unchanged.

For and on behalf of Gujarat Pollution Control Board

> ے کم م (\$mt.D.P.Shah) Environmental Engineer

et Poli Envi Outermand Motoral Clean Gujarat Green Gujarat ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN Sector-10-A, **Gardhinagar**-382 010 Phone : (079) 23226295 Fax : (079) 23232156 Website : www.gpcb.gov.in

BY.RPAD

<u>"Consent to Establish" (NOC)</u> <u>CTE-80394</u>

NO: GPCB/CCA-VSD-313(12)/ID:23158/

TO,

LMF8. ATUL LIMITED, PLOT NO.5,6,29,30,33,34,35,37,38,80,81,84,85,91 AT & P.O-ATUL, PIN-396020, DIST: VALSAD.

- 8ub: Consent to Establish (amendment) under Section 25 of Water Act 1974 and Section 21 of Air Act 1981.
- Ref: Your application inward no: 106516 dated 27/04/2016 and subsequently correspondences,

Sir,

Without prejudice to the powers of this Board under the Water (Prevention and Control of Pollution) Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board grants **Consent to Establish (amendment)** for expansion of production quantity at an existing industrial planu/activities located at Plot No.5,6,29,30,33,34,35,37,38,80,81,84,85,91, At & P.O.-Atut, Pin-396020 Dist. Valsed for manufacturing of the following products:

Sr. No.	Product	Existing Capacity (TPM)	Proposed Capacity (TPM)	Total Capacity (TPM)
1.	Dyes	1,300.80	583.33	1,884.13
2.	Chloro - Alkałi Industry	3,400.00	4,100.00	7,500.00
3.	Pesticide Technical	2,644.07	261.64	2,905 71
4	Bulk Drugs & Pharmaceuticals	350 60	0.00	350.60
5.	Resin	2,990.90	441.67	3,432.57
6.	Other Chemicals	20,551.60	651.00	21,202.60
7.	Flavors & Fragrances	0.00	733.32	733.32
	Total	31,237.96	6,770.95	38,008.91
	50			
8.	Phosgene	2844 MT/Year	2156 MT/Year	5000 MT/Year

The Validity period of the order will be seven years from date of issue. i.e. up to 17/07/2023

SUBJECT TO THE FOLLOWING CONDITIONS:

The unit shall not install plant and machinery and shall not start any activities without
obtaining Environment Clearance from the MOEFCC, New Delhi, Government of India.

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

SPCCIFIC CONDITIONS:-

- (i) The unit shall manufacture the Phosgene gas in fully automated plant having multi levels of safety provisions.
- (ii) Unit will utilize the Phosgene gas immediately after its generation for their captive purpose only.
- (iii) Unit shall provide all sensor for detection of a leakage of Phosgene gas.
- (iv) Unit shall establish and maintain onsite emergency plan and carry out mock drill as per period decided.
- (v) Unit shall liable to obtain all other necessary permission from concerned agencies/organization prior commencement of Production.
- (vI) Unit shall dismantle old Phosgene Plant after commencement of new Plant.
- (vii) Unit shall submit production data of Phosgene every month to this office.
- (viii) Unit shall install online monitoring system on process stack for PM and CO.
- (ix) Unit shall install continuous Ambient Air Quality monitoring Station in their premises.
- (x) Unit shall install new 4 Kms length HDPE pipeline parallel to existing pipeline for disposal of treated waste water in the estury of Par River at the identified point by NIO.
- (xi) Unit shall use pipeline in case of emergency like breakdown, preventive maintenance only when old pipeline is under maintenance and unit shall get prior permission from Regional Office, Vapi before use of new pipeline.
- (xii) Unit shall comply undertaking dated: 08/07/2016 given to the board.

CONDITIONS UNDER WATER ACT 1974:

- There shall be 23392.84 KLD wasta water generation after proposed expansion. Out of this 23,021.51 KLD treated in ETP and 17812.84 KLD evaporated in MEE.
- The quantity of the domestic waste water (sewage) shall not exceed 939 KLD.
- Unit shall explore possibility of Sewage Treatment Plant (STP) for domestic waste water and its reuse after due treatment.

CONDITIONS UNDER AIR ACT 1981:

- There shall be no use of fuel negoe there shall be no flue gas emission, from proposed production.
- The process emission through various proposed stacks, in addition to existing stacks shall confirm to the following standards:

Stack No.	Stack atlached to	Stack height in Meter	Air Pollution Control system	Parameter	Permissible Limit
1.	MPP Plant	21	Water & Alkali Scrubber	HCI	20 mg/NM3
2. 2	PHIN - T& II	21	Water scrubber followed by two stage caustic scrubber with ammonia/steam injection at stack	HCI COCI2	20 mg/NM3 0.1 ppm

GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar-382 010

Phone : (079) 23226295

Fax : (079) 23232156

Website : www.gpcb.gov.in

3.	Flavors Fragrances Plant	21	Water scrubber followed by caustic scrubber	HCI	20 mg/NM3
4.	Phosgene Plant	15	Alkali & water scrubber	COCI2	0.1 ppm

6. The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in ug/M ³
1.	Sulphur Dioxide (SO ₂)	Annual	50
	· · · - ·	24 Hours	80 -
2.	Nitrogen Dioxide (NO ₂)	Annual	40
		24 Hours	80
3.	Particulate Matter	Annual	60
	(Size less than 10 µm) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 µm) OR PM _{2.5}	24 Hours	60

 All measures for the control of environmental pollution shall be provided before commencing proposed production activities.

CONDITIONS UNDER HAZ. WASTE:

- Applicant shall have to comply with provisions of H.W. (M.H. & T.M) rules 2008 and amendment thereof.
 - a. Industry shall provide adequate collection, storage, treatment & transportation system in accordance with the nature, quantity & compatibility of hazardous waste and shall offer their hazardous waste only to authorized operator of the ultimate disposal facility.
 - b. Applicant shall comply all the directives issued by Honorable Courts, notifications issued by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
 - c Applicant shall comply all the guidelines published by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
 - Industry shall also comply following directives issued by the Supreme Court of India dated 14.10.2003.
 - Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 dated 14th October 2003
 - Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises

Clean Gujarat Green Gujarat

ISO - 9001 - 2008 & ISO - 14001 - 2004 Certified Organisation

GENERAL CONDITION:

- Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 05 meters width is developed
- The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.
- In case of change of ownership/management the name and address of the new owners/partners/directors/proprietor should immediately be intimated to the Board.
- 12. The applicant shall however, not without the prior consent of the Board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to this Board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment. (Protection) Act-1986.
- The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels: Between 6 A M. and 10 P M.: 75 dB (A) Between 10 P.M. and 6 A M.: 70 dB (A)
- Applicant is required to comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 15 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property .in that case they are obliged to pay the compensation as determined by the competent authority

outward No. 363958 12510, 12026

For and on behalf of Gujarat Pollution Control Board

DPhan

1

(Smt.D. P. SHAH) Environmental Engineer

_	GULIARAT PO	LLUTION CONTROL BOARD
		PARYAVARAN BHAVAN
	9	Sector-10-A, Gandhinagar 382 010
		Phone : (079) 23222425
GPCB	Received on dt 10/06/2019 Received by EHS Oswarsment	(079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in
		The SQNDITTONIA CREATE THE WAY WAY

R.P.A.D.

NO: GPCB/CCA-VSD-313(16) /ID: 23158/ 513897

Dute. 1710712014

TO. MAS. ATUL LIMITED. PLOT NO.5,6,29,30,33,34,35,37,38,80,81,84,85,91 AT & P.O ATUL-396020. TAL: VALSAD, DIST: VALSAD.

- Amendment (AH- 102080) to Consolidated Consent & Authorization (CC & A) under various SUB: Environmental Acts/ Rules.
- REF: 1) Your Application inward No.156104 dated: 26/04/2019.

Sir,

2) CTE issued vide this office letter dated: 25/07/2016.

The Gujarat Pollution Control Board had granted Consolidated Consents & Authorization Order No. AWH- 67717dated 04/11/2014, Which is valid up to 03/11/2019. This order was served vide letter No. GPCB/CCA-VSD-313/ID-23158/306616 dated: 10/03/2015 is further amended with respect of following conditions.

Sr. No.	Product	Existing Capacity (TPM)	Proposed Capacity (TPM)	Total Capacity (TPM)
1.	Dyes	1,300.80	583.33	1,884.13
2.	Chloro – Alkali Industry	3,400.00	4,100.00	7,500.00
3.	Pesticide Technical	2,644.07	261.64	2,905.71
4.	Bulk Drugs & Pharmaceuticals	350.60	0.00	350.60
5.	Resin	2,990.90	441.67	3,432.57
6.	Other Chemicals	20,551.60	651.00	
7.	Flavors & Fragrances	0.00	733.32	21,202.60
	Total	31,237.96	6,770.95	38,008.91
	to share the second of	in a second		
8.	Phosgene	2844 MT/Year	2156 MT/Year	5000 MT/Year

SPCCIFIC CONDITIONS:-

- The unit shall manufacture the Phosgene gas in fully automated plant having multi (i) levels of safety provisions.
- Unit will utilize the Phosgene gas immediately after its generation for their captive purpose (ii) only. (iiii)
- Unit shall submit production data of Phosgene every month to this office.
- Unit shall use pipeline in case of emergency like breakdown, preventive maintenance only (iv) when old pipeline is under maintenance and unit shall get prior permission from Regional Office, Vapi before use of new pipeline.
- Unit shall comply undertaking dated: 08/07/2016 given to the board. (v)

M/s. Atul Limited (PCB ID-23158)

CONDITIONS UNDER THE WATER (PREVENTION AND CONTROL OF POLLUTION) ACT 1.

- The quantity of total fresh water consumption shall not exceed 28358 KLD (21950 KLD Fresh + 1.1 3073 KLD Rain water + 3335 KLD recycled water) as per break up mentioned in form D submitted for consent application under the Water (Prevention and Control of Pollution) Act-1974. Source of fresh water shall only from local body.
 - Industrial: 27419 KLD a)
 - b) Domestic: 402 KLD
 - Gardening: 537 KLD c)
- Total quantity of effluent generated from manufacturing process and other ancillary operation 12 shall not exceed 24096 KLD.
- 1.3 20514 KLD waste water shall be treated in ETP and then discharged into Par river through 4 km
- 1.4 1000 KLD waste water shall be sent to RO/MEE.
- 800 KLD RO permeates shall be recycled into cooling tower. 1.5
- 1.6 200 KLD RO reject shall be sent to MEE.
- 1.7 190 KLD recovered MEE water shall be recycled into cooling tower.
- 10 MT MEE salt shall be sent to TSDF. 1.8
- 2500 KLD waste water shall be sent to RO/MEE. 1.9
- 2000 KLD RO permeates shall be recycled into cooling tower. 1.10
- 150 KLD RO reject water shall be utilized for Quenching/Ash cooling.
- 350 KLD RO reject shall be sent to MEE. 1.12
- 1.13 345 KLD recovered MEE water shall be recycled into Boiler.
- 5 MT MEE salt shall be sent to TSDF. 1.14
- 82 KLD high COD waste water shall be sent to incinerator. 1.15
- 1.16 The quantity of the domestic waste water (sewage) shall not exceed 322 KLD.

3.17 TRADE EFFLUENT

1.11

The treated effluent from the industrial unit shall conform to the GPCB norms mentioned in below 3.17.1

PARAMETERS	GPCB NORMS
pH	
Temperature	5.5 TO 9
remperature	40° C

M/s. Atul Limited (PCB ID-23158)

GUJARAT POLLUTION CONTROL BOARD PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425 (079) 23232152

Fax : (079) 23232156 Website : www.gpcb.gov.in

Suspended Solids	100 mg/l
Oil and Grease	10 mg/l
Phenolic Compounds	5 mg/l
Cyanides	0.2 mg/l
Fluorides	2 mg/l
Sulphides	2 mg/l
Ammonical Nitrogen	50 mg/l
Arsenic	0.2 mg/l
Total Chromium	2 mg/l
Hexavelent Chromium	1 mg/l
Copper	3 mg/l
Lead	2 mg/l
Mercury	0.01 mg/l
Nickel	5 mg/l
Zinc	15 mg/l
Cadmium	2 mg/l
Phosphates as P	5 mg/l
BOD (3 days at 27°C)	100 mg/l
COD	250 mg/l
Insecticieds/Pesticides	Absent
Sodium Absorption ratio	26
Phosphate	5 mg/l
Manganese	2 mg/l
Tin	0.1 mg/l
Bio-assay test	90% Survival of fish after 96 hour in 100% effluent.

All efforts shall be made to remove colour & unpleasant odor as far as practicable.

- 3.17.2 The final treated effluent from central ETP confirming to the above standards shall be collected in the guard pond and then discharged through closed pipeline to estuary zone of river Par via diffuser.
- 3.17.3 Domestic effluent shall be disposed off through septic tank/soak pit system, in case of overflow shall be sent to ETP.

2. CONDITIONS UNDER THE AIR (PREVENTION AND CONTROL OF POLLUTION) ACT 1981:

- 2.1 There shall be no use of fuel hence there shall be no flue gas emission, from proposed production.
- 2.2 The process emission through various proposed stacks, in addition to existing stacks shall confirm to the following standards:

Stack No.	Stack attached to		Air Pollution Control system	Parameter	Permissible Limit
1.	MPP Plant	21	Water & Alkali Scrubber	HCI	20 mg/NM3

M/s. Atul Limited (PCB ID-23158)

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

2.	PHIN – I & II	21	Water scrubber followed by two stage caustic scrubber with ammonia/steam injection at stack	HCI COCI ₂	20 mg/NM3 0.1 ppm
3.	Flavors Fragrances Plant	21	Water scrubber followed by caustic scrubber	HCI	20 mg/NM3
4.	Phosgene Plant	15	Alkali & water scrubber	COCI2	0.1 ppm

2.3 The concentration of the following substances in the ambient air within the premises of the industry and at a distance of 10 meters from the source (other than the stack / vent with height of more than 9 meters from the ground level) shall not exceed the following levels:

Sr. No.	Pollutant	Time Weighted Average	Concentration in Ambient air in µg/M ³
1.	Sulphur Dioxide (SO ₂)	Annual	50
		24 Hours	80
2.	Nitrogen Dioxide (NO ₂)	Annual	40
_		24 Hours	80
3.	Particulate Matter	Annual	60
_	(Size less than 10 µm) OR PM ₁₀	24 Hours	100
4.	Particulate Matter	Annual	40
	(Size less than 2.5 µm) OR PM25	24 Hours	60
5.	Carbon Monoxide (CO) mg/m ³	8 Hours	02
		1 Hour	04

 M/S. ATUL LIMITED, is hereby granted an authorization based on the enclosed signed inspection report for generation, collection, reception, storage, transport, reuse, recycling, recovery, pre-processing, co-processing, utilization, treatment, disposal or any other use of hazardous or other wastes or both on the premises situated PLOT NO: 5,6,29,30,33,34,35,37,38,80,81,84,85,91, AT & P.O-ATUL, PIN-396020, DIST: VALSAD.
 Details of Authorization:

Sr. No.			per the Schedules I, II and recycling or utilization or co-	
1.	Brine purification sludge	16.3	Collection, storage, Transportation, disposal at OWN TSDF OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL	242.50
2.	Still / Other residue	29.1	Collection, Storage, Transportation, Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL	63.66

M/s. Atul Limited (PCB ID-23158)

GUJARAT POLLUTION CONTROL BOARD PARYAVARAN BHAVAN Sector-10-A, Gandhinagar 382 010 Phone : (079) 23222425 (079) 23232152 Fax : (079) 23232156 Website : www.gpcb.gov.in

Collection, storage, Transportation, 1.678.71 3 Salt from MEE 37.1 disposal at OWN TSDF OR selling to actual reuser OR disposal at common TSDF at SEPPL OR disposal at common TSDF at BEIL 154.042 Collection, Storage, Transportation, 4. OCBC/OCT 20.3 Disposal by Incineration at own Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL Waste from Pharma Collection, Storage, Transportation, 28.97 28.1 5. Disposal by Incineration at own intermediates Incinerator OR co-processing at RSPL, Panoli OR co-processing at cement industry OR co-processing at SEPPL OR co-processing at GGEPIL OR disposal at common facility at BEIL Collection, Storage, In house treatment HCI (30%) **B15** 417 6 within premises.

- All measures for the control of environmental pollution shall be provided before commencing production.
- All other conditions of CCA order AWH- 67717dated 04/11/2014 issued vide No. GPCB/CCA-VSD-313/ID-23158/306616 dated: 10/03/2015 shall remain unchanged.

For and on behalf of Gujarat Pollution Control Board

(Sushil da) Senior Environmental Engineer

M/s. Atul Limited (PCB ID-23158)

Clean Gujarat Green Gujarat ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

PCB Id:23158

Consent No. AWH-105110 Valid upto: 30/09/2025

Application : CtO:CCA-Renewal, No. 163867 Dt. 05/10/2019, Granted On: 16/11/2019

Besides streamlining and simplifying of regulatory regime, Gujarat Pollution Control Board has taken initiative in from of introduction of Consolidated Consent and Authorization (CC&A) which provides for a one shot application and clearance of the consents under Water Act, Air Act and Authorization under Hazardous Wastes Rules for a period of 5 years.

Board issues consolidated consent and Authorization to an industrial unit for operation of plant/carrying out industrial activity specifying following conditions.

Consolidated Consent and Authorisation

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)Act-1981

and Authorization under rule 3(c)& 5(5)of the Hazardous Waste (Management, Handling and Transboundary Movement) Rules' 2008 framed under the E(P)Act-1986.

And whereas Board has received consolidated Application No.(CtO:CCA-Renewal) 163867 and Dated 05/10/2019 for the consolidated consent and authorization(CC&A) of this Board under the provisions / rules of the aforesaid Acts Consent & Authorization is hereby granted as under.

CONSENT AND AUTHORISATION : (under the provisions / rules of the aforesaid environmental acts)

To, <u>M/s. Atul Limited,</u> 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc., AT & P.O.ATUL, Dist. Valsad, Pin: 396020., City : ATUL, Dist : Valsad, Tal : Valsad, SIDC : Not In Gidc Phone : 9723551316

- 1. Consent Order No: <u>AWH-105110</u> Valid Upto: <u>30/09/2025</u>
- 2. All Conditions under the AIR ACT-1981 WATER ACT-1974 HAZARDOUS ACT-2008 shall be Applicable to you as mentioned in the detailed Consent Order ***

Consented CETP: <u>Not Linked to any CETP</u> Consented TSDF: <u>Recycling Solution Pvt Ltd.(GEPIL)[13376]</u>

3. GENERAL CONDITIONS :-

a) This order is provisional order and detailed order is considered as final.

b) All the conditions & provisions under the Water Act 1974, the Air Act 1981 and the Environment (Protection) Act – 1986 and the rules made there under shall be complied with *.

c) All the conditions & provisions under the Hazardous Waste (Management, Handling and Trans boundary Movement) Rules 2008 as amended shall be complied d) The applicant shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents attached to various sources of emission shall be designed by numbers such

as S-1, S-2, etc. and these shall be painted/ displayed to facilitate identification.

e) The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75dB(A) during day time and 70dB(A) during night time. Daytime is reckoned in between 6 a.m. and 10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.

f) In case of change of ownership/management the name and address of the new owners/ partners/ directors/ proprietor or equipment or working conditions as mentioned in the consents form / order should immediately be intimated to the Board.

g) Industry shall have to display data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including waste water and air emissions and solid hazardous wastes generated within the factory premises.

h) The CCA shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.

i) Any unauthorized change in personnel, equipment or working conditions as mentioned in the CCA order by CCA holder shall constitute a breach of this CCA. j) Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is atleast 1000 trees per acre of land and a green belt of 5 meters width is developed.

K) The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.

*** Note : ACT-Specific, Industry-specific, Area-specific Conditions alongwith Product, Waste water effluent details shall be precisely mentioned in the DETAILED Consent Order.

*** Note :This is only provisional communication. The final Consent/Authorization in hard copy with duly signed by competent authority shall the final and valid Consent/Authorization.

For and on behalf of Gujarat Pollution Control Board

(Member Secretary)

ANNEXURE-E

Reupon a Othos Napa

GPCB

PUBLIC HEARING PROCEEDINGS

As per the Ministry of Environment and Forests, Government of India, New Delhi vide its notification no. S.O. 1533 (E) dated 14/09/2006 and its amendment S. O. 3067 (E) dated 01/12/2009, Environment Public Hearing is conducted for M/s. Atul Limited, Valsad at Gram Panchayat Hall, Village: Atul, Dist. Valsad for capacity expansion of Coal based Captive Power plant i.e. from 34 MW to 56 MW by installing additional 22 MWH CPP, which is covered under Category "B", and hence Environmental Clearance is necessary. Accordingly, Environmental Public Hearing is conducted at Gram Panchayat Hall, Atul, at Village: Atul, Ta. Valsad, Dist. Valsad on Dated

09/10/2015 at 11.00 am.

A copy of the Draft Environment Impact Assessment Report and the Executive Summary of Draft Environment Impact Assessment Report in English and Gujarati were sent to the following authorities or offices to make available for inspection to the public during normal office hours, till the Public Hearing is over:

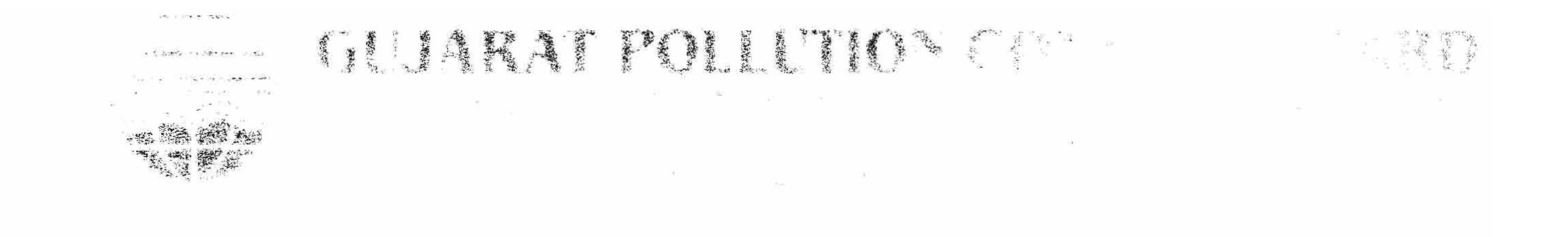
- 1. The District Collector Office, Valsad.
- 2. District Development Office, Valsad.
- 3. District Industries Centre, Valsad.

200

- 4. Taluka Development Office, Ta. Valsad, Dist. Valsad.
- The Chief Conservator of Forests, Ministry of Environment & Forests, Govt. of India, Regional Office (West Zone), Kendriya Paryavaran Bhavan, E - 5, Area Colony, Link Road - 3, Ravishankar Colony, Bhopal-462 016.
- 6. REGIONAL OFFICE, Gujarat Pollution Control Board, Vapi, Shed No. C-5/124, Vapi GIDC, Near Hotel Pritam, VAPI - 396 195

Executive Summary of Draft Environment Impact Assessment Report was also circulated in surrounding villages for effective publicity.

Other concerned persons having plausible stake in the environmental aspects were requested to send their responses in writing to the concerned regulatory authorities.


An advertisement in English was published in "Times of India" dated 09/09/2015 and in Gujarati in "Gujarat Samachar" and "Sandesh" dated 08/09/2015.

Additional Collector and Additional District Magistrate, Valsad Mr. A. D. Bagul has presided over the entire public hearing process.

A statement showing participants present during the Public Hearing is enclosed herewith as **Annexure-"A"**.

Page 1 of 2

1Sto 1001: 2008 & ISO 14001: 2004 Centilied Onum 15.

A statement showing the salient points highlighting issues raised by the participants and responded to by the representative of the applicant during the Public Hearing in English Languages is enclosed as Annexure-"B" and in Gujarati Languages is enclosed herewith as Annexure-"B1".

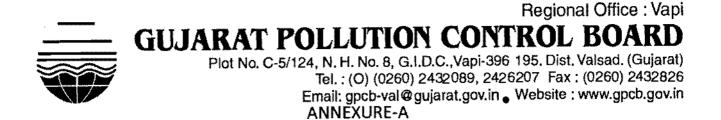
The copies of responses received in writting from other concerned persons having plausible stake in the environment aspects before and during the public hearing are enclosed as Annexure "C-1" to "C-9" and replies from the project proponent to the same are enclosed as Annexure "D-1" to "D-9".

Venue: Gram Panchayat Hal, Village :Atul, Ta & Dist: Valsad,

Date: 09/10/2015

anww

(A. G. Patel) Representative of Member Secretary, GPCB, Gandhinagar & Regional Officer - GPCB, Vapi


(A. D. Bagul) Chairman of the **Environmental Public Hearing** & Additional Collector and Additional District Magistrate, Valsad

Encl.: 1. Annexure A, B, B1, C-1 to C-9 and D-1 to D-9 as above.

2. Video CD/DVD of Public Hearing.

	н — 9 ж.	= = >
e *	а. С	8 Y

Page 2 of 2

A Statement showing participants presents during the public hearing

As per the Ministry of Environment & Forest, Government of India, New Delhi, vide its notification no. S.O.1533(E) dated 14/09/2006 and its subsequent amendment S.O. 3067(E) dated 1st December 2009. Public Hearing was fixed for the following project covered under category "B" of M/s. Atul Ltd., for the expansion of Coal based Captive Power Plant from 34 MW to 56 MW, Survey No.274, 275 & 276, At & Po: Atul, Ta. & Dist. Valsad, Gujarat.

The statement showing Participants present during public hearing held on 09/10/201S at 11:00 A.M. and venue at: Gram Panchayat Hall-Atul, At. Atul, Ta. & Dist. Valsad,(Gujarat) is as under.

ભારત સરકારના વન અને પર્યાવરણ મંત્રાલય, નવી દિલ્હીના જાહેરનામા ક્રમાંક: એસ.ઓ.૧૫૩૩(ઇ), તા.૧૪/૦૯/૨૦૦૬ અને તેના પછીના સુધારા ક્રમાંક: એસ.ઓ.૩૦૬૭(ઇ), તા.૦૧/૧૨/૨૦૦૯ અનુસંધાને મેસર્સ અતુલ લીમીટેડ દ્વારા સર્વે નં. ૨૭૪, ૨૭૫ અને ૨૭૬, મુ.પો: અતુલ, તા. અને જી. વલસાડ (ગુજરાત) ખાતે ૩૪ મેગાવોટ કેપટીવ પાવર પ્લાન્ટ ક્ષમતાને ૫૬ મેગાવોટ વિસ્તારવા માટેની પરિયોજના કેટેગરી "બી" માં આવરી લેવાયેલ છે, જે અનુસંધાનમાં લોક સુનાવણી રાખવામાં આવેલ છે.

તા.૦૯/૧૦/૨૦૧૫ ના રોજ સવારે ૧૧:૦૦ કલાકે ગ્રામ પંચાયત હ્યેલ-અતુલ, મુ.અતુલ, તા.અને જી. વલસાડ (ગુજરાત) ખાતે યોજાયેલ લોક સુનાવણી દરમ્યાન હાજર રહેલા લોકોની યાદી નીચે મુજબ છે.

Sr. No. અનું. નં.	Name & Designation નામ અને હ્રોદદો	Organization/Village સંસ્થા/ગામ	Signature સઠી
1	Bhayesh NI, Nayka	\$ Soleuisl	B.N. Mayka
2	Vishal. S. Waitr		Distort
3	Sandip B. Nailka	Eles solzu	S. B. malla
4	shited Trendel	Atul 2st gute	the.
5	Kuntal Paul	Parners	K. T. Puls

PAGE 1 of 11

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel.: (O) (0260) 2432089, 2426207 Fax: (0260) 2432826 Email: gpcb-val@gujarat.gov.in Website: www.gpcb.gov.in

Sr. No.	Name & Designation	Organization/Village	Signature
અનું.	નામ અને હોદદો	સંસ્થા/ગામ	સહી
નં.		Q= AC:	TONIK
6	rifnord ellawarus		JONUK
7	22 का हमार भन्दरपाय परेप.	વ્યવપંચ (ચાલાવા)	Avende
8	2-iusand. un-oug,	Q11311	Breitz
9	gheron of estimath	BROWL	0zQ
10	satish bhas my yak.	Q4641	Bard. Neet 24
[]	K.N.Nai Ka.	ATUL	Kund
12	10.1	AZABA	D.B.K.
13	STAR GANGMIDEMIJ	29/21	Deli
14	8) 01 W 127 FRIES	21 था	J.H. Desui
15	Hermani- Parti	APm1,	bu-
16	Ji-rendra. S. Raval.	Atal .	Jehoucal
17	Bipton khai. B. Satel.	Atu).	Annau
18	Ravin. T. Rathow	Hury	M.
19	Bhilletin . S. Repuel	HUTSI'YU	Tolutes
20	Mehrel. S. Rathod	Harida	M. S. Ruthad
21	Nilesh R Najkel	jokaist_	Niesh
22	Nilesh G. Nayka.	Goizuis)	Nilesh
23	ASHISH Y PRYKU	52124187	CF-XHKH,
24	VIKASh	57129151	rikash
	PAGE	2, OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

0 N.	Name & Design attem	Organization	Signatura
Sr. No.	Name & Designation	Organization/Village	Signature
અનું.	નામ અને હોદદો	સંસ્થા/ગામ	સફી
નં.			
25	חוריח שאו ב חו בנו כוצח עצו,	rege	(Cali
26	2[1414 - 77. 427.	Gara (4)	Prine
27	Entioned arogened myst	IEGE	Bruke
28	रभेषामंद्र धरानम मेर्स सल्य साइन: 9	18er 2	Bitet.
29	Komenbarn' Gopelji for.	Binvelr	production
30	U	Binwood	ADRA
31	audaioniel an. un	ענבסצר	query
	anterophia curulu.	Eas mm strist	Ant.
33			
34	2105 Jr. s'oralal	CER 1-15 25-1912/21/21/641245+ C/BANIS	P C C C C C C C C C C C C C C C C C C C
35	Parichay Desai	Advorate, Vulsual	Anderen -
3,6	Scinket. M. Desen?	Valsad.	-Bsco
37	Kalpoh R. Polel	Valsad	ZR Qla.
38	Ravitaj Khachoe Co. chuiena CTahelka Nel	n. Nulsad	Kallingt.
39	Kailash Nachhani Tahelk Ntws compra	Nallad	NAD.
40	Guidip Sigh	Vapin	Guidite.
.41	Anup Chhuppini	Vop.	A R. Ohluger
42	Durend Sha	Nap.	
43	NIRAN B DESAL	VALS AD	A.
	PAGE	3 OF 11	

GUJARAT POLLUTION CONTROL BOARD

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

Regional Office : Vapi

Email. gpcb-val@gujaral.gov.in vvcbono · vvcbono				
Sr. No.	Name & Designation	Organization/Village	Signature	
અનું.	નામ અને હોદદો	સંસ્થા/ગામ	સહી	
નં.				
44	Bharet. M. Path	Panner	IB Batte	
45	normin anymin with	511201151	M. av. Parte	
46	217010 57.784	notit-51 () 2116/112 112/54	atan.	
47	Yogash D. Methy	Atul	They.	
48	renzimit. and will.	endy.	3-13-8	
49	Rijaith B. Put	Chichworde	AB. Ref	
50	Arm D. Pater	chichwada	A.D. Poter	
51	Harshy. K. Muy	chanvel	Re-	
52	Divyen Puta	Perman		
53	Blager B. Roce	10 Add	R	
54	Flimenshe Ruth	Dingegonal.	HAR	
55	Dipeth N. Patel	Parmerer	Bernter	
56	Komlesh s. patu	pwinera	(WStahr	
57	01231 C2118' EST)	Julit Est of	16.50.00	
58	2487 S. UZG.	(กนเน นั้นเขก สเดง	Lionuna.	
59	With y right	enteral	That	
60	Shealert. A Desui	valsab	SADSong	
61	Armat a pall	Alul.	Atte	
62	Babarbhai P. Patel.	Ralmeta.	Allene	
	PAGE	4 OF 11		

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in Website : www.gpcb.gov.in

	Eniali. gpcb-val egujara. gov				
Sr. No.	Name & Designation	Organization/Village	Signature		
ચનું.	નામ અને ફ્રીદદો	સંસ્થા/ગામ	સઢી		
નં.					
63	YOIELEI and Jan A	Fran Mizs	Majoliti		
64	azichance el· zesta	suge	The second secon		
65	Enn M. reig	coluc	Aller		
66	21 non M. with	में दे	- Jobelit		
67	lance and min	21112	non laker		
68	sider. an um	School SI	Zahtu		
69	D. B. Puter	M. 4123	D.BALL		
70	In A. scotte	વલસ્પાડ	Dr. Q. > Bar		
71	egg1. 2112-2125	(328)	HRP		
72	2110AMIL RMIL. PILA	Riszanid.	Sul		
73	HEA. 27.4. 2181.5	હશીયા	M.S. Rathod.		
74	Mougash	Aful.	late .		
75	Last flunchinal	-le_	Cou-		
76	Ravindra Mishing		Julis		
77	DiPuk B Pater	ATUL	OBlack .		
78	Vinay K. Putel	Purnera	WRItel		
79	Sailesh I Potel	Jived	5 JAIN		
80	Hasmuch. R. Pater.	Anilar	Partec		
81	Mahesh. L. Patel	moter susaseden	RUD		
PAGE 5 OF 11					

ł

1

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

6 b 1			Ci ma chuna
Sr. No. અનું	Name & Designation નામ અને હોદદો	Organization/Village સંસ્થા/ગામ	Signature સઠી
ખપ્યુ. નં.		accord	cart
			chris
82	Jih imme Musmid	Reil	Shies,
83	GRUIZ 21821 2012-	MIZAZI	Rent
84	Grund 21821 2012_ Smeeting CRilt	Searni	Greta
85	fairzan Guinnin	4129214120	Kink
86	ひろん ディアンタインス のええのい	FEUR	Refe
87	VIZH MIONSAK REUSMIN	aluens.	Zat
88	น่าวิช สาโกศกาย สายเกาย	દભાષ્ટા.	S. R. Rutel
89	uia zur zurraia	ujori	K.S. Potel
9D	Escieron menous mil	DISKUI	Defatel
91	SPICE SHAMME YLCH	वन्धिभर	Hent
92	Dold Hanapares with	Śolkaisł	J.S.Patel
93	รี่รีรีรี อารารเกายา นรีณ	Hjje	H.N. Potol.
94	Darthan M Nailea	Atus	priz-a
95	Palel Sumi'l B	Dungaourali	Sell
96	Jum S. Rater	chichulada	HAN
97	Brakas) N Ret	chichaue	GQ,
98	Harresh Dytt	Nu/sul	() (M
99	Scelcherty K Palet	chickwed	8180
100	Huger J. Palis	chithwal.	Stelit
	PAGE	6 OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

		D-vale gujarat. gov.iit 🖕 ve	
Sr. No.	Name & Designation	Organization/Village	Signature
અનું.	નામ અને હ્રોદદો	સંસ્થા/ગામ	સહી
નં.			
101	Devubhi-Soni PLESS REPORTER	ATUL KANCHAN-NAGAR	And
102	yard get. S.	UILA21	Herr
103	Ravindra Thaker	Vapi	Auch
104	Rullesh. R. Petel	U12011	am
105	BOYUDE B-DHel	grand law.	P-B Refal
106	Poitesh m. Patul	Chichwaeld	f.b.h
107	Kirum N. Patel	chichwaly	KMCH
108	351119 on uze	(ni ch wudu	K B D
109	Mahesh D. Neika.	Atul.	Maluiker.
110	Tinal R. Pasel	Am	J.
111	Marendsa Modi	Myochen	Atul.
112	Narendra Moli	Arel	b. 1.1. Bledt
113	Zuria al Zuger Digarde	B ZAZA	Menit
(14	Dipesh ~ Jogli.	antbe	p. 25082
115	is is in a roly	272	autos
116	pheret U. Etel	412621	Bilts
117	Satish m. Jule	&Aful	Gulated
118	Usin - K- patel	AHUL	CHAR
119	•	A+VL 7 OF 11	U.G. Najka
	PAGE	7 OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

		www.www.www.www.www.www.www.www.www.ww	1
Sr. No.	Name & Designation	Organization/Village	Signature
અનું.	નામ અને હોદદો	સંસ્થા/ગામ	સફી
નં.			
_	. (
120	Kikmi - Dusaj	Magail	- APin
121	Ul pada	U U	
122	Rym m. Cart	-	-t-t-
123	Jignesh mpard	chichwady	Fratel
124	Surgenteent B Pl	chichard	- SPRIL
125	Niton uttende Pet	Dangs streat	aget-
126	Tandel Muketh Beng.	-	Tan.
127	Tandel Hemandrymur Cr	Valsand.	Tameltits
128	Patel Duizek 19	Vupi	Netal
129	Hardik. H. Patel	Varpi	Phaselik
130	Pancy Situding.	Atul.	Jonet
131	Unashi G. R. tel. TUT		WPDD.
132	Bhupendra, K. Bartuita		28
133	Havith N. Rotel	Xhiele h	me -
134	Vatin. & Park	Andrudy	yder
135	Derish K Reth	chiphe ala	DSRAQ
136	Tonan J Restel	1	T-5 Retal
1537	Jincol G. Pertel	chic have de	Folget
138	minesh m Potes	chichwodu	montras
I		8 OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

	· • • • • • • • • • • • • • • • • • • •	,u-vai s gujaragov	
Sr. No.	Name & Designation	Organization/Village	Signature
અનું.	નામ અને હ્યેદદો	સંસ્થા/ગામ	સહી
નં.			
139	Iskver e. Patel.	Titker.	Only.
140	KUNDAN KUMAR	Atal	rle
141	Yasin Patel	M101	yang
142	Jayesh partel.	ATUL (North)	₹. <u></u> ,
143	Panicopó & Rutel	Brigod-	Clipm-
144	King N Porter	MoRy Mugaco	Blk -
145	Kishot S. Reiner	CP ATUL	Relogie
146	Vijay Mishy	Alter	Unin
147	Stat. R. R. Bhutt	po- Engg	BLUH R.R.
148		PO (North)	Brotel
149	Hitesh A. Patel Dincer D lever	Ar phis.	801
150	Juleannging D-Gurring	API Pleast	HOCAN
151	Suman N. Nayak	Gr. Larpach Mr)	Gyde
152	Prafeel. S. Gogellon	Viccaq (Buaged)	Jeggella.
153	Mohur J. Releg Er	Atel-GTK colony	mpater
154	Manherlal Blzikbable	Atur Jalasan	Mesenti-
155	23102 1210 91-12	2013 Cn mu	2205521
156	Driansheir Milater	Parmene	Braile
157	pharat M Pete.	Binwade	Brit
,	PAGE	9 OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in Website : www.gpcb.gov.in

Sr. No. અનું.	Name & Designation નામ અને હ્યેદદો	Organization/Village સંસ્થા/ગામ	Signature સહી
નં.	P		er
158	Rt Tiwon'	Valsad <	Anio
159	Narch B. Patel	Bhaged	ON
160	V. D. Desau	Atw	Ver
161	દીના એવ. લાગ	જ્મનાલ	Heens *.
162	Sil. Meder Pension NAST	du 3h	M
163	uizi seulorente vien	મતુલ	P.K.Catel
164	Mia21. 524. 25h	- <i>(((()))</i>	18
165	Provision area	Angreen	an
166	Prapal G. Patal	GURAT	Boald
167	Rojer M. Pallel	SUSAL	Prevel
168	Oaxaber v Refel.	AKA	DCIXCI.N. RUPP
169	Foram Desai	Swrat	Courses.
170	I mind Misty	Smat	æ.
17:1	Sund to porcher	Soraf	1 Hardes
17.2	-A. Venzaiah	Aful Hd	Walkert
173	Navin B. Puter Sarponch	Survady	OPert
174	Coiros sh H Pred	Dheizussena	Clau
1775	DiPar D. Desul.	LiLapore	Price
175	Raviadra & Akil	Otal	N-SAM.
	PAGE 1	0 OF 11	

Plot No. C-5/124, N. H. No. 8, G.I.D.C., Vapi-396 195. Dist. Valsad. (Gujarat) Tel. : (O) (0260) 2432089, 2426207 Fax : (0260) 2432826 Email: gpcb-val@gujarat.gov.in • Website : www.gpcb.gov.in

Sr. No.	Name & Designation	Organization/Village	Signature
અનું,	નામ અને હેદદો	સંસ્થા/ગામ	સફી
નં.			1
177	SUNIL PATEL	ECO-CHEM SURAT	
178	Ruchika Shah	ECO - CHEM GALES & SERVICES (SUDAL)	Rulis.
1\$9	Hemlatta Javel	Frochen sales	for
180	Dr. N. C. Shoh	Atm Ltd, Support	Shewar
184	Pankaj. A. Duran	Haria	Ama
182	Dipak c Naik.	Havia	gån
183	PODAVI Manishbhai Rutha	f Haria.	Battylloos
184	Asher. T. Desci	Htoda	R.S
185	Kanshal B. Dergi	Haria	
18:6	Dr. Dipall, G-Desai		Mach
187	A.M. DATRA	ATUL LOD ATUL	ILMI
188	Patel Jogesn H. Zun	er parmene	yhti.
		•	~
••••••••••••••••••••••••••••••••••••••	PAGE	110F 11	

Annexure-B (English)

A Statement showing issues raised by the participants and responses given by the representative of the applicant during the Public Hearing

As per the Ministry of Environment and Forests, Government of India, New Delhi vide its notification no. S.O. 1533 (E) dated 14/09/2006 and its amendment S. O. 3067 (E) dated 01/12/2009, Environment Public Hearing is conducted for M/s. Atul Limited, Valsad at Gram Panchayat Hall, Village: Atul, Dist. Valsad for capacity expansion of Coal based Captive Power plant i.e. From 34 MW to 56 MW by installing additional 22 MWH CPP, which is covered under Category "B", and hence Environmental Clearance is necessary. Accordingly, Environmental Public Hearing is conducted at Gram Panchayat Hall, Atul, at Village: Atul, Ta. Valsad, Dist. Valsad on Dated 09/10/2015 at 11.00 am under the chairmanship of Shri A. D. Bagul, Additional Collector and Additional District Magistrate, Valsad.

Mr. A.G. Patel, Regional Officer, Gujarat Pollution Control Board, Vapi and Representative of Member Secretary, Gujarat Pollution Control Board has obtained oral permission to start proceeding of public hearing from the chairman of the commitee. Regional Officer, Gujarat Pollution Control board has welcomed all those who are remaining present. He has briefed the various provisions of EIA Notification-2006 and the process of public hearing. He has informed about its wide publicity of Public Hearing notice which was published in local newspaper i.e. Gujarat Samachar and Sandesh on 08/09/2015 and Times of India on 09/09/2015. Further, he stated that as per the provision notification. only local affected people can of the present their suggestions/views/comments/questions orally and other interested people can make their suggestions/comments/questions in writing which will be considered as a part of procedure of the Public Hearing.

The company has made Power Point presentation about the proposed project. Initially, Mr. Mohanan – Director, has given presentation by covering various aspects in brief about the company. Subsequently, Mr. Sunil Hansoti, Dr. Gautam Dave and Mr.Ajitsing Batra etc. presented about the exiting & proposed expansion project related activities.

Regional Officer, GPCB, Vapi invited the local affected people for representation and suggestions. He also added that person has to ask questions one by one after giving their brief introduction.

Sr. No.	Name and address of person Who presented the issue of	The issues presented	Reply
1	Mr. Rajubhai Pravinbhai Dangarvala Jan Jagruti Manch, Valsad	 Why the media persons are not allowed to enter in this public hearing? 	Since, this is an Environment Public Hearing and hence there should not be any private or special kind of invitation to be given Mr. A. G. Patel, Regional Officer stated that the

Page 1 of 8

			press note regarding the Environment public Hearing was published in local Gujarati newspapers (i) Gujarat Samachar and (ii) Sandesh on 08/09/2015 and English newspaper i.e. Times Of India on 09/09/2015. It is also pointed out that total 14 surrounding villages were informed well in advance about the Environment public Hearing through intimation to the Talati cum mantri and Sarpanch of the respective villages.
		District level, why District Collector is not present?	Environment public Hearing stated that District Collector is unable to attend the public hearing due to unavoidable circumstances and hence on behalf of him myself, As an Additional Collector is present for the same.
2	Mr. Brijesh Pandey, Sandesh (Daily newspaper), Valsad	have been stopped by	
3	Mr. Harshadrai Thakorbhai Desai Village: Valsad, Pardi Ta. & Di.Valsad	 Atul Company discharges their wastewater through underground drain. I have submitted numbers of applications to Atul Ltd. as well as to GPCB, but till date I have not received any reply for the same. 	Mr. A. G. Patel, Regional Officer informed that GPCB has not received any such complaints/ applications against this
		 Why the Company damages the environment by installing proposed coal based power plant instead 	

Page **2** of **8**

8

 of natural gas based/solar energy power plant? By replacing the 35 m height chimmey with 106 meter height chimmey, how much distance shall be covered by Fly ash emitting from the chimmey? All the power plants are of gas based and solar "ESP" will be installed and for reduction in the SO2 emission, low NO₂ burget based proposed the coal based proposed power plant. Too? Please clarify this and i have opposed power plant. Too? Please clarify this and i have opposed power plant. Too? Often there is smell due to gas causing asthma and mostly small children are affected Often there is smell due to gas causing asthma and mostly small children are affected The company since last to phosgene is manufactured in the date, not a single case of phosgene In the date, not a single case of phosgene In case of phosgene 	· · · · · · · · · · · · · · · · · · ·	
 height chimney with 106 meter height chimney, how much distance shall be covered by Fly ash emitting from the chimney? All the power plants are of gas based and solar based, then why do you want to expand this coal based power plant? Please clarify this and I have opposed the coal based proposed power plant. Too? Often there is smell due to gas causing asthma and mostly small children are affected. Often there is smell due to gase. And the decision regarding the project will be taken by DOEF, Gujarat. Often there is smell due to gase. And the decision regarding the project will be taken by DOEF, Gujarat. Often there is smell due to gase. And the decision regarding the project will be taken by DOEF, Gujarat. Often there is smell due to gase. And the decision regarding the project will be taken by DOEF, Gujarat. The company's representative Dr. Gautam Dave said that the phosgene is manufactured in the company since last 60 years. And the plant is installed in collaboration with Japanese company. And till the date, not a single case of phosgene leakage has been occurred so far. There are 11 types of process which controls the chlorine (Cl₂) and Carbon Monoxide (CO) at source. 	of natural gas based/solar energy power plant?	
 Often there is smell due to gas causing asthma and mostly small children are affected The company's representative Dr. Gautam Dave said that the phosgene is manufactured in the company since last 60 years. And the plant is installed in collaboration with Japanese company. And till the date, not a single case of phosgene leakage has been occurred so far. There are 11 types of process controls for the phosgene manufacturing process which controls the chlorine (Cl₂) and Carbon Monoxide (CO) at source. 	 height chimney with 106 meter height chimney, how much distance shall be covered by Fly ash emitting from the chimney? All the power plants are of gas based and solar based, then why do you want to expand this coal based power plant? Please clarify this and I have opposed the coal based proposed power 	Officer stated that the height of chimney is determined by a precise calculation. And whereas, the height of the chimney lesser the pollution. While In the proposed project "ESP' will be installed and for reduction in the SO ₂ emission, lime will be used. To reduce the NO _x emission, low NO _x burners will be installed. There are three types of gaseous emission from a chimney. 1. Particulate matter (PM ₁₀ & PM _{2.5}), 2. SO _x , 3. NO _x . Your suggestion will be forwarded to competent authority and the decision
gas causing asthma and mostly small children are affected		be taken by DOEF,
	gas causing asthma and mostly small children are	representative Dr. Gautam Dave said that the phosgene is manufactured in the company since last 60 years. And the plant is installed in collaboration with Japanese company. And till the date, not a single case of phosgene leakage has been occurred so far. There are 11 types of process controls for the phosgene manufacturing process which controls the chlorine (Cl ₂) and Carbon Monoxide (CO) at source.

Page 3 of 8

		 In case of leakage of phosgene, what are the safety measures? 	automatically. As per the legal requirement we are conducting the mock drill 4-5 times a year and also conduct a mock drill in presence of District Collector sometime. Regular trainings to the workers are also provided. Phosgene has been stored as per the Government rules. The phosgene storage tanks are completely covered by spraying the ammonium hydroxide solution and also water showers are provided which are regularly checked.
4	Mr. Sumanbhai Jivanabhai Patel, Village: Dived, Ta. & Di.Valsad	 Why do you damage the environment? He also demands that free electricity and water will be provided to the villages, but it is not done by the company. 	
5	Mr. Ashokbhai Chhotubhai Patel Village: Dungarvadi. Ta. & Di.Valsad	 How much distance shall be kept between the proposed plant and village population? 80 percent of total employment are from outside in company. Local people don't get employment in company. There are about 10 lacs trees planted in Atul which are of such types trees that don't be affected by gases. About @ 400 acres of land, out of total 1000 acres is still unutilised. This land shall be utilized for projects which doesn't affect the nearby population. We oppose the proposed expansion of 	

Page 4 of 8

6	Mr.Jinal Patel, Village: Atul, Ta. & Di.Valsad	 There is medi claim policy for the company's employees but no such policy for the nearby villagers. 	The company's representative Mr. Hriday Desai stated that the company has taken Public Liability Insurance (PLI) policy under which all the affected people are covered and shall get compensation in case of any environmental disaster.
		 Local people don't get education and employment. @ 80% percent of total employment are from outside in the company. 	The company's representative Mr. Gautam Desai replied that more than five thousand people are employed and 90 per cent out of which are almost local people. Frequent interviews are being arranged by the company for the employment. Company is also running institutes for skill development at Khergam and Sagbara villages. Presently, there are requirement for the ITI grade workers in the company and applications are invited from the local people.
		 What is the present status of Government Land and Gauchar land which was marked at the time of establishment of Atul Ltd.? 	
7	Mr. Hitesh Patel, Village: paranera Ta. & Di.Valsad	 I was rejected only on medical ground even after passing the interview at Atul Ltd. 	
8	Mr.Sanket Desai Prahari Charitable Trust, Valsad	 How far away proposed project from reserved forest? 	The company's representative Mr. Navin Patel replied that no such notified reserved forest within the 10 km radius of the proposed project site.

Page **5** of **8**

9	Mr .Sumant Patel, Village: Dived, Ta. & Di.Valsad	 Villagers don't get water and they have to use contaminated water. 	The company's representative Mr.Navin Patel informed that under the proposed project survey, water samples were taken from 9 villages within 10 km radius of the project site. The analysis results of these samples are within the prescribed limit.
10	Mr. Jignesh MohanbhaiPatel Village: Chichvada, Ta. & Di.Valsad	 Our application is being rejected on the basis of name of the villages even after completion of interviews by the ATUL Company. 	
11	Mr. Hemant Kumar Tandel Po. Valsad, Ta. & Di.Valsad	 Earlier, in a committee held at Paris on the "Climate change", it was declared that the gas emission will be controlled compare to the year 2005 level. 	Patel replied that the emission level and incremental value of gas
12	Mr. Bhargav Dave, Po. Valsad, Ta. & Di.Valsad	 First of all, he thanks to GPCB for organizing the public hearing. He informed that we have to be incurred medical expenses in case of gas leakage from the company whereas company doesn't provide even any medical treatment facility. 	
13	Mrs.Purvi Rathod Sarpanch Village: Hariya Ta. & Di.Valsad	 She thanks to GPCB for organising such public hearing event and emphasis to organize at regular interval. She also added focus towards CSR activities. 	
14	Mr.Parichay DesaiValsad City		representative Mr.Navin Patel replied that the proposed project site is @ 2 km away from the NH.

-

¥

this report?	
 He further stated that in Column No. 8 of the same page, it is shown that there is no reserved forest within 10 K.M. radius of this project, but in fact there are@ 3 reserve forest zones. 	
• He quoted about recent U.N. meeting & stated that Indian Ministry has given assurance that measures will be taken to reduce Green House Gases(GHG) by 35%. The reduction will be done by converting coal based plant into solar based and or gas based power plant. Then how there can be expansion of the coal based plant?	
 Why the Coal based plant of this company is not being converted into gas based and/or solar based plant? Please give me answer for the same. 	The company's representative Mr. Sunil Hansoti informed that Gas based plant is very costly and gas is not available consistently. Nos. of Gas based power plant has been compelled under shut down due to this reason.
 If there will not be 100% treatment of the fly ash and toxicity such as Arsenic, Lead, Mercury and other solid waste then what will you do for it? He has also submitted 	The company's representative Mr. Sunil Hansoti replied that as rer the MoEF notification there should be @ 85 % utilization of the fly ash. But, this company is going to achieve @ 100 % utilization and it will not be released in water.
letter in writing for the same.	

Page **7** of **8**

While concluding the public hearing, Chairman of the public hearing stated that all oral and written representations, suggestions have been recorded. He also added that, answers given by the company against suggestions/comments received in writing are also noted. Also, video and audio recording of the whole proceeding was done and the same will be submitted along with final report to Department of Environment & Forest (DOEF) Govt. of Gujarat, Gandhi agar. Final decision will be taken by the respective department/ committee of the Government of Gujarat.

As there are no further questions are being raised so far for the proposed project expansion activity of Captive power plant, the public hearing was declared completed with the permission of Chairman.

AM (A. G. Patel)

(A. D. Bagul)

Venue:

Gram Panchayat Hal, Village :Atul, Ta &Dist: Valsad,

Date: 09/10/2015

Representative of Member Secretary, GPCB, Gandhinagar & Regional Officer - GPCB, Vapi

Chairman of the Environmental Public Hearing &Additional Collector and Additional District Magistrate,Valsad

Page 8 of 8

એનેક્ષર-બી૧ ગુજરાતી

<u>લોક સુનાવણી દરમ્યાન હ્રાજર રહેલ લોકો દ્વારા રજુ કરવામાં આવેલ મુદ્દાઓ અને અરજદારના</u> <u>પ્રતિનિધિ દ્વારા આપવામાં આવેલ જવાબ</u>

ભારત સરકારના વન, પર્યાવરણ અને જળ, વાયુ પરિવર્તન મંત્રાલય નવી દિલ્હીના જાહેરનામા ક્રમાંક :એસ.ઓ. ૧૫૩૩-ઇ તા. ૧૪-૦૯-૨૦૦૬ અને તેના પછીના સુધારા ક્રમાંક એસ.ઓ. ૩૦૬૭ (ઇ) તા. ૦૧-૧૨-૨૦૦૯ ના પરીશિષ્ટના ક્રમ નંબર: ૬(એ) અન્વચે મેસર્સ અતુલ લિમીટેડ, વલસાડની લોક સુનાવણી, ગ્રામ પંચાયત હોલ, ગામ: અતુલ, તા. જિ. વલસાડ ખાતે હાલની કોલસા આધારીત ૩૪ મેગાવોટ કેપ્ટીવ પાવર પ્લાન્ટ ક્ષમતાને વિસ્તારવા સૂચિત વધુ ૨૨ મેગાવોટની સ્થાપના માટેની પરિયોજના (પ્રોજેકટ) કેટેગરી "બી" માં આવરી લેવાચેલ છે અને તે અન્વચે પર્યાવરણીય મંજુરી જરૂરી છે. સદર પર્યાવરણીય લોક સુનાવણી મોજે: અતુલ, તા. અને જિ. વલસાડ ાખતે તા. ૦૯/૧૦/૨૦૧૫ નાં રોજ સવારે ૧૧:૦૦ કલાકે અધિક જિલ્લા મેજીસ્ટ્રેટ; વલસાડ તેમજ પર્યાવરણીય લોક સુનાવણીના અધ્યક્ષશ્રી એ.ડી.બાગુલની અધ્યક્ષપણા હેઠળ આયોજીત કરવામાં આવેલ.

શ્રી. એ.જી.પટેલ, પ્રાદેશિક અધિકારી, ગુજરાત પ્રદુષણ નિયંત્રણ બોર્ડ, વાપી તથા સભ્ય સચિવશ્રી ગુજરાત પ્રદુષણ નિયંત્રણ બોર્ડના પ્રતિનિધિ તરીકે તેમણે કાર્યવાઠી શરૂ કરવા માટે અધ્યક્ષશ્રીની પરવાનગી મેળવી. પ્રાદેશિક અધિકારી, ગુજરાત પ્રદુષણ નિયંત્રણ બોર્ડએ લોક સુનાવણીમાં ઉપસ્થિત સૌને આવકાર્યા, તેઓએ ઇ.આઇ.એ. નોટીફિકેશન (ઈ.આઈ.એ.-૨૦૦૬) અંર્તગત વિવિધ જોગવાઇઓ અને લોક સુનાવણીની પ્રક્રિયા બાબતે સંક્ષિપ્તમાં માહિતી આપી, તેમને લોકસુનાવણીની બહોળી પ્રસિધ્ધિ અંગે ગુ.પ્ર.નિ.બોર્ડ દ્વારા સ્થાનિક દૈનિક પત્રો ગુજરાત સમાચાર અને સંદેશ, ગુજરાતી આવૃતિમાં તા.૮/૦૯/૨૦૧૫ અને અંગ્રેજી દૈનિક પત્ર ટાઇમ્સ ઓફ ઇન્ડિયા માં તા. ૦૯/૦૯/૨૦૧૫ નાં રોજ આપવામાં આવેલ જાહેરખબર બાબતે જણાવેલ તેમજ જાહેરનામાંની જોગવાઇ અનુસાર માત્ર સ્થાનિક અસરગ્રસ્ત લોકો જ આ પર્યાવરણ લોક સુનાવણીમાં મૌખિક રજુઆત કરી શકશે, જયારે હિત ધરાવતા અન્ય વ્યકિતઓ દ્વારા કરેલ લેખિત રજુઆતનો કાર્યસુચિમાં સમાવેશ કરવામાં આવશે.

ત્યારબાદ કંપનીને સુચિત પ્રોજેકટ અંગેનું પાવર પોઇન્ટ પ્રેઝન્ટેશન/પ્રસ્તૃ તિકરણ રજુ કરવા જણાવ્યું. જે મુજબ સૌપ્રથમ કંપનીના શ્રી મોહનન, નિયામકશ્રી દ્વારા સુચિત યોજનાનો ટુંકમાં ખ્યાલ આપ્યો ત્યારબાદ શ્રી સુનિલ હ્રાંસોટી, ડૉ. ગૌતમ દવે અને શ્રી અજીતસિંગ બત્રા દ્વારા દરખાસ્ત હેઠળની યોજના અને હ્યાત પ્લાન્ટ અંગેની વિગતોનું પ્રસ્તૃ તિકરણ કરવામાં આવ્યું.

કંપની દ્વારા સુચિત પ્રોજેકટની માહિતી અંગેનું પ્રસ્તૃ તિકરણ પુર્ણ થયા બાદ શ્રી એ.જી.પટેલ, પ્રાદેશિક અધિકારી અને સભ્ય સચિવશ્રી ગુ.પ્ર.નિ.બોર્ડ, ગાંધીનગરના પ્રતિનિધિ દ્વારા સુચિત યોજનાના

Page 1 of 10

સંદર્ભમાં એક પછી એક રજુઆત કરવા અને તે મુજ્બ જરૂરી પ્રત્યુત્તર કંપનીના પ્રતિનિધિશ્રી દ્વારા આપવામાં આવે તેવી સુચના આપેલ જે મુજબ નીચેની વિગતે રજુઆત કરવામાં આવેલ છે.

ક્રમ	મુદ્દો રજુ કરનારનું નામ અને સરનામું	રજુ કરાચેલ મુદ્દાઓ	પ્રત્યુ ત્તર
	શ્રી રાજુભાઇ પ્રવિણભાઇ ડાંગરવાલા, જનજાગૃતિ મંચ, વલસાડ	આ જાઢેર લોક સુનાવણીમાં પ્રેસ/ મીડીયાને શા માટે પ્રવેશ અપાયો નથી?	
		સુનાવણી છે તો જિલ્લા કલેકટર કેમ હ્રાજર નથી?	અધ્યક્ષશ્રી એ જણાવ્યું કે જિલ્લા કલેકટર અનિવાર્થ સંજોગો ના કારણે ઉપસ્થિત રફી શકયા ન હ્રોઇ તેમના વતી હું અધિક કલેકટરશ્રી હ્રાજર છું.

Page 2 of 10

5	શ્રી બ્રીજેશ પાંડે, સંદેશ (દૈનિક સમાચાર પત્ર), વલસાડ	 મિડિયા કર્મી ને કેમ આમંત્રણ આપવામાં આવ્યું નહિ અને અમને લોક સુનાવણી માં ભાગ લેવાથી કેમ સીક્યુ રીટી દ્વારા અટકાવવામાં આવે છે? 	અધિકારી, સદર બાબતે પુન: સ્પષ્ટતા કરીને જણાવ્યું કે
3	શ્રી ફર્ષદરાય ઠાકોરભાઇ દેસાઇ ગામ: વલસાડ પારડી તા અને જી. વલસાડ	 અતુલ કંપની દ્વારા ભુગર્ભગટરનું પાણી સીધે સીધુ બહાર છોડવામાં આવે છે. મે વારંવાર ઘણીવાર અરજીઓ અતુલ કંપનીને લખવામાં આવેલ છે તેમજ જી.પી.સી.બી. ને આપેલ છે. જેનો આજ સુધી મને જવાબ આપવામાં આવ્યો નથી. કંપની ગેસ કે સોલાર આધારીત પાવર પ્લાન્ટને બદલે કોલસા આધારીત યોજના દ્વારા શા માટે પર્યાવરણને નુકશાન કરવા માંગો છો? 	અધિકારીએ જણાવ્યું કે આ અંગેની કોઇ ફરીયાદ મળી નથી.
		 ૩૫ મીટરની ચીમનીની જગ્યાએ ૧૦૬ મીટરની ચીમની કરશો તો તેમાંથી નીકળતી ફલાયએશ કેટલા વિસ્તાર સુધી જશે? બધ પ્લાન્ટો કોલસા આધારિત, ગેસ આધારિત અને સૉલર આધારિત 	અધિકારી એ જણાવ્યું કે ચીમનીની ઉંચાઇ ચોકક્સ ગણતરી મુજબ નક્કી કરવામાં આવે છે. ચીમનીની ઉંચાઇ જેટલી વધારે એટલું પ્રદુષણ ઓછું શાય છે. સુચિત પરીયોજનામાં ESP લગાડવામાં આવશે અને લાઇનનો ઉપયોગ કરી SO2

Page 3 of 10

[વિરોધ છે.	આવશે. NOx ની માત્રા
	MUM O.	
		ઘટાડવા માટે low NOX
		બર્નરનો ઉપયોગ થશે.
		ચીમનીમાંથી ત્રણ પ્રકારના
		ઉત્સર્જન થાય છે. ૧).
		પાર્ટી ક્યુલેટ મેટર (PM), ૨).
		SOx અને 3). NOx.
		આપની રજુઆતને ધ્યાનમાં
		લઇ આગળ મોકલવામાં
		આવશે અને આ પ્રોજેકટ
		અંગેનો નિર્ણય કોમ્પીટન્ટ
		(Compentant) ઓથોરીટી
		દ્વારા લેવામાં આવશે.
	• રાત્રે ઘણી વાર ગેસની વાસ	કંપની પ્રતિનિધિ શ્રી ડૉ.
	આવે છે તેનાથી અસ્થમાનો રોગ	ગૌતમભાઇ દવે એ જણાવ્યું કે
	થાય છે તેમજ ખાસ કરીને નાના	
	છોકરાઓને આની ખાસ અસર	
	થાય છે.	કરવામાં આવે છે. જાપાનીઝ
		કંપનીના સહ્યોગ થી આ
	 ફોસ્જીન લીક થાય તો તે સમયે 	
st (તમે શું કરશો?	અને આજ દિન સુધી લીકેજ
	3	અંગેનો એક પણ કેસ નોંધાયો
		નથી. ફોસ્જીન બનાવવાની
		પ્રક્રિયા પર ૧૧ જાતની
		પ્રોસેસ કંન્ટ્રોલથી નિયંત્રણ
		રાખવામાં આવે છે જે
		કલોરીન (Cl2) અને કાર્બન
		મોનોક્સાઈડ (CO) ને કન્ટ્રોલ
		માનાકસાઇડ (CO) ન કન્દ્રાલ કરે છે. કોઇપણ જગ્યાએ
Q2		જયારે પણ ફોસ્જીન લીકેજ
		થાય તો આપોઆપ પ્લાન્ટ

.

Page 4 of 10

s#

				બંધ થઇ જાય તેવી સીસ્ટમ છે. આ સિવાય કાયદાની જોગવાઇ મુજબ અમે વર્ષમાં ૪ થી પ મોકડ્રીલ કરીએ છીએ અને વર્ષમાં એક વાર કલેકટરશ્રીની હાજરીમાં મોકડ્રીલ પણ કરવામાં આવે છે. શેસ્જીન માટે ની નિયમિત ટ્રેનિંગ કામદારોને આપવામાં આવે છે. સરકારી ધારાધોરણ મુજબ શેસ્જીન નો સંગ્રહ કરીએ છીએ, શ્રેસ્જીન ની સ્ટોરેજ ટેન્કને એમોનીયમ હાઇડ્રોકસાઇડ ના સોલ્યુશન વડે સંપુર્ણ રીતે કવર કરવામાં આવે છે. તદ્દ પ્શંત પાણી સાથે શાવરની પણ વ્યવસ્થા કરેલ છે. જેની સમયાંતરે ચકાસણી કરવામાં આવે છે.
	8	શ્રી સુ મનભાઇ જીવણભાઇ પટેલ, ગામ : દીવેદ, તા અને જી. વલસાડ	 પર્યાવરણને કેમ નુકશાન કરો છો? ગામડાને મફત વીજળી તેમજ પાણી આપવાનું કહેલ પણ કોઇ ગામને આપેલ નથી. 	
5	ų	અશોકભાઇ છોટુભાઇ પટેલ	 જે પ્લાન્ટ નાંખવાના છો તે ગામ વસ્તીથી કેટલો દૂર રાખવો 	

Page 5 of 10

-					
		ગામ: ડુંગરવાડી.		જોઇએ?	
		તા અને જી. વલસાડ		5	
			•	૮૦ ટકા બહારના માણસો કામ	
				કરે છે? સ્થાનિકને રોજગારી	
				મળતી નથી?	
			•	અતુલની અંદર જેવૃક્ષો વાવેલ	
				છે તે આશરે ૧૦ લાખ વૃક્ષો છે	
				અને એ લોકો જે વૃક્ષો વાવેલા છે	
				કે તેને ગેસની અસર થતી નથી.	
				૧૦૦૦ એકર જમીનમાંથી ૪૦૦	
				એકર જમીન ઉપયોગ વગરની	
				છે. એ જમીન માં વસ્તીને	
				નુકશાન ન થાય એવો પ્રોજેકટ	
				લાવો. અમારો વિરોધ છે કે	
				કંપનીનું વિસ્તરણ ન થવું	
				જોઇએ. નવું કશું કરવું નહી,	
				અહીંથી જ અટકવું .	
	S	શ્રી જીનલ પટેલ,	•	કંપનીના માણસોનો મેડીકલેમ છે	
		ગામ: અતુ લ્		પરંતુ આજુબાજુના ગામના	
		તા અને જી. વલસાડ		અન્ય લોકોનો મેડીકલેમ નથી?	
				જે હોવો જોઇએ. જીવના જોખમે	
					વિસ્તારનો સમાવેશ થયેલ છે
				મેડીક્લેમ છે, ગામના લોકોનો	~
				મેડીક્લેમ હોવો જરૂરી છે.	વળતરની જોગવાઇ છે.

•	ગામના	લોકોને	શિક્ષણ,	આ અંગે કંપન	ો પ્રતિનિ	ધિ શ્રી
	રોજગારી મળ	ાતી નથી?	J85 03 9	ગૌતમ દેસાઇ	એ	જવાબ
	બહાર ના	લાકોને	રોજગારી	આપ્યો કે પાંચ	ા હજારથ	ી વધુ
	આપવામાં અ	ાવે છે.?		લોકો ને રોજા	ળારી આ	પી છે
				જેમાં ૯૦ ટકા	જેટલા	લોકો
				સ્થાનિક છે.	રોજગારી	માટે
				ઇન્ટરવ્યુંનું પણ	ા વખતે	વખત

Page 6 of 10

		અતુલ કંપનીની જયારે સ્થાપના થઇ ત્યારે ગૈાયરની અને સરકારી જમીનો હતી તે જમીન કયાં છે અને કેટલી છે તે જણાવો?	
g	શ્રી ફ્રિતેશ પટેલ, ગામ : પારનેશ તા અને જી. વલસાડ	મને ઇન્ટરવયુમાં સિલેકટ કરેલ અને પછી મેડીકલ ગ્રાઉન્ડ ઉપર નિમણુંક નકારવામાં આવેલ. ગામના લોકોની પસંદગી કરવામાં આવેલ નથી.	
٢	શ્રી સંકેત દેસાઇ, પ્રહ્નરી ચેરીટેબલ ટ્રસ્ટ, વલસાડ	તેઓશ્રી દ્વારા પુછવામાં આવ્યું કે રીઝર્વ ફોરેસ્ટ આ પ્રોજેકટથી કેટલો દૂર હોવો જોઇએ?	
e	શ્રી સુમંત પટેલ ગામ: દિવેદ, તા અને જી. વલસાડ	ગામમાં પાણી આવતુ નથી પ્રદુષિત પાણીનો ઉપયોગ કરવો પડે છે.	કંપનીના પ્રતિનિધિ શ્રી નવીનભાઇ પટેલ એ જણાવ્યું કે આ સુચિત યોજના અંતર્ગત ૧૦ કીલોમીટરની ત્રિજયામાં ૯ ગામોના પાણીના નમુનાઓ લેવામાં આવેલ, જે નિયત ધારાધોરણ મુજબ ના જણાચેલ.
90	શ્રી જીજ્ઞેશભાઇ મોઠનભાઇ પટેલ,	અતુલ કંપની દ્વારાઇન્ટરવ્યું યોજાયા પછી અમારી અરજીઓ અને ગામના	

Page 7 of 10

	ગામ: ચિચવાડા,	નામો જોઇને જ અરજી નકારવામાં	
	તા અને જી. વલસાડ	આવે છે.	
११	શ્રી. હેમંત કુમાર ટંડેલ, મું : વલસાડ,	હ્ઞલમાં "કલાઇમેન્ટ ચેન્જ" અંગેની પેરીસમાં સમિતિ મળેલ ફતી. તેમાં	
	તા અને જી. વલસાડ	૨૦૦૫ ના લેવલ પ્રમાણે ગેસ	કે ગેસ એમિઝન પણ
		એમીશનને કંન્ટોલ કરવામાં આવશે	નોટીજ્ઞઇડ લેવલ ની અંદર છે
		તેવું જાહેર કરેલ.	અને ઇન્કરીમેન્ટલ વેલ્યુ પણ
			નોટીજ્ઞઇડ લેવલ ની અંદર
			છે.
૧૨	શ્રી ભાર્ગવ દવે,	સૌપ્રથમ લોક સુનાવણી યોજના	
	મું . વલસાડ,	માટે જી.પી.સી.બી. નો આભાર	
	તા અને જી. વલસાડ	વ્યકત કર્યો. વધુમાં ગામના લોકો	
		જયારે આ કંપનીના ગેસથી બિમાર	
		થાય છે ત્યારે અમારા પૈસાથી	
		સારવાર કરાવવી પડે છે અને કંપની	
		આ અંગે સગવડ આપતી નથી.	
٩3	શ્રી પૂર્વી રાઠોડ	આ લોક સુનાવણી માટે	
	સરપં ચશ્રી	જી.પી.સી.બી. નો આભાર વ્યકત	
	ગામ: હરીયા	કર્યો અને આ પ્રકારનો કાર્યક્રમ	
	તા અને જી. વલસાડ	સતત થવો જોઇએ તેમજ	
		સી.એસ.આર.ની પ્રવૃતિઓમાં વધારે	
		ભાર મુકવાની જરૂર જણાય છે તેમ ભાગવેલ	
१४	શ્રી પરિચય દેસાઇ,	જણાવેલ. • અહેવાલમાં દર્શાવવામાં આવેલ	કંપનીના પ્રતિનિધિ શ્રી
10	ત્રા પારચલ ટસાઇ, વલસાડ સીટી	• અરુપાલના દશાવવાના આવલ પાના નં.ર ઉપર કોલમ ૪ માં	
		એવુ બતાવેલ છે "કે નેશનલ	
		હાઇવે નં ૮ અહીંયા થી ૨ કીમી	
		ના અંતરે આવેલ છે" પણ	
		ફકીકતમાં ૫૦૦ મીટરનું પણ	
		અંતર નથી. શું તમે આ રીપોર્ટ	
		ચેક નહિ કરેલ ?	
		• અફેવાલના પાનાના કોલમ નં-૮	
		માં જણાવેલ છે કે સૂચિત	

.5


Page 8 of 10

·		
	પ્રોજેકટના ૧૦ કી.મી. ના	
	ત્રિજયામાં કોઇ પણ રિઝર્વ	
	ફોરેસ્ટ ઝોન આવેલ નથી	
	ફકીકત ૩ જેટલાં રિઝર્વ ફોરેસ્ટ	
	ઝોન આવેલ છે.	
•	યુ.એન. ની હ્રાલમાં થયેલ	
	મીંટીંગમાં એવી બાંફ્રેધરી આપી	
	કે ગ્રીન હાઉસ ગેસ માં ૩૫ ટકા	
	નો ઘટાડો કરીશુ. આ ઘટાડો	
	કોલ આધારિત પ્લાન્ટો ને ગેસ	
	આધારીત અને સોલાર	
	આધારીતમાં પરિવર્તન કરીને	
	જ થશે. તો પછી આ કંપનીના	
	કોલ આધારીત પ્લાન્ટનું	
	વિસ્તરણ કેવી રીતે થઇ શકે છે?	
	આ કંપનીના સુચિત પ્લાન્ટને	દંગનીના ગનનિમિથી ગનીલ
	કોલ આધારીત થી ગેસ અને	
	સોલાર આધારીત પ્લાન્ટ કેમ	
	કરવામાં આવતો નથી તેનો	
	કરવામાં આવતા નથા તના જવાબ આપો?	
	જવાબ આવા?	પણ સતત ઉપલ્બધ ન ફોઇ ગેરટે ગેર સાધારીન સાનર
		એટલે ગેસ આધારીત પાવર
		પ્લાન્ટ સલાહભર્યો નથી.
	ફલાય એશ અને ટોક્ષીક તત્વો જેનાં તે આવ્યે વિદ્યાર્થ	
*	જેવાં કે આરસેનીક (Arsenic),	
		સરકારના જાહેરનામાં પ્રમાણે
	(Mercury) જેવાં સોલીડ વેસ્ટ	
	નું ૧૦૦ % ટ્રીટમેન્ટ નફિ થઇ	
	શકે તો તેનું શુ?	આ કંપની ૧૦૦%
		ફ્લાયએશનું યુટીલાઇઝેશન
		કરનાર છે.
•	રજુઆતકર્તાએ લેખિતમાં	
	રજુઆત કરેલ છે.	

Page 9 of 10

અંતમાં અધ્યક્ષશ્રીએ જણાવ્યું કે, જે રજુઆતો અમને મૌખિકમાં મળી છે તે તમામની નોંધ કરવામાં આવેલ છે. કંપની દ્રારા જે પ્રશ્નોના જવાબ આપવામાં આવ્યા છે, જે આપની લેખિત રજુઆતો છે, તેની પણ નોંધ કરવામાં આવેલ છે. સાથે સાથે સમગ્ર પ્રક્રિયાનું ઓડીયો અને વિડીયો રેકોડીંગ પણ કરવામાં આવેલ છે એ તમામ પ્રક્રિયાની નોંધ કરીને ફાઇનલ રીપોર્ટ ગુજરાત સરકારના વન અને પર્યાવરણ મંત્રાલય, ગાંધીનગર મોકલવામાં આવશે. જેનો નિર્ણય ગુજરાત સરકારનાં સંલગ્ન વિભાગ દ્રારા કરવામાં આવે છે અને કોઈ બીજા પ્રશ્નો ઉપસ્થિત ન થતા હોઇ તો આજની પર્યાવરણીય લોક સુનાવણીનો માનનીય અધ્યક્ષશ્રીની અનુમતિથી પુર્ણ થયેલ જાહેર કરવામાં આવી.

Annru Augo de

એ.ડી.બાગુલ પર્યાવરણ લોક સુનાવણીના અધ્યક્ષ તથા અધિક કલેકટર અને અધિક જિલ્લા મેજીસ્ટ્રેટશ્રી, વલસાડ

એ.ગૂ.પટેલ પ્રાદેશિક અધિકારી, ગુજરાત પ્રદુષણ નિયંત્રણ બોર્ડ, વાપી, તથા સભ્ય સચિવશ્રી, ગૃ.પ્ર.નિ.બોર્ડ, ગાંધીનગરના પ્રતિનિધિ

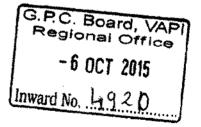
સ્થળ: ગ્રામ પંચાયત હોલ, ગામ: અતુલ તા. જિ. વલસાડ, તા. ૦૯/૧૦/૨૦૧૫

Page 10 of 10

ATUL LIMITED PUBLIC HEARING LETTER

JITENDRA PATEL [jitendrapatel16293@gmail.com] Sent: Tuesday, September 29, 2015 9:10 AM To: gpcb-val; ms-gpcb

Attachments: ATUL LIMITED.jpg (551 KB)


Sir,

Please, find out attached sheet of ATUL LIMITED public hearing related letter.

Thanks With Regards, Jitendra Patel Ankleshwar 9998980519

X Bhavesh Tandel) Aful Ud. 06/10/2015 ×

My of And Und PH of And Und Dreef Ander With

https://webmail.gujarat.gov.in/owa/?ae=Item&a=Preview&t=IPM.Note&id=RgAAAACs... 02/10/2015

पटेल जितेन्द्रकुमार बबलमाइ अन्४, गजाननपार्क सोसायटी, आर.बी.एल स्कुलके पीछे, जी.आइ.डी.सी., अंकलेश्वर जिलान्भरूचन्३९३००२ दिनांकः२९/९/२०१५

मेम्बर सेकेटरी, गुजरात प्रदुषण नियंत्रण बोर्ड, गांधीनगर

महोदयश्री.

दिनांक ९ अक्टूबरको वलसाड जिलेके अतुल लिमीटेड कंपनीकी पथॉवरण सावॅजनिक सुनवाइ होनेवाली है। जिसमें हमारे निम्नलिखित प्रश्न और सुजाव है।

१) आपकी कंपनीकी रेनवोटर हार्वेस्टींग सिस्टम बहूत ही अच्छी है। यह देखकर आनंद हुआ, पर यह सिस्टम खुली (OPEN)होनेकी वजहसे अकस्मात हो सकता है।,

२) आपकी कंपनी वीज उत्पादनके लिये कोयलेकी जगह गेसका इस्तमाल कयों नहीं करती। गेस पर्यावरणके लिये अच्छा ३) कोयलेके ट्रान्सपोर्टके लिये आप कया सुविधा करनेवाले है। कोयलेकी आयात करनेवाली कंपनीया ज्यादातर यह कहती है की ट्रान्सपोर्टके वक्त पर्यावरणकी जिम्मेदारी खरीदनेवाली कंपनीकी होती है। ट्रान्सपोर्टके वक्त कोलसीकी कण हवामें फै नहीं इसके लिये आप क्या करनेवाले हे।

४) यह कंपनीको पर्यावरणके नियमोका भंग करनेके बारेमें कभी नोटीस मिली है, अगर मिली है तो इसकी नकल शामिल करना।

५) आप लिग्नाटका इस्तमाल करते वक्त लाइमस्टोनका उपयोग करनेवाले हे। यह लाइमस्टोनका बादमें क्या करनेवाले है दिनमें कितना लाइमस्टोनका वेस्ट नीकलेगा।

> जितेन्द्रकुमार बबलमाई पटेल अंकलेम्वर मोः 9998980519

 \mathbf{T}

Annexyre-c2

Date: 8th October, 2015

Environmental Public Hearing for M/s Atul Ltd. Scheduled on 9th October, 2015

Krishna kant [tokrishnakant@yahoo.co.in]

- Sent: Wednesday, October 07, 2015 12:04 PM
- To: Collector Valsad(GOG-Revenue Dept); gpcb-val

Cc: Hardik Shah [msgpcb@gmail.com]; Dr. K U Mistry(Chairman-GPCB.); sg@gcin.org; bkrana@nabh.co; secy-moef@nic.in

EPH Letter 7-10-2015.pdf (2 MB) [Open as Web Page] Attachments:

URGENT BY EMAIL

To,

2

The Chairman EPH Valsad / District Collector, Valsad Jilla Seva Sadan-II, Dharampur Road Valsad, Gujarat - 396001.

The Regional Officer, C5/124, GIDC Vapi, Near Hotel Pritam, District Valsad, Vapi - 396 195.

Recived. (P92 HRADAY DESAI) ATUL LTD. 07/10/2015

https://webmail.gujarat.gov.in/owa/?ae=Item&a=Preview&t=IPM.Note&id=RgAAAACs... 06/10/2015